 
 
 
 
 
   
 is
an elliptic curve over a number field
 is
an elliptic curve over a number field  .
Mazur proved in [Maz99] that every nonzero
.
Mazur proved in [Maz99] that every nonzero 
![$ c\in
{\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)[3]$](img78.png) has visibility dimension
 has visibility dimension  (note that
Proposition 2.3 only implies that the visibility
dimension is
 (note that
Proposition 2.3 only implies that the visibility
dimension is  ).  Mazur's result is particularly nice because it
shows that
).  Mazur's result is particularly nice because it
shows that  is visible in an abelian variety that is isogenous to
the product of two elliptic curves.  Using similar techniques,
T. Klenke proved in [Kle01] that every nonzero
 is visible in an abelian variety that is isogenous to
the product of two elliptic curves.  Using similar techniques,
T. Klenke proved in [Kle01] that every nonzero 
![$ c\in
H^1(K,E)[2]$](img81.png) has visibility dimension
 has visibility dimension  (note that 
Proposition 2.3 only implies that the visibility
dimension of any
 (note that 
Proposition 2.3 only implies that the visibility
dimension of any 
![$ c\in
H^1(K,E)[2]$](img81.png) is
 is  ). 	
It is unknown whether the visibility dimension of every nonzero element of
). 	
It is unknown whether the visibility dimension of every nonzero element of
![$ H^1(K,E)[3]$](img83.png) is
 is  , and it is not known whether elements of
, and it is not known whether elements of
![$ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(E)[5]$](img84.png) must have visibility dimension
 must have visibility dimension  .
.
When  lies in
 lies in 
 we use a classical result of Cassels to
strengthen the conclusion of Proposition 2.3.
 we use a classical result of Cassels to
strengthen the conclusion of Proposition 2.3.  
 be an elliptic curve over a number field
 be an elliptic curve over a number field  and let
and let 
 .  
Then the visibility dimension of
.  
Then the visibility dimension of  is at most the order of
is at most the order of  .
. be the order of
 be the order of  .
In view of the restriction of scalars construction in the proof of
Proposition 1.3, it suffices to show that there is
an extension
.
In view of the restriction of scalars construction in the proof of
Proposition 1.3, it suffices to show that there is
an extension  of
 of  of degree
 of degree  such that
 such that 
 .
Without the hypothesis that
.
Without the hypothesis that  lies in
 lies in 
 , such an
extension
, such an
extension  might not exist, as Cassels observed in
[Cas63].  However, in that
same paper, Cassels proved that such
an
 might not exist, as Cassels observed in
[Cas63].  However, in that
same paper, Cassels proved that such
an  exists when
 exists when 
 (see also [O'N01] for another proof).
Let tex2html_wrap_inline$X$ be a genus one curve in the torsor class 
corresponding to tex2html_wrap_inline$c$.  The long exact sequence associated to
displaymath0&rarr#rightarrow;^0(X_K) &rarr#rightarrow;(X_K)
         deg  Z&rarr#rightarrow;0begins
displaymath0&rarr#rightarrow;H^0(K,^0(X_K)) &rarr#rightarrow;H^0(K,(X_K))
         deg  Z &delta#delta; H^1(K,E) &rarr#rightarrow;
&cdots#cdots;,and tex2html_wrap_inline$&delta#delta;(1)=c$ has order tex2html_wrap_inline$n$.
Letting tex2html_wrap_inline$(X_K)$ denote the principal divisors on tex2html_wrap_inline$X_K$, 
we have an exact sequence
displaymath0&rarr#rightarrow;(X_K) &rarr#rightarrow;(X_K) &rarr#rightarrow;(X_K)&rarr#rightarrow;0,from which we obtain the exact sequence
displaymath(X) &rarr#rightarrow;H^0(K,(X_K)) &rarr#rightarrow;H^1(K,(X_K)).Since tex2html_wrap_inline$(X_K)=K(X)^*/K^*$, 
