Computations About the Birch and Swinnerton-Dyer Conjecture for Modular Abelian Varieties

William Stein http://modular.fas.harvard.edu

IHP MAGMA Workshop: October 7, 2004

Abstract

In this talk I will describe the Birch and Swinnerton-Dyer conjecture in the case of modular abelian varieties and how to use $M_{\rm AGMA}$ to do computations with the quantities that appear in this conjecture. I will focus on how to do such computations in $M_{\rm AGMA}$, and will say little about the general results of the computations I've run over the years or theoretical results about the conjecture.

¹ Newform Abelian Varieties A_f

They are specified by giving a newform $f = \sum a_n q^n \in S_2(\Gamma_0(N))$. Let $I_f = \operatorname{Ann}_{\mathbf{T}}(f)$. The connected component $A_f = J_0(N)[I_f]^0$ is an abelian variety over \mathbf{Q} . We have $\dim(A_f) = [\mathbf{Q}(a_2, a_3, \ldots) : \mathbf{Q}]$ and $\operatorname{End}(A_f) \otimes \mathbf{Q} = \mathbf{Q}(a_2, a_3, \ldots)$.

Listing 1.1 (Newform Abelian Varieties).

```
> J0 := JZero;  // personal customization...
> J := J0(37);
> S := CuspForms(37);  // defaults: k=2, trivial character
> N := Newforms(S); N;
[* [* q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 0(q^8) *],
        [* q + q^3 - 2*q^4 - q^7 + 0(q^8) *] *]
> f := N[1][1];
> A_f := ModularAbelianVariety(f); A_f;
Modular abelian variety Af of dimension 1 and level 37 over Q
> E := EllipticCurve(A_f); E;
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
```

```
Listing 1.2 (More Newform Abelian Varieties...).
                      // J 0(389)
     > J := J0(389);
     > D := Decomposition(J); D; // contains the A_f's
         Modular abelian variety 389A of dimension 1, level 389 and
         conductor 389 over Q,
         Modular abelian variety 389B of dimension 2, level 389 and
         conductor 389<sup>2</sup> over Q,
         Modular abelian variety 389C of dimension 3, level 389 and
         conductor 389<sup>3</sup> over Q,
         Modular abelian variety 389D of dimension 6, level 389 and
         conductor 389<sup>6</sup> over Q,
         Modular abelian variety 389E of dimension 20, level 389 and
         conductor 389<sup>20</sup> over Q
     > EllipticCurve(D[1]);
     Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2x over Rational Field
     > EllipticCurve(D[2]);
      ... Runtime error in 'EllipticCurve': Argument 1 must have dimension 1.
```

Remark. BSD for all modular abelian varieties over $\mathbf{Q} \iff \mathsf{BSD}$ for all A_f with $f \in S_2(\Gamma_1(N))$.

2 The Birch and Swinnerton-Dyer Conjecture

Conjecture (BSD-rank): $r := \operatorname{ord}_{s=1} L(A_f, s) = \operatorname{rank} A_f(\mathbf{Q}).$

Conjecture (BSD-formula): Set $A := A_f$, for some f. Then

$$\frac{L^{(r)}(A,1)}{r!} = \frac{\prod_{p|N} c_p \cdot \Omega_A \cdot \operatorname{Reg}_A}{\#A(\mathbf{Q})_{\operatorname{tor}} \cdot \#A^{\vee}(\mathbf{Q})_{\operatorname{tor}}} \cdot \#\operatorname{III}(A).$$

Here $\Longrightarrow \Longrightarrow$

1.
$$L(A, s) = \prod_{\sigma} \left(\sum_{n \ge 1} \frac{\sigma(a_n)}{n^s} \right)$$

- 2. $\#A(\mathbf{Q})_{\mathrm{tor}}, \#A^{\vee}(\mathbf{Q})_{\mathrm{tor}}$ torsion orders
- 3. c_p Tamagawa numbers for primes $p \mid N$.
- 4. Ω_A The integral $\int_{A(\mathbf{R})} \omega$.
- 5. Reg_A regulator of A
- 6. $\amalg (A) = \ker(\mathrm{H}^1(\mathbf{Q},A) \to \oplus \mathrm{H}^1(\mathbf{Q}_v,A))$ Shafarevich-Tate group

Motivating Problem. Given f, compute all quantities in this conjecture.

