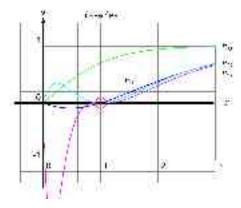
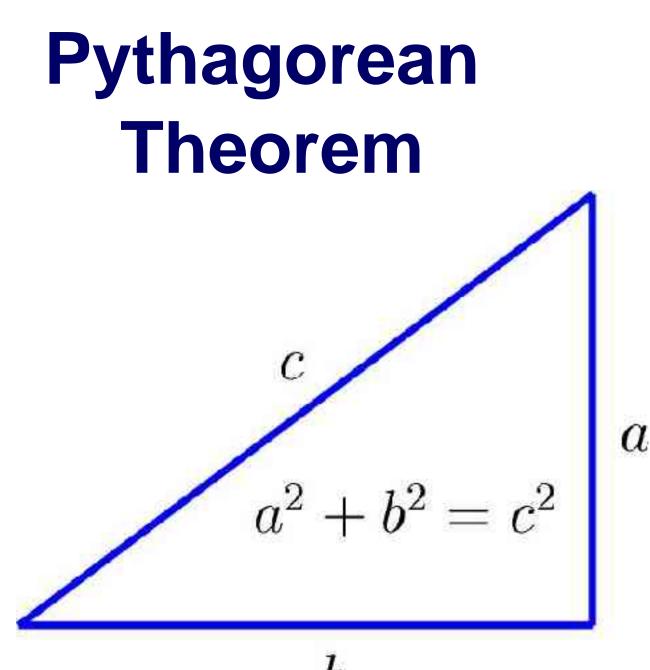
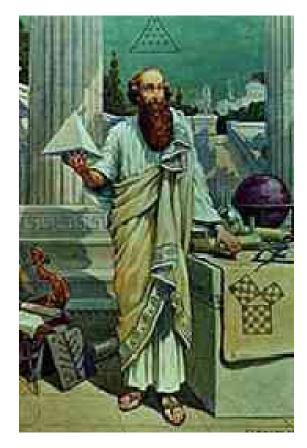
An Introduction to the Birch and Swinnerton-Dyer Conjecture

November 3, 2004 Univ. of Washington, Seattle

http://modular.fas.harvard.edu



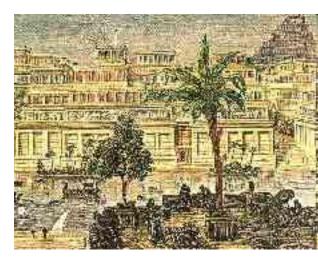




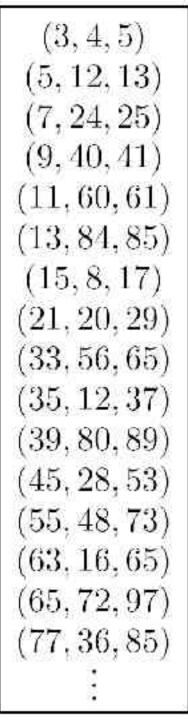
Pythagoras approx 569-475 B.C.

Babylonians

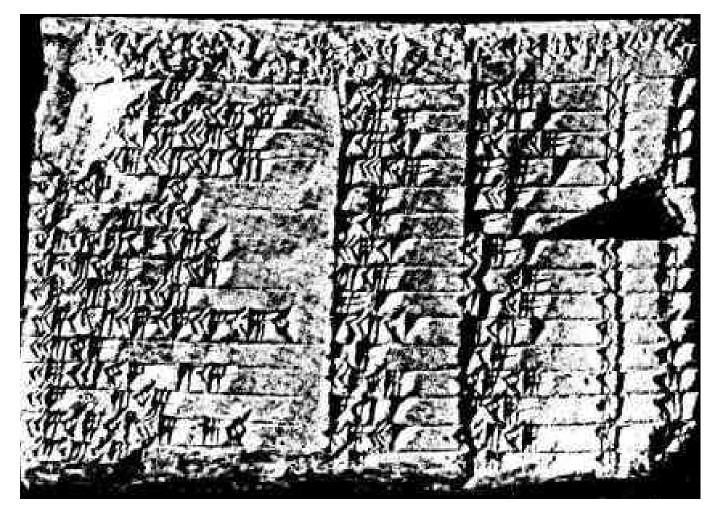
1800-1600 B.C.



