 
 
 
 
 
   
 Next: About this document ...
 Up: Visibility of Shafarevich-Tate Groups
 Previous: Invisible Elements that Becomes
 
- 
 
- AS02
-  A. Agashe and
W.A. Stein, Visible Evidence for the Birch and
Swinnerton-Dyer Conjecture for Rank 0 Modular 
Abelian Varieties, Preprint.
 
- BCP97
- 
W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I.
  The user language, J. Symbolic Comput. 24 (1997), no. 3-4,
  235-265, Computational algebra and number theory (London, 1993).
 
- BLR90
- 
S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models,
  Springer-Verlag, Berlin, 1990.
 
- Cas63
- 
J.W.S. Cassels, Arithmetic on curves of genus 1.
  V. Two counterexamples, J. London Math. Soc. 38 (1963),
  244-248.
 
- CM00
- 
J.E. Cremona and B. Mazur, Visualizing elements in the
  Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1,
  13-28.
 
- Cre
- 
J.E. Cremona, Elliptic curves of conductor 
 , ,
 http://www.maths.nott.ac.uk/personal/jec/ftp/data/.
 
- Cre97
- 
J.E. Cremona, Algorithms for modular elliptic curves, 
second
  ed., Cambridge University Press, Cambridge, 1997.
 
- Edi92
- 
B. Edixhoven, The weight in Serre's conjectures on modular
  forms, Invent. Math. 109 (1992), no. 3, 563-594.
 
- Gro65
- 
A. Grothendieck, Éléments de géométrie algébrique. IV.
  Étude locale des schémas et des morphismes de schémas. II, 
Inst.
  Hautes Études Sci. Publ. Math. (1965), no. 24, 231.
 
- Gro66
- 
A. Grothendieck, Éléments de géométrie algébrique. IV.
  Étude locale des schémas et des morphismes de schémas. III,
  Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255.
 
- Gro67
- 
A. Grothendieck, Éléments de géométrie algébrique. IV.
  Étude locale des schémas et des morphismes de schémas IV, Inst.
  Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
 
- Gro70
- 
A. Grothendieck, Schémas en groupes. I: Propriétés
  générales des schémas en groupes, Springer-Verlag, Berlin, 1970.
 
- Kle01
- 
T. Klenke, Modular Varieties and Visibility, Ph.D. thesis, Harvard
  University (2001).
 
- LT58
- 
S. Lang and J. Tate, Principal homogeneous spaces over abelian
  varieties, Amer. J. Math. 80 (1958), 659-684.
 
- Maz99
- 
B. Mazur, Visualizing elements of order three in the 
Shafarevich-Tate
  group, Asian J. Math. 3 (1999), no. 1, 221-232.
 
- Mil86
- 
J.S. Milne, Arithmetic duality theorems, Academic Press
  Inc., Boston, Mass., 1986.
 
- O'N01
- 
C. O'Neil, The period-index obstruction for elliptic curves, to appear
in Journal of Number Theory.
 
- Rib90
- 
K.A. Ribet, Raising the levels of modular representations,
  Séminaire de Théorie des Nombres, Paris 1987-88, Birkhäuser Boston,
  Boston, MA, 1990, pp. 259-271.
 
- Ser79
- 
J-P. Serre, Local fields, Springer-Verlag, New York, 1979, Translated
  from the French by Marvin Jay Greenberg.
 
- Ste00
- 
W.A. Stein, Explicit approaches to modular abelian
  varieties, Ph.D. thesis, University of California, Berkeley (2000).
 
- Stu87
- 
J. Sturm, On the congruence of modular forms, Number theory (New York,
  1984-1985), Springer, Berlin, 1987, pp. 275-280.
 
William A Stein
2002-02-27