3 Computing The L-Series

```
Listing 3.1 (L-series of the elliptic curve factor).

> D := Decomposition(J0(389));
> E := D[1]; E;
Modular abelian variety 389A of dimension 1, level 389 and conductor 389 over Q
> L := LSeries(E);
> alpha, r := LeadingCoefficient(L,1,300);
> alpha; --> 0.75931650029224679065762600319
> r; --> 2
> EE := EllipticCurve(E);
> AnalyticRank(EE); // Watkins
2 0.7593000000
> Rank(EE); // so BSD-rank true for E
```

Listing 3.2 (L-series of two-dimensional factor).

Listing 3.3 (The twenty-dimensional simple factor!!).

(mention bug...)

4 Computing the Ratio $L(A,1)/\Omega_A$

When r = 0, (bsd-formula) is

$$\frac{L(A,1)}{\Omega_A} = \frac{\prod_{p|N} c_p}{\#A(\mathbf{Q})_{\text{tor}} \cdot \#A^{\vee}(\mathbf{Q})_{\text{tor}}} \cdot \#\mathbf{III}(A).$$

For $A=A_f$, the command LRatio(L,1) computes the exact rational number

$$c \cdot \frac{L(A^{\vee}, 1)}{\Omega_{A^{\vee}}} \in \mathbf{Q},$$

where c is the "Manin constant" of A, i.e., the index of $H_1(\mathcal{A}^{\vee}, \Omega_{\mathcal{A}^{\vee}/\mathbf{Z}})$ in $H_1(A, \Omega_{A/\mathbf{Q}}) \cap \mathbf{Z}[[q]]$. (Here \mathcal{A} is the Néron model.)

Theorem (Agashe, Stein). We have (1) $c \in \mathbb{Z}$ and (2) that $p \mid c \implies p^2 \mid 4N$.

Conjecture (Agashe, Stein). c = 1 for all $A = A_f$.

```
Listing 4.1 (The L-Ratio).
```

- > D := Decomposition(J0(389));
- > [<Dimension(A), LRatio(LSeries(Dual(A)),1)> : A in D];

[<1, 0>, <2, 0>, <3, 0>, <6, 0>, <20, 51200/97>]

Remark. The BSD conjecture predicts that $L(A,1)/\Omega_A = L(A^{\vee},1)/\Omega_{A^{\vee}}$, since $L(A,s) = L(A^{\vee},s)$, $\# \coprod (A) = \# \coprod (A^{\vee})$, and likewise for Reg_A and (I think!) the c_p .

5 The Order of the Torsion Subgroup

Torsion Multiple

If $p \nmid 2N$ then there is a natural injective homomorphism

$$A(\mathbf{Q})_{\mathrm{tor}} \hookrightarrow \mathcal{A}(\mathbf{F}_p).$$

Amazingly, it is straightforward to compute $\#\mathcal{A}(\mathbf{F}_p)$ and $\#\mathcal{A}^{\vee}(\mathbf{F}_p)$, using the "Eichler-Shimura" formula

$$\#\mathcal{A}(\mathbf{F}_p) = \#\mathcal{A}^{\vee}(\mathbf{F}_p) = F(p+1),$$

where F is the characteristic polynomial of $a_p = a_p(f)$. We thus obtain a multiple of $\#A(\mathbf{Q})_{\mathrm{tor}}$ and $\#A(\mathbf{Q})_{\mathrm{tor}}^{\vee}$.

```
Listing 5.1 (Torsion Multiples).
```

```
> D := Decomposition(J0(389));
> [<Dimension(A), TorsionMultiple(A,7)> : A in D];
```

