The Cube Roots of Two

Suppose $ K/\mathbf{Q}$ is not Galois. Then $ e_i$, $ f_i$, and $ g$ are defined for each prime $ p\in\mathbf{Z}$, but we need not have $ e_1=\cdots=e_g$ or $ f_1=\cdots =f_g$. We do still have that $ \sum_{i=1}^g e_i f_i = n$, by the Chinese Remainder Theorem.

For example, let $ K=\mathbf{Q}(\sqrt[3]{2})$. We know that $ \O _K = \mathbf{Z}[\sqrt[3]{2}]$. Thus $ 2\O _K = (\sqrt[3]{2})^3$, so for $ 2$ we have $ e=3$ and $ f=g=1$. To factor $ 3\O _K$, we note that working modulo $ 3$ we have

$\displaystyle x^3 - 2 = (x-2)(x^2+2x+1) = (x-2)(x+1)^2 \in \mathbf{F}_3[x],
$

so

$\displaystyle 3\O _K = (3, \sqrt[3]{2}- 2)\cdot (3, \sqrt[3]{2}+ 1)^2.
$

Thus $ e_1=1$, $ e_2=2$, $ f_1=f_2=1$, and $ g=2$. Next, working modulo $ 5$ we have

$\displaystyle x^3 - 2 = (x+2)(x^2+3x+4) \in \mathbf{F}_5[x],
$

and the quadratic factor is irreducible. Thus

$\displaystyle 5\O _K = (5, \sqrt[3]{2}+2)\cdot (5, \sqrt[3]{2}^2 + 3\sqrt[3]{2}+ 4).
$

Thus here $ e_1=e_2=1$, $ f_1=1$, $ f_2=2$, and $ g=2$.

Next we consider what happens in the Galois closure of $ K$. Since the three embeddings of $ \sqrt[3]{2}$ in $ \mathbf{C}$ are $ \sqrt[3]{2}$, $ \zeta_3\sqrt[3]{2}$, and $ \zeta_3^2\sqrt[3]{2}$, we have

$\displaystyle M=K^{\gc } = \mathbf{Q}(\sqrt[3]{2}, \zeta_3) = K.L,$

where $ L=\mathbf{Q}(\zeta_3)=\mathbf{Q}(\sqrt{-3})$, since $ \zeta_3=(-1+\sqrt{-3})/2$ is a primitive cube root of unity. The notation $ K.L$ means the ``compositum of $ K$ and $ L$'', which is the smallest field generated by $ K$ and $ L$.

Let's figure out $ e$, $ f$, and $ g$ for the prime $ p=3$ relative to the degree six Galois field $ M/\mathbf{Q}$ by using Theorem 13.2.2 and what we can easily determine about $ K$ and $ L$. First, we know that $ efg=6$. We have $ 3\O _K=\mathfrak{p}_1\mathfrak{p}_2^2$, so $ 3\O _M=\mathfrak{p}_1\O _M\cdot (\mathfrak{p}_2 \O _M)^2$, and the prime factors of $ \mathfrak{p}_1\O _M$ are disjoint from the prime factors of $ \mathfrak{p}_2\O _M$. Thus $ e>1$ is even and also $ g>1$. The only possibility for $ e,f,g$ satisfying these two conditions is $ e=2$, $ f=1$, $ g=3$, so we conclude that $ 3\O _M = \mathfrak{q}_1^2 \mathfrak{q}_2^2 \mathfrak{q}_3^2$ without doing any further work, and without actually knowing the $ \mathfrak{q}_i$ explicitly.

Here's another interesting deduction that we can make ``by hand''. Suppose for the moment that $ \O _M = \mathbf{Z}[\sqrt[3]{2},\zeta_3]$ (this will turn out to be false). Then the factorization of $ (\sqrt{-3})\subset \O _L$ in $ \O _M$ would be exactly reflected by the factorization of $ x^3-2$ in $ \mathbf{F}_3=\O _L/(\sqrt{-3})$. Modulo $ 3$ we have $ x^3-2=x^3+1 = (x+1)^3$, which would imply that $ (\sqrt{-3}) =
\mathfrak{q}^3$ for some prime $ \mathfrak{q}$ of $ \O _M$, i.e., that $ e=6$ and $ f=g=1$, which is incorrect. Thus $ \O _M \neq\mathbf{Z}[\sqrt[3]{2},\zeta_3]$. Indeed, this conclusion agrees with the following computation, which asserts that $ [\O _M : \mathbf{Z}[\sqrt[3]{2},\zeta_3]] = 24$:

   > R<x> := PolynomialRing(RationalField());
   > K := NumberField(x^3-2);
   > L := NumberField(x^2+3);
   > M := CompositeFields(K,L)[1];
   > O_M := MaximalOrder(M);
   > a := M!K.1;
   > b := M!L.1;
   > O := Order([a,b]);
   > Index(O_M,O);
   24

William Stein 2004-05-06