Hilbert's theorem 90 produces
an injection 
 displaymathH^1(K,(X_K))&rarrhk#hookrightarrow;H^2(K,K^*)=(K),so 
tex2html_wrap_inline$((X)&rarr#rightarrow;H^0(K,(X_K)))$ is
isomorphic to the image of tex2html_wrap_inline$H^0(K,(X_K))$ in tex2html_wrap_inline$(K)$.
Because tex2html_wrap_inline$X$ has a point everywhere locally, this image is locally
zero; hence, by the local-to-global principle for the Brauer
group, this image is globally zero.  
In other words, every tex2html_wrap_inline$K$-rational divisor class on tex2html_wrap_inline$X$ 
contains a tex2html_wrap_inline$K$-rational divisor.
(see also [O'N01] for another proof).
Let tex2html_wrap_inline$X$ be a genus one curve in the torsor class 
corresponding to tex2html_wrap_inline$c$.  The long exact sequence associated to
displaymath0&rarr#rightarrow;^0(X_K) &rarr#rightarrow;(X_K)
         deg  Z&rarr#rightarrow;0begins
displaymath0&rarr#rightarrow;H^0(K,^0(X_K)) &rarr#rightarrow;H^0(K,(X_K))
         deg  Z &delta#delta; H^1(K,E) &rarr#rightarrow;
&cdots#cdots;,and tex2html_wrap_inline$&delta#delta;(1)=c$ has order tex2html_wrap_inline$n$.
Letting tex2html_wrap_inline$(X_K)$ denote the principal divisors on tex2html_wrap_inline$X_K$, 
we have an exact sequence
displaymath0&rarr#rightarrow;(X_K) &rarr#rightarrow;(X_K) &rarr#rightarrow;(X_K)&rarr#rightarrow;0,from which we obtain the exact sequence
displaymath(X) &rarr#rightarrow;H^0(K,(X_K)) &rarr#rightarrow;H^1(K,(X_K)).Since tex2html_wrap_inline$(X_K)=K(X)^*/K^*$, 
Hilbert's theorem 90 produces
an injection 
 displaymathH^1(K,(X_K))&rarrhk#hookrightarrow;H^2(K,K^*)=(K),so 
tex2html_wrap_inline$((X)&rarr#rightarrow;H^0(K,(X_K)))$ is
isomorphic to the image of tex2html_wrap_inline$H^0(K,(X_K))$ in tex2html_wrap_inline$(K)$.
Because tex2html_wrap_inline$X$ has a point everywhere locally, this image is locally
zero; hence, by the local-to-global principle for the Brauer
group, this image is globally zero.  
In other words, every tex2html_wrap_inline$K$-rational divisor class on tex2html_wrap_inline$X$ 
contains a tex2html_wrap_inline$K$-rational divisor.
We now show that there is a point on tex2html_wrap_inline$X$ defined over an extension of degree
at most tex2html_wrap_inline$n$. Since tex2html_wrap_inline$n&isin#in;(&delta#delta;)$, there exists tex2html_wrap_inline$D&isin#in;(X)$ which maps
to tex2html_wrap_inline$n &isin#in;Z$ under the degree map.
By the Riemann-Roch theorem, there is an effective divisor linearly 
equivalent to tex2html_wrap_inline$D$.  Since this divisor is effective and of degree tex2html_wrap_inline$n$, 
each point in the support of tex2html_wrap_inline$D$ is defined over an extension tex2html_wrap_inline$L$ of tex2html_wrap_inline$K$of degree at most tex2html_wrap_inline$n$ (alternatively, the residue field of each 
scheme-theoretic
point is of degree at most tex2html_wrap_inline$n$).  Thus the index of tex2html_wrap_inline$c$ is at most tex2html_wrap_inline$n$(recall that tex2html_wrap_inline$X(L)&ne#neq;&empty#emptyset;$ if and only if tex2html_wrap_inline$_L(c)=0$).
This completes the proof because the order of tex2html_wrap_inline$c$, which is tex2html_wrap_inline$n$,
divides the index of tex2html_wrap_inline$c$, which is at most tex2html_wrap_inline$n$.
  
 , it seems to be an open
problem to determine whether or not elements of
, it seems to be an open
problem to determine whether or not elements of 
![$ {\mbox{{\fontencoding{OT2}\fontfamily{wncyr}\fontseries{m}\fontshape{n}\selectfont Sh}}}(A)[n]$](img85.png) split
over an extension of degree
 split
over an extension of degree  .
.
 
 
 
 