BABYLON, IRAQI LION STATUE



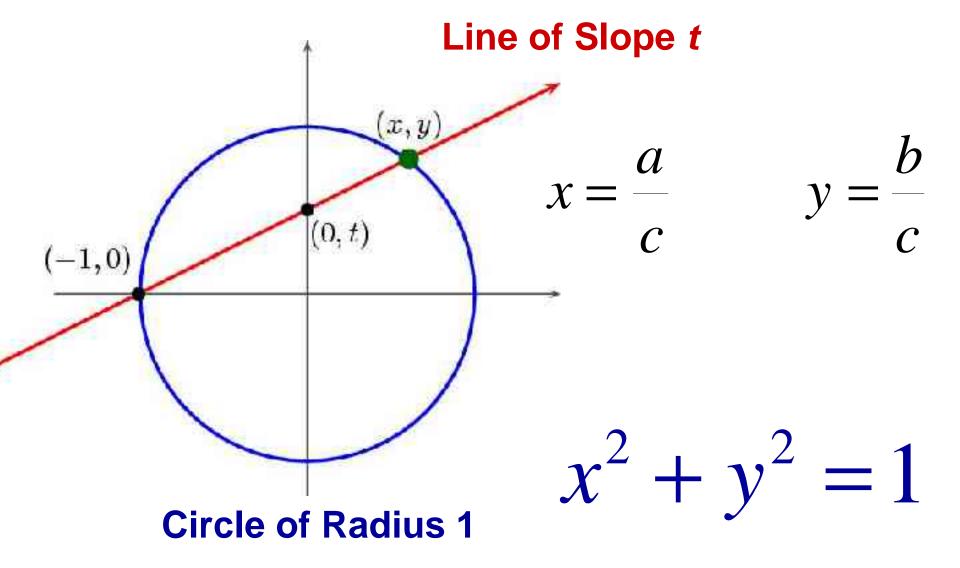
Pythagorean Triples



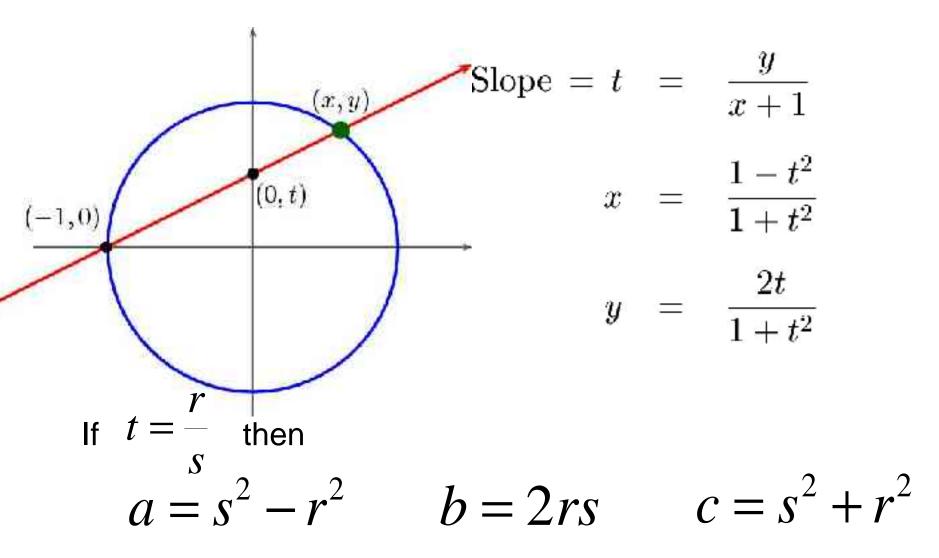
Triples of whole numbers a, b, c such that

 $a^2 + b^2 = c^2$

Enumerating Pythagorean Triples

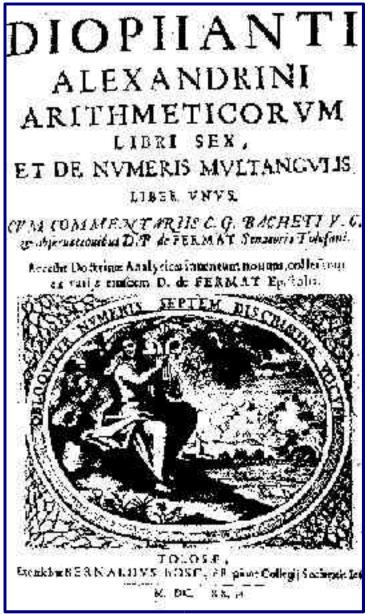


Enumerating Pythagorean Triples

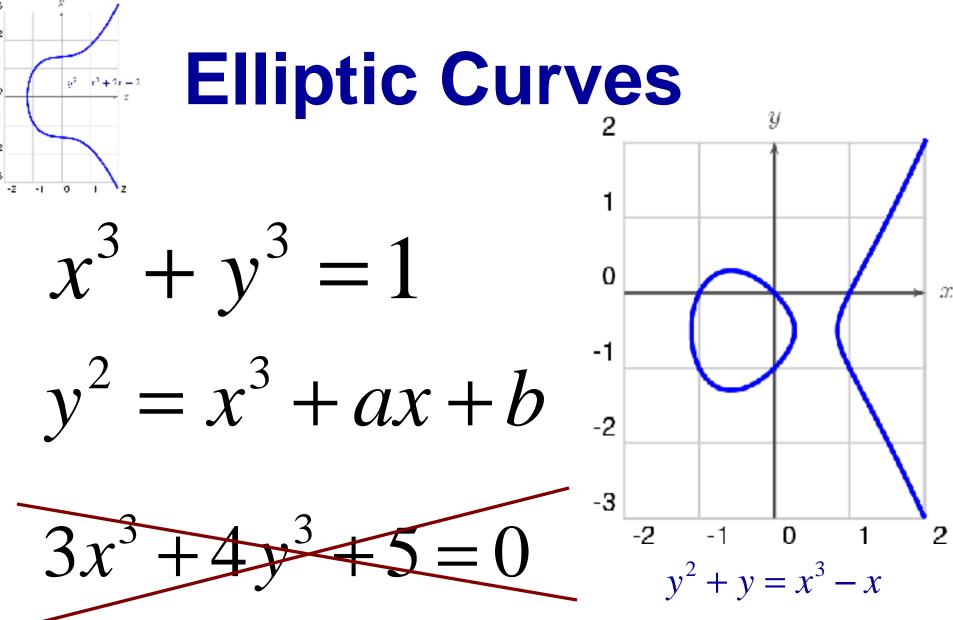


is a Pythagorean triple.

