next up previous
Next: Modularity of Elliptic Curves Up: Cuspidal Modular Forms Previous: Cuspidal Modular Forms


The Dimension of $ S_2(\Gamma _0(N))$

The dimension of $ S_2(\Gamma _0(N))$ is

$\displaystyle \dim_\mathbb{C}S_2(\Gamma_0(N)) =
1+ \frac{\mu}{12} - \frac{\nu_2}{4} - \frac{\nu_3}{3}
- \frac{\nu_\infty}{2},
$

where $ \mu = N \prod_{p\mid N} (1+1/p)$, and $ \nu_2 = \prod_{p\mid N} \left(1+\left(\frac{-4}{p}\right)\right)$ unless $ 4\mid N$ in which case $ \nu_2=0$, and $ \nu_3 = \prod_{p\mid N} \left(1+\left(\frac{-3}{p}\right)\right)$ unless $ 2\mid N$ or $ 9\mid N$ in which case $ \nu_3=0$, and $ \nu_\infty = \sum_{d\mid N} \varphi (\gcd(d,N/d))$. For example,

$\displaystyle \dim_\mathbb{C}S_2(\Gamma_0(2)) =
1+ \frac{3}{12} - \frac{1}{4} - \frac{0}{3} - \frac{2}{2} = 0,
$

and

$\displaystyle \dim_\mathbb{C}S_2(\Gamma_0(11)) =
1+ \frac{12}{12} - \frac{0}{4} - \frac{0}{3} - \frac{2}{2} = 1.
$

One can prove that the vector space $ S_2(\Gamma_0(11))$ has basis

$\displaystyle f = q\prod_{n=1}^{\infty}(1-q^n)^2(1-q^{11n})^2 =
q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 + \cdots.
$

Exercise 3.6   Compute the dimension of $ S_2(\Gamma_0(25))$.



William A Stein 2001-11-30