next up previous
Next: The Dimension of Up: Lecture 32: Fermat's Last Previous: Holomorphic Functions

Cuspidal Modular Forms

Let $ N$ be a positive integer and consider the set

$\displaystyle \Gamma_0(N) = \left\{\left(
\begin{matrix}a&b\\  c&d
\end{matrix}\right)\in\SL_2(\mathbb{Z}) \,:\, N \mid c\right\}.
$

Definition 3.1 (Cuspidal Modular Form)   A cuspidal modular form of level $ N$ is a holomorphic function $ f:\mathfrak{h}\rightarrow \mathbb{C}$ such that
  1. $ f\vert _\gamma = f$ for all $ \gamma\in\Gamma_0(N)$,
  2. for every $ \gamma\in\SL_2(\mathbb{Z})$,

    $\displaystyle \lim_{z\rightarrow \infty} f(\gamma(z)) = 0,$

    and
  3. $ f$ has a Fourier expansion:

    $\displaystyle f = \sum_{n=1}^{\infty} a_n q^n.
$

Exercise 3.2   Prove that condition 3 is implied by conditions 1 and 2, so condition 3 is redundant. [Hint: Since $ \gamma=\left(
\begin{smallmatrix}1&1\\  0&1\end{smallmatrix}\right)\in\Gamma_0(N)$, condition 1 implies that $ f(z+1)=f(z)$, so there is a function $ F(q)$ on the open punctured unit disc such that $ F(q(z)) = f(z)$. Condition 2 implies that $ \lim_{q\rightarrow 0} F(q) = 0$, so by complex analysis $ F$ extends to a holomorphic function on the full open unit disc.]

Definition 3.3   The $ q$-expansion of $ f$ is the Fourier expansion $ f = \sum_{n=1}^\infty a_n q^n.
$

Exercise 3.4   Suppose that $ f\in S_2(\Gamma_0(N))$. Prove that

$\displaystyle f(z) dz = f(\gamma(z))d(\gamma(z))
$

for all $ \gamma\in\Gamma_0(N)$. [Hint: This is simple algebraic manipulation.]

Exercise 3.5   Let $ S_2(\Gamma _0(N))$ denote the set of cuspidal modular forms of level $ N$. Prove that $ S_2(\Gamma _0(N))$ forms a $ \mathbb{C}$-vector space under addition.



Subsections
next up previous
Next: The Dimension of Up: Lecture 32: Fermat's Last Previous: Holomorphic Functions
William A Stein 2001-11-30