Integer and Rational Solutions

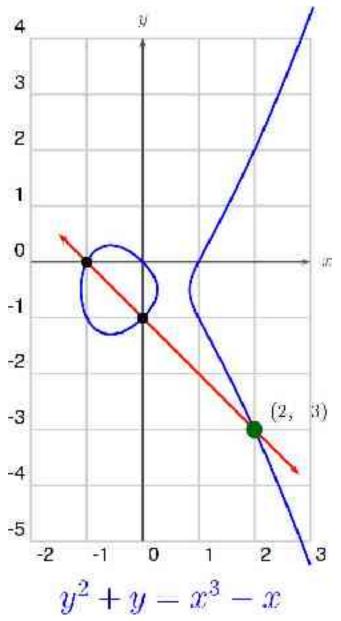


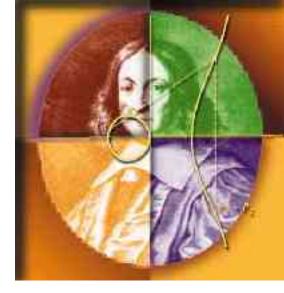
GERKA HEPHUL KA

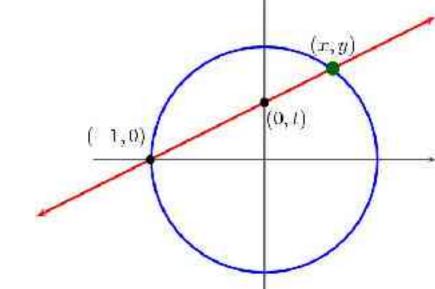


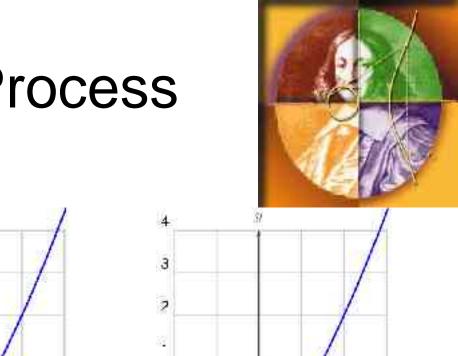
Cubic algebraic equations in two unknowns x and y. Exactly the 1-dimensional compact algebraic groups.