6 The Order of the Torsion Subgroup

Torsion Divisor

We obtain a divisor of $\#A(\mathbf{Q})_{\mathrm{tor}}$ using that differences of certain cusps lie in $J_0(N)(\mathbf{Q})_{\mathrm{tor}}$.

```
Listing 6.1 (Torsion Divisor).

> J := J0(389);
> D := Decomposition(J);
> [<Dimension(A), #RationalCuspidalSubgroup(Dual(A))> : A in D];
[ <1, 1>, <2, 1>, <3, 1>, <6, 1>, <20, 97> ] // multiples of torsion for A^dual

> C := RationalCuspidalSubgroup(J);
> [<Dimension(A), #(C meet A)> : A in D]; // divisors of torsion order for A
[ <1, 1>, <2, 1>, <3, 1>, <6, 1>, <20, 97> ]
```

Thus $\#A(\mathbf{Q})_{tor} = \#A(\mathbf{Q})_{tor}^{\vee} = 1$, except for the A of dimension 20 where $\#A(\mathbf{Q})_{tor} = \#A^{\vee}(\mathbf{Q})_{tor} = 97$.

Remark. RationalCuspidalSubgroup computes the group generated by rational cusps, not the largest Q-rational subgroup of the group generated by all cusps, which might sometimes give a better bound.

7 Tamagawa Numbers

When $p \mid N$ the Tamagawa number at p is $c_p = \#(\mathcal{A}_{\mathbf{F}_p}/\mathcal{A}_{\mathbf{F}_p}^0)(\mathbf{F}_p)$.

- When $p \mid\mid N$, in my thesis I give an algorithm to compute c_p (sometimes only up to a power of 2). This uses Mumford-Tate uniformization (a higher-dimensional analogue of Tate curves), modular degree algorithm, and supersingular points or quaternion algebras.
- When $p^2 \mid N$, Lenstra and Oort proved that so if $\ell \mid c_p$ then $\ell \leq 2 \cdot \dim(A_f) + 1$ or $\ell = p$.

The **TamagawaNumber** command combines all this and returns a divisor d of c_p , an integer m some power of which is a multiple of c_p , and whether or not $d = c_p = m$.

```
Listing 7.1 (Tamagawa Numbers).

> J := J0(389);
> D := Decomposition(J);
> for A in D do print "dim =",Dimension(A)," tam =",TamagawaNumber(A,389); end for;
dim = 1 tam = 1 1 true
dim = 2 tam = 2 2 false
dim = 3 tam = 2 2 false
dim = 6 tam = 2 2 false
dim = 20 tam = 97 97 true
```

8 Tamagawa Numbers

Another Example...

```
Listing 8.1 (Tamagawa Numbers Example).

> J := JO(19*20);
> time D := Decomposition(NewSubvariety(J)); // takes a while (much overhead)
Time: 17.820
> [Dimension(A) : A in D];
[ 1, 1, 2, 2 ]
> A := D[#D]; A; // dimension 2
> TamagawaNumber(A,2);
1 30 false
> TamagawaNumber(A,5); // hard work!
3 3 true
> TamagawaNumber(A,19);
2 2 true
```

Listing 8.2 (Tamagawa Numbers Example (continued)).

```
> B := D[3];
             // dimension 2
> TamagawaNumber(B,2);
1 30 false
> TamagawaNumber(B,5);
7 7 true
> TamagawaNumber(B,19);
2 2 true
> E := D[1]; // dim 1
> TamagawaNumber(E,2);  // uses Lenstra-Oort
1 6 false
> TamagawaNumber(E,5);  // uses my algorithm
                    // ** stupid -- should return true!!
1 1 false
> TamagawaNumber(E,19); // uses my algorithm
2 2 false
> EE := EllipticCurve(E);
> TamagawaNumber(EE,2);  // uses Tate's algorithm
> TamagawaNumber(EE,5);
1
> TamagawaNumber(EE,19);
2
```

⁹ The Néron Real Volume Ω_A

The Néron volume is $\Omega_A = |\int_{A(\mathbf{R})} \omega|$, where $\mathrm{H}^d(\mathcal{A}, \Omega_{\mathcal{A}/\mathbf{Z}}) \approx \mathbf{Z}\omega$.

RealVolume on corresponding modular symbols space (!) computes $\Omega_{A^{\vee}}/c$, where c is the Manin constant.

