next up previous
Next: Cuspidal Modular Forms Up: Lecture 32: Fermat's Last Previous: Fermat's Last Theorem

Holomorphic Functions

The complex upper half plane is the set

$\displaystyle \mathfrak{h}= \{z\in\mathbb{C}\,:\,$   Im$\displaystyle (z) > 0\}.
$

A holomorphic function $ f:\mathfrak{h}\rightarrow \mathbb{C}$ is a function such that for all $ z\in\mathfrak{h}$ the derivative

$\displaystyle f'(z) = \lim_{h\rightarrow 0} \frac{f(z+h) - f(z)}{h}
$

exists. Holomorphicity is a very strong condition because $ h\in\mathbb{C}$ can approach 0 in many ways.

Example 2.1   Let $ \SL_2(\mathbb{Z})$ denote the set of $ 2\times 2$ integers matrices with determinant $ 1$. If $ \gamma=\left(
\begin{smallmatrix}a&b\\  c&d\end{smallmatrix}\right)\in\SL_2(\mathbb{Z})$, then the corresponding linear fractional transformation

$\displaystyle \gamma(z) = \frac{az+b}{cz+d}
$

is a holomorphic function on $ \mathfrak{h}$. (Note that the only possible pole of $ \gamma$ is $ -\frac{d}{c}$, which is not an element of  $ \mathfrak{h}$.)

For future use, note that if $ f:\mathfrak{h}\rightarrow \mathbb{C}$ is a holomorphic function, and $ \gamma=\left(
\begin{smallmatrix}a&b\\  c&d\end{smallmatrix}\right)\in\SL_2(\mathbb{Z})$, then

$\displaystyle f\vert _\gamma(z) = f(\gamma(z)) (cz+d)^{-2}
$

is again a holomorphic function.

Example 2.2   Let $ q(z) = e^{2\pi i z}$. Then $ q$ is a holomorphic function on  $ \mathfrak{h}$ and $ q'=2\pi i q$. Moreover, $ q$ defines a surjective map from $ \mathfrak{h}$ onto the punctured open unit disk $ D=\{z\in\mathbb{C}: 0<\vert z\vert<1\}$.



William A Stein 2001-11-30