The Secant Process

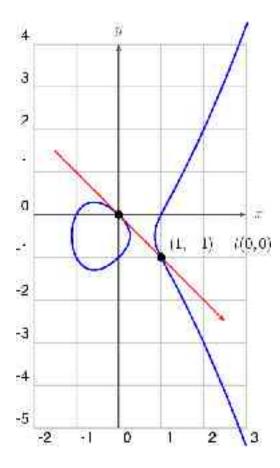


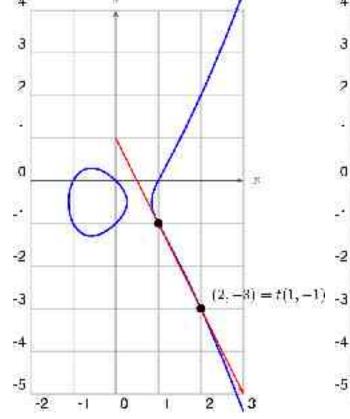


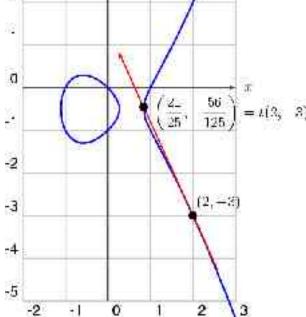




The Tangent Process

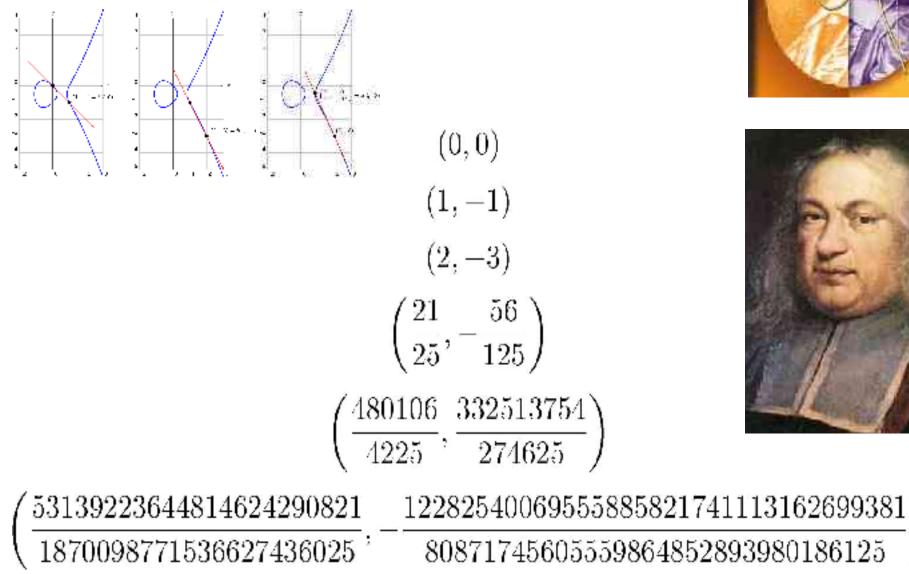




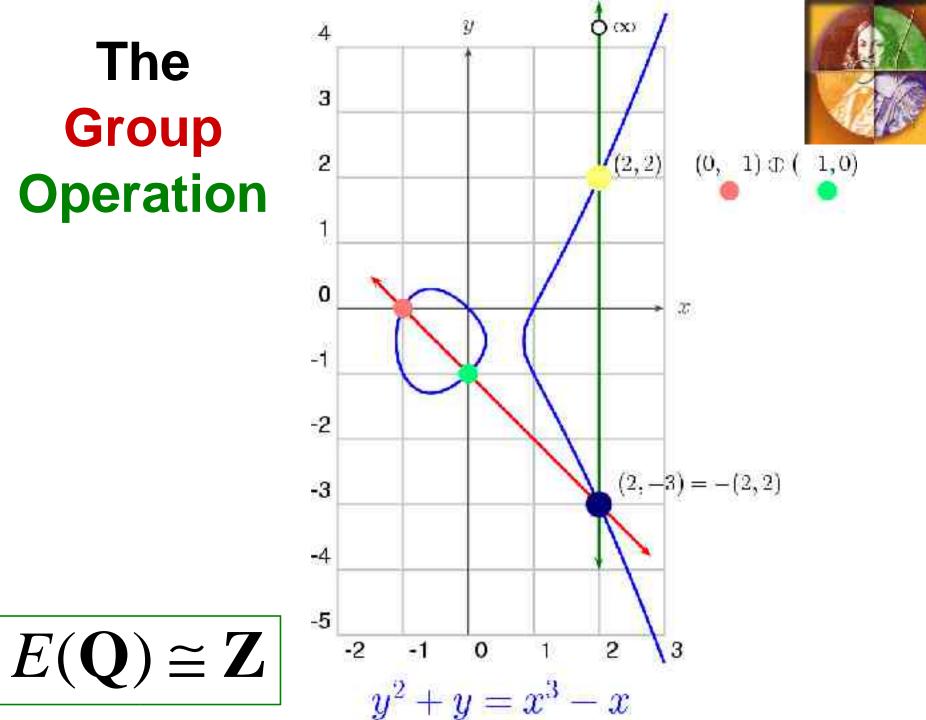


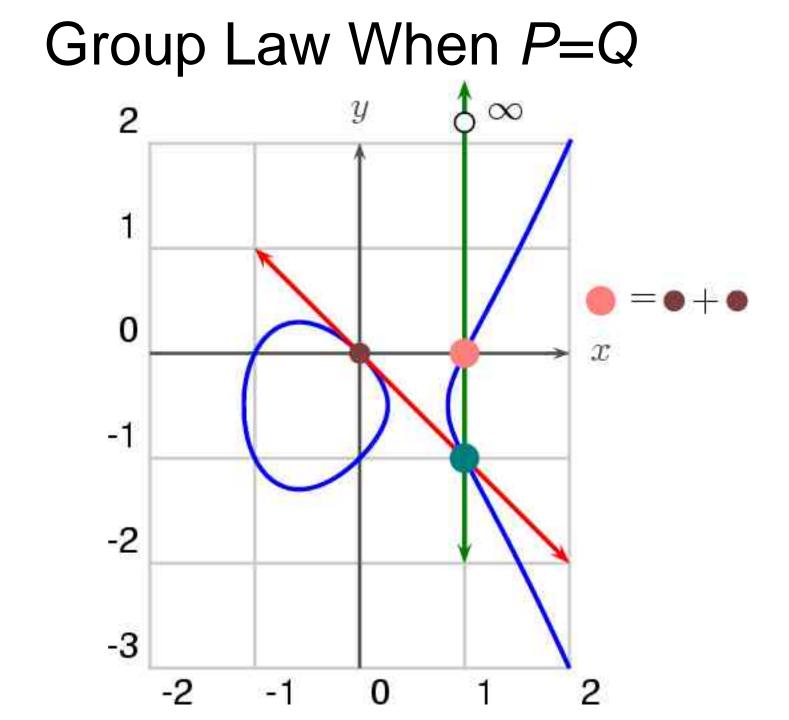
 $y^2 + y = x^3 - x$

Big Points From Tangents



The Group **Operation**





Mordell's Theorem

The group $E(\mathbf{Q})$ of rational points on an elliptic curve is finitely generated. Thus every rational point can be obtained from a *finite* number of solutions, using some combination of the secant and tangent processes.

1888-1972

The Simplest Solution Can Be Huge

Simplest solution to $y^2 = x^3 + 7823$:

Stolls

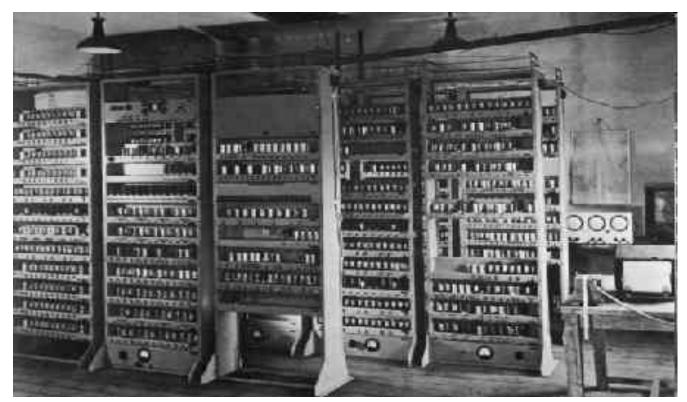
 $x = \frac{2263582143321421502100209233517777}{143560497706190989485475151904721}$

 $y = \frac{186398152584623305624837551485596770028144776655756}{1720094998106353355821008525938727950159777043481}$

(Found by Michael Stoll in 2002)

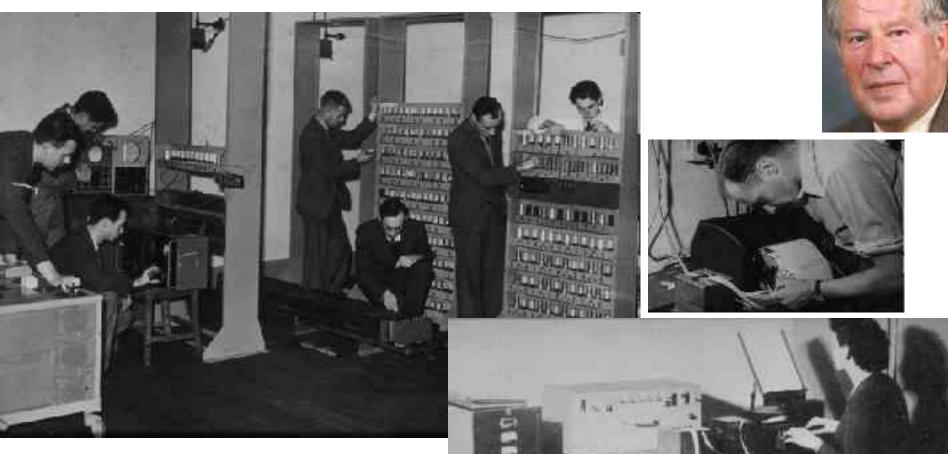
Central Question

How many solutions are needed to generate all solutions to a cubic equation? Birch and Swinnerton-Dyer