Algorithm: Compute basis for $S_2(\Gamma_0(N), \mathbf{Z})[I_f]$, and integrate against basis of integral modular symbols.

```
Listing 9.1 (Real Neron Volume).

> D := Decomposition(J0(389));

> [<Dimension(A), RealVolume(ModularSymbols(A)[1],200)> : A in D];

[ <1, 4.980354644089219778568132200033753610666>,

<2, 11.55172924281529305177831848824>,

<3, 34.87066551027868630219369768960>,

<6, 244.71906604134159642433584901635>,

<20, 4.157086696844426469441248597099> ] <--- big 20-dim abvar. is small!

> EE := EllipticCurve(D[1]);

> 2*RealPeriod(EE);  // uses Gauss AGM (?)

4.9804251217101101506427155838846049203121163606791400801100
```

Regulator of A

$$r = 0 \implies \operatorname{Reg}_A = 1$$

But when r>0, so far I think nobody knows how to compute Reg_A without finding equations for A, finding explicit points, doing "descent", etc. See [Flynn-Leprévost-Schaefer-Stein-Stoll-Wetherell] for examples of this when $\dim(A)=2$. This is perhaps hopeless when $\dim(A)$ is large. (If we assume $\#\mathrm{III}(A)=1$ and the BSD conjecture, we can often compute what Reg_A would be, which could be useful for numerical experiments.)

HOPELESS???

Question: Assume full BSD conjecture is true and $A = A_f$. Give an algorithm to decide whether $p \mid \# \coprod (A)$. (When $\dim(A) = 1$, Manin proved one can do this, but the general case is unclear to me. I have an idea that uses congruences between modular forms.)

11 Computing Conjectural #III(A)

Let $\# \coprod (A)_?$ be BSD-conjectural order of $\coprod (A)$. Using everything above, we can compute $l_p, u_p \in \mathbf{Z} \cup \{\infty\}$ such that

$$l_p \le \operatorname{ord}_p(\# \coprod (A)_?) \le u_p.$$

For example, l=0 and $u=\infty!$ When $A\subset J_0(389)$ is the 20-dimensional factor, we find that $l_p=u_p=0$ for all $p\neq 2,5$. Also $l_2=11$ and $u_2=31$ and $l_5=u_5=2$

Computation. I computed an l_p and u_p for all 19608 A_f with $N \le 2333$. I found 168 A_f of rank 0 such that $l_p > 0$ for some odd p. See Agashe-Stein, "Visible Evidence for the Birch and Swinnerton-Dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero" in this month's AMS Math. Comp. (For $J_1(p)$ computations, see Conrad-Edixhoven-Stein.)

12 Computing the Group $\coprod(A)$

One can sometimes use Mazur's notion of **visibility** as a <u>computational tool</u> to construct a provably-nontrivial subgroup of $\coprod(A)$.

Theorem 12.1 (Agashe-Stein). Let A and B be abelian subvarieties of an abelian variety C over \mathbf{Q} such that $A \cap B$ is finite and that A has rank 0. Suppose p is an odd prime such that $B[p] \subset A$ and p satisfies certain technical hypothesis (e.g., it doesn't divide any Tamagawa numbers). Then there is an inclusion

$$B(\mathbf{Q})/pB(\mathbf{Q}) \hookrightarrow \coprod (A).$$

Conjecture (Stein). If $A \subset J_0(N)$ is modular, then all of $\mathrm{III}(A)$ can be explicitly constructed in terms of Mordell-Weil groups using appropriate generalizations of the above theorem and abelian varieties $B \subset J_0(NM)$ for multiples M of N.

Example of Constructing Elements of $\coprod(A)$

```
Listing 12.2 (Sha of Order 5).

> D := Decomposition(J0(389));
> B := D[1];
> Rank(EllipticCurve(B));
2
> A := D[5];
> B5 := Kernel(nIsogeny(B,5));
> B5 subset A;
true
```

Thus $E(\mathbf{Q})/5E(\mathbf{Q})\cong (Z/5\mathbf{Z})^{\oplus 2}$ is a subgroup of $\mathrm{III}(A)$. This conclusion assumes no conjectures.

(Done - Questions?)