EDSAC in Cambridge, England

More EDSAC Photos



Electronic Delay Storage Automatic Computer

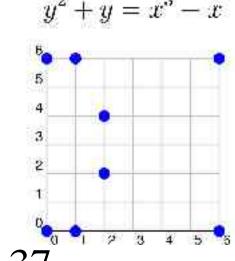
Conjectures Proliferated

Conjectures Concerning Elliptic Curves By B.J. Birch, pub. 1965

"The subject of this lecture is rather a special one. I want to describe some computations undertaken by myself and Swinnerton-Dyer on EDSAC, by which we have calculated the zeta-functions of certain elliptic curves. As a result of these computations we have found an analogue for an elliptic curve of the Tamagawa number of an algebraic group; and conjectures (due to ourselves, due to Tate, and due to others) have proliferated. [...] though the associated theory is both abstract and technically complicated, the objects about which I intend to talk are usually simply defined and often machine computable; experimentally we have detected certain relations between different invariants, but we have been unable to approach proofs of these relations, which must lie very deep."

Solutions Modulo p

Consider solutions modulo a prime number:



p = 2,3,5,7,11,13,17,19,23,29,31,37,...

We say that (a,b), with a,b integers, is a **solution modulo** p to

$$y^2 + y = x^3 - x$$

if

$$b^2 + b \equiv a^3 - a \pmod{p}.$$

For example,

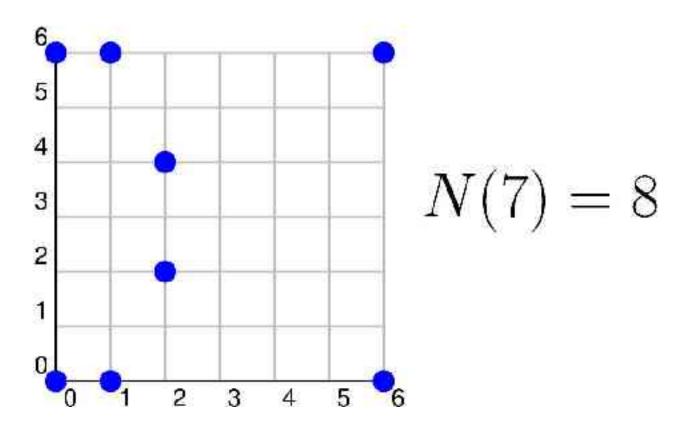
$$4^2 + 4 \equiv 2^3 - 2 \pmod{7}.$$

This idea generalizes to any cubic equation.

Counting Solutions

 $N(p) = \# \text{ of solutions } \pmod{p} \le p^2$

$$y^2 + y = x^3 - x$$



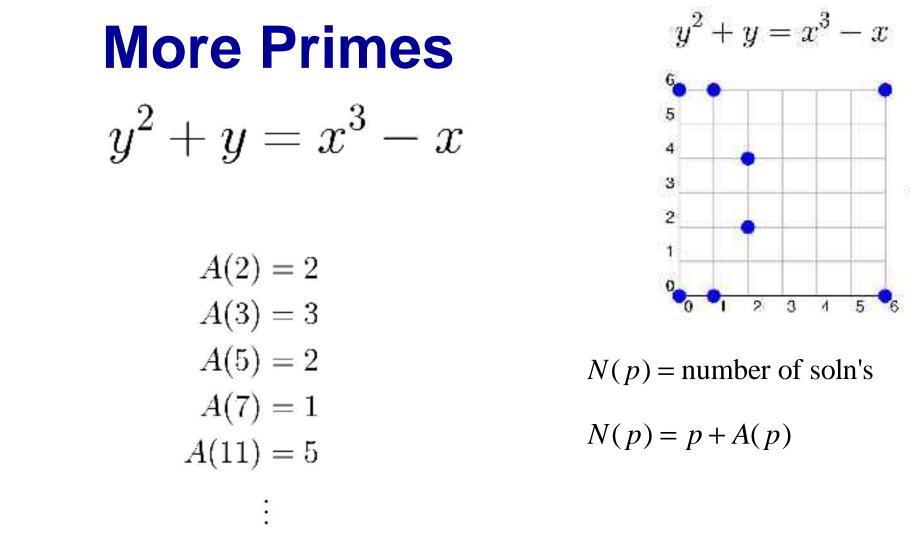
The Error Tern (Hasse's Bound

Write
$$N(p) = p + A(p)$$
 with error term

For example,
$$N(7) = 8$$
 so $A(7) = 1$.

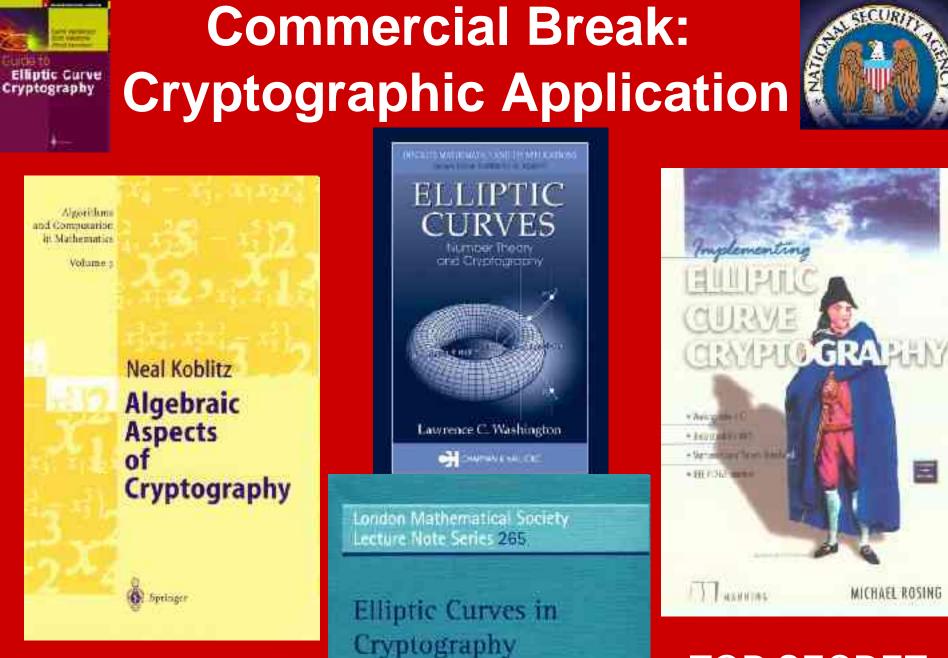
 $A(p) \leq 2\sqrt{p}$

Note for experts:
$$A(p) = -a_p$$



Thus N(p) > p for these primes p.

Continuing: A(13) = 2, A(17) = 0, A(19) = 0, A(23) = -2, A(29) = -6, A(31) = 4,



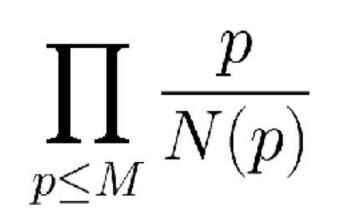
tan Bluke, Badiel Scrouss & Algel Smart

TOP SECRET

If a cubic curve has infinitely many solutions, then probably N(p) is **larger** than p, for many primes p.

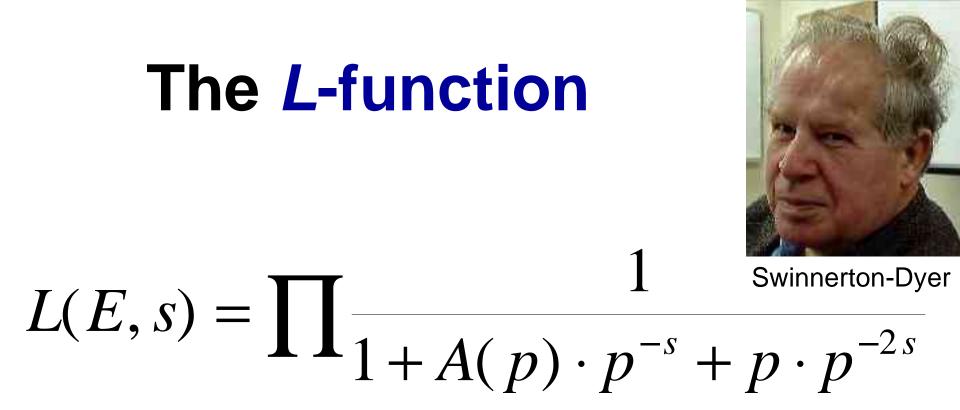
Thus maybe the product of terms

M	$\prod_{p \leq M} \frac{p}{N(p)}$
10	0.083
100	0.032
1000	0.021
10000	0.013
100000	0.010



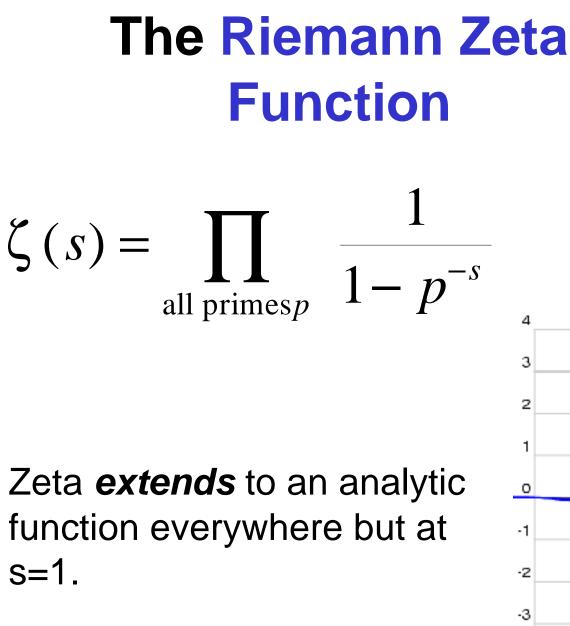
will tend to 0 as M gets larger.

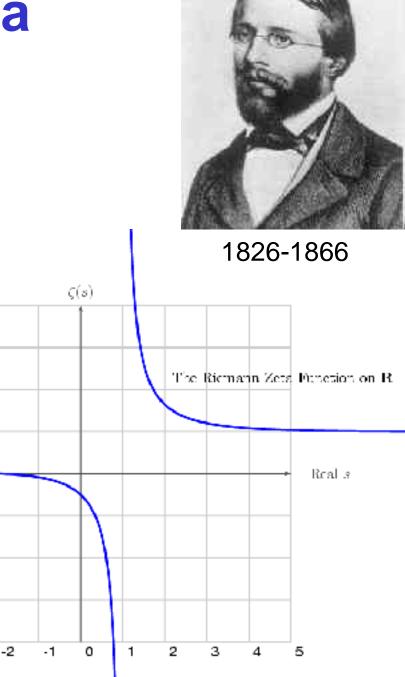
Swinnerton-Dyer at AIM



The product is over all primes *p*. (At a finite number of primes the factor must be slightly adjusted.)

Product converges Formally: for $Re(s) > \frac{3}{2}$ $L(E,1) = "\prod \frac{p}{N(p)+1}"$





-4

The Modularity Theorem

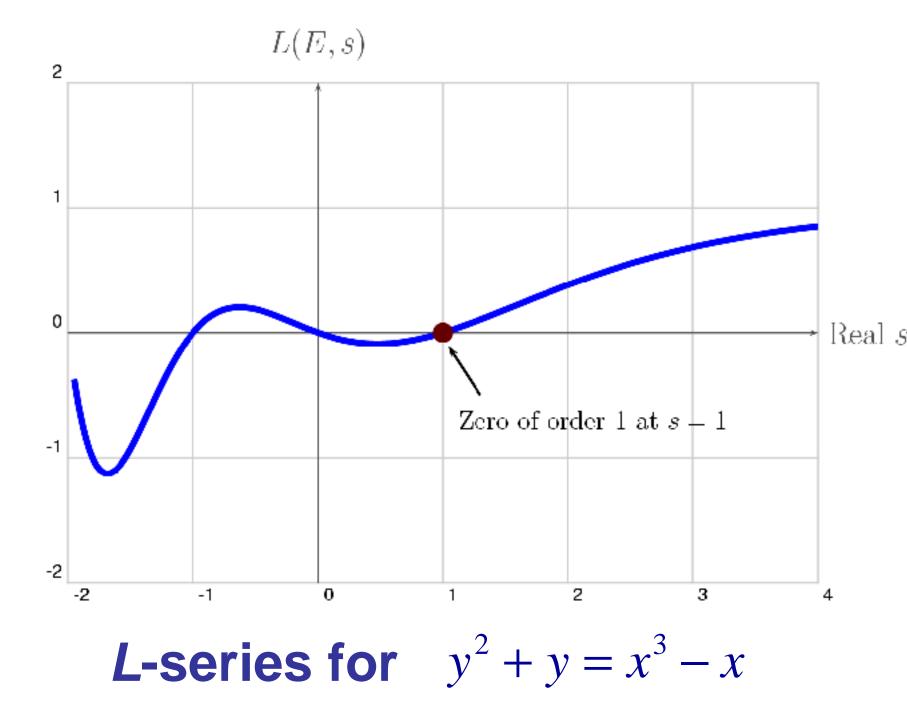
Theorem (2000, Wiles, Taylor, and Breuil, Conrad, Diamond) *The curve E arises from a "modular form", so* L(E,s)

A. Wiles

extends to an analytic function on the whole complex plane.

(This modularity theorem is the key input to Wiles's proof of Fermat's Last Theorem.)

R. Taylor



The Birch and Swinnerton-Dyer Conjecture

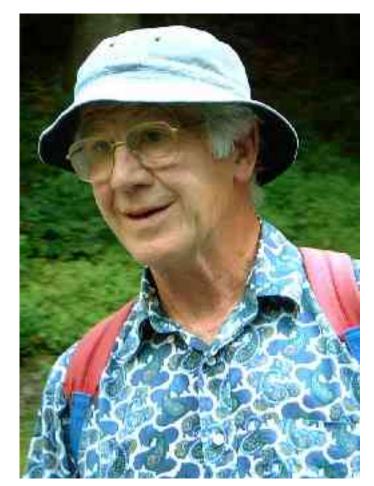
The order of vanishing of

L(E,s)

at 1 equals the rank of the group $E(\mathbf{Q})$ of all rational solutions to E:

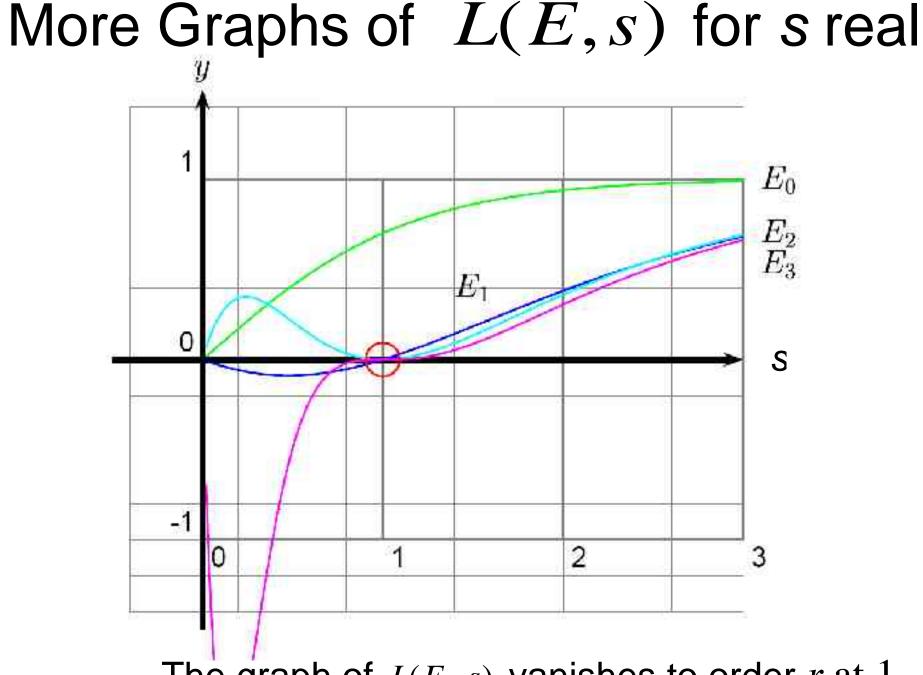
 $\operatorname{ord}_{s=1} L(E, s) = \operatorname{rank} E(\mathbf{Q})$

(CMI: \$1000000 reward for a proof.)



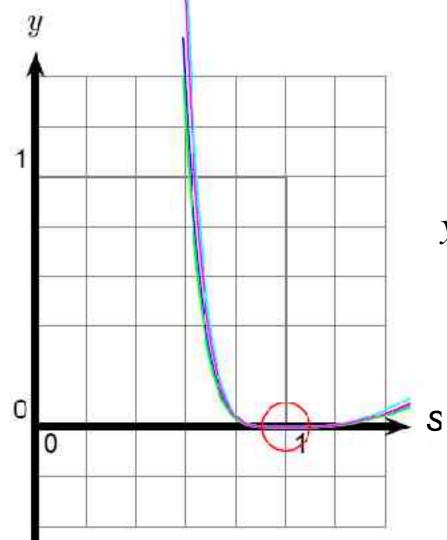
Bryan Birch

Birch and Swinnerton-Dyer



The graph of $L(E_r, s)$ vanishes to order r at 1.

Examples of L(E, s) that **appear to** vanish to order 4



$$y^2 + xy = x^3 - x^2 - 79x + 289$$

Open Problem: For this *E, prove that L(E,s)* Vanishes to order 4 at s=1.

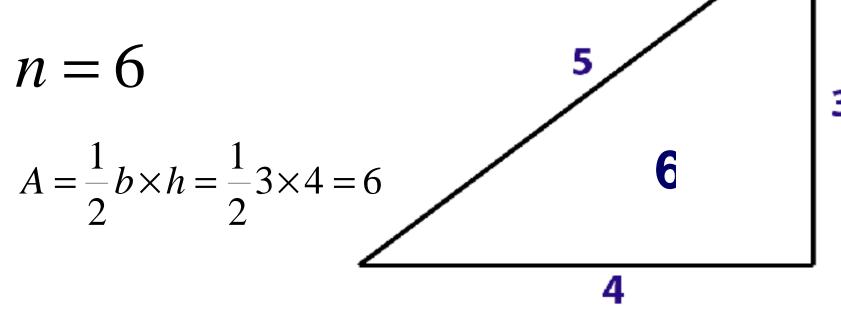
Congruent Number Problem

Open Problem: Decide whether an integer *n* is the area of a right triangle with rational side lengths.

Fact: Yes, precisely when the cubic equation

$$y^2 = x^3 - n^2 x$$

has infinitely many solutions $(x, y) \in \square$



Connection with BSD Conjecture

Theorem (Tunnell): The Birch and Swinnerton-Dyer conjecture implies that there is a simple algorithm to decides whether or not a given integer *n* is a congruent number.

Neal Koblitz Introduction to Elliptic Curves and Modular Forms

Second Edition

See [Koblitz] for more details

The Gross-Zagier

Theorem

Benedict Gross

When the order of vanishing of L(E, s) at s=1 is one, then E has rank at least one.

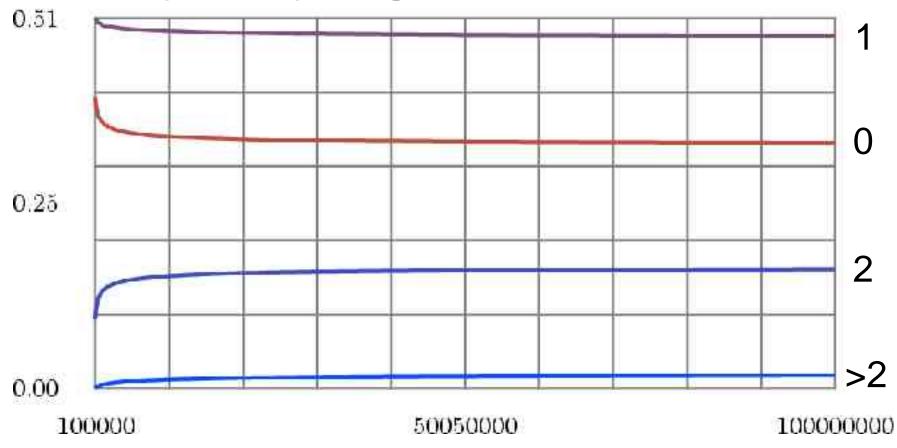
Don Zagier

Subsequent work of Kolyvagin showed that if the order of vanishing is exactly 1, then the rank equals 1, so the Birch and Swinnerton-Dyer conjecture is true in this case.

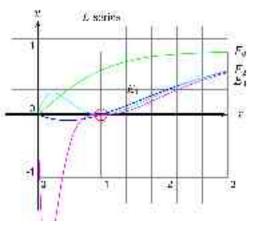
Kolyvagin's Theorem

Theorem. If the order of vanishing of L(E,s) at s=1 is at most 1, then the Birch and Swinnerton-Dyer conjecture is true for *E*.

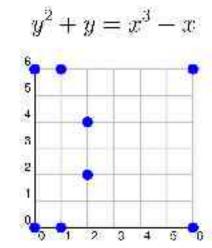
How Many Curves Are Covered by Kolyvagin's Theorem?



Proportion of curves of rank 1, 0, 2, and >2 as a function of the "conductor" for the more than 130 million elliptic curves with discriminant < 10^{12} , $c4 < 1.44*10^{12}$ in the Stein-Watkins database.



 $\operatorname{ord}_{s=1} L(E, s) = \operatorname{rank} E(\mathbf{Q})$



Thank You

Acknowledgments

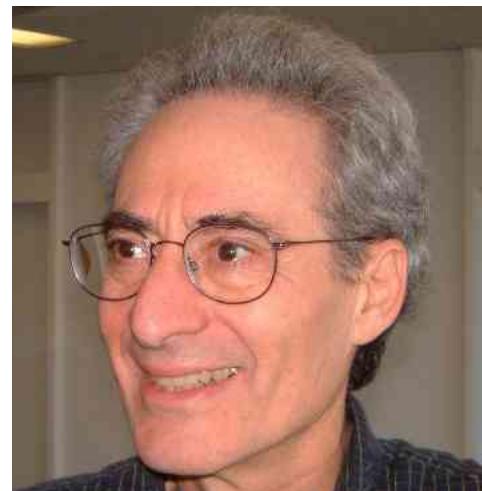
- Benedict Gross
- Keith Conrad
- Ariel Shwayder (graphs of *L*(*E*,*s*))

Mazur's Theorem

For any two rational *a*, *b*, there are at most 15 rational solutions (*x*, *y*) to

$$y^2 = x^3 + ax + b$$

with finite order.



Theorem (8). — Let Φ be the torsion subgroup of the Mordell-Weil group of an elliptic curve defined over \mathbf{Q} . Then Φ is isomorphic to one of the following 15 groups: $\mathbf{Z}/m.\mathbf{Z}$ for $m \leq 10$ or m = 12or: $(\mathbf{Z}/2.\mathbf{Z}) \times (\mathbf{Z}/2\nu.\mathbf{Z})$ for $\nu \leq 4$.