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Abstract

In this talk | will describe the Birch and Swinnerton-Dyer conjecture in the case of
modular abelian varieties and how to use MAGMA to do computations with the quantities
that appear in this conjecture. | will focus on how to do such computations in MAGMA,
and will say little about the general results of the computations I've run over the years
or theoretical results about the conjecture.



1 Newform Abelian Varieties A f

They are specified by giving a newform f = > a,q" € S2(I'o(N)). Let Iy = Anny(f). The connected
component Ay = Jy(N)[I4]° is an abelian variety over Q. We have dim(A;) = [Q(az,as,...) : Q] and

End(Af) ® Q = Q(ag,as, . ..).

Listing 1.1 (Newform Abelian Varieties).

> JO := JZero; // personal customization...
> J := JO(37);
> S := CuspForms(37); // defaults: k=2, trivial character

>N :

Newforms(S); N;

[* [* q - 2%¥q"2 - 3*%q"3 + 2%q"4 - 2%q"5 + 6%q"6 - q°7 + 0(q"8) =],
[* g+ 9°3 - 2%q"4 - q°7 + 0(q"8) *] x*]

> f = N[1][1];

> A_f := ModularAbelianVariety(f); A_f;

Modular abelian variety Af of dimension 1 and level 37 over Q

> E := EllipticCurve(A_f); E;

Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field




Listing 1.2 (More Newform Abelian Varieties...).

> J = J0(389); // J_0(389)

> D := Decomposition(J); D; // contains the A_f’s

[ Modular abelian variety 389A of dimension 1, level 389 and
conductor 389 over Q,
Modular abelian variety 389B of dimension 2, level 389 and
conductor 38972 over (Q,
Modular abelian variety 389C of dimension 3, level 389 and
conductor 389°3 over Q,
Modular abelian variety 389D of dimension 6, level 389 and
conductor 38976 over (Q,
Modular abelian variety 389E of dimension 20, level 389 and
conductor 389720 over (

]
> EllipticCurve(D[1]);
Elliptic Curve defined by y™2 + y = x"3 + x"2 - 2*x over Rational Field
> EllipticCurve(D[2]);
. Runtime error in ’EllipticCurve’: Argument 1 must have dimension 1.

Remark. BSD for all modular abelian varieties over Q <= BSD for all Ay with f € Sy(I'1(N)).



2> The Birch and Swinnerton-Dyer Conjecture

Conjecture (BSD-rank): r := ords—; L(Ay, s) = rank A¢(Q).
Conjecture (BSD-formula): Set A := Ay, for some f. Then

LO(A1) T Q- Regy
= HIII(A).
T! #A(Q)tor : #AV(Q)tor # ( )

Here —=—

1. L(A,s) =[] (Z “Ei”)

o n>1
#A(Q)tor, #AY(Q)tor — torsion orders

¢, — Tamagawa numbers for primes p | V.

Q4 — The integral fA(R) w.

Reg 4 — regulator of A

II(A) = ker(H'(Q, A) — @ H'(Q,, A)) — Shafarevich-Tate group

o o0 B~ w

Motivating Problem. Given f, compute all quantities in this conjecture.




3 Computing The L-Series

Listing 3.1 (L-series of the elliptic curve factor).

> D := Decomposition(J0(389));

> E :=D[1]; E;

Modular abelian variety 389A of dimension 1, level 389 and conductor 389 over Q
L := LSeries(E);

alpha, r := LeadingCoefficient(L,1,300);
alpha; -=> 0.75931650029224679065762600319
r; -—>2

EE := EllipticCurve(E);

AnalyticRank(EE); // Watkins

0.7593000000

Rank (EE) ; // so BSD-rank true for E

N VNV V V V V YV




Listing 3.2 (L-series of two-dimensional factor).

> D := Decomposition(J0(389));

> B := D[2]; B; // dimension 2

Modular abelian variety 389B of dimension 2, level 389 and conductor 38972 over Q
> L := LSeries(B);

> time alpha, r := LeadingCoefficient(L,1,300);

Time: 0.170

> alpha;

1.487184621319347115775638940885

> r;

2 // equals dim(B), so Kolyvagin-Logachev implies BSD-rank




Listing 3.3 (The twenty-dimensional simple factor!!).

> D := Decomposition(J0(389));

> A := D[5]; A; // dimension 20 !!

Modular abelian variety 389E of dimension 20, level 389 and
conductor 389720 over (Q

> L := LSeries(A); L;

L(389E,s): L-series of Modular abelian variety 389E of dimension
20, level 389 and conductor 389720 over Q

> alpha, r := LeadingCoefficient(L,1,300); // takes a while
> alpha;

2300.74238082371353307813447937329 + O0.E-25%*1i

> r;

0 // so Kolyvagin-Logachev implies BSD-rank (=0)

> LeadingCoefficient(L,1,350);
2313.363547793384317135564620832928 + O0.E-25%1 0

(mention bug...)



1+ Computing the Ratio L(A,1)/S4y
When r = 0, (bsd-formula) is

L(A, 1 [Lne
( ) _ p| p\/ . #H_I(A)
QA #A(Q)tor : #A (Q)tor
For A = Ay, the command LRatio(L,1) computes the exact rational number
L(AY,1)
QA\/

where c is the “Manin constant” of A, i.e., the index of Hi(A",Q4v/z) in Hi(A,Q4/q) N Z[[q]]. (Here Ais
the Néron model.)

Theorem (Agashe, Stein). We have (1) ¢ € Z and (2) that p | c = p* | 4N.
Conjecture (Agashe, Stein). ¢ =1 for all A = Ay.

C

€Q,

Listing 4.1 (The L-Ratio).

> D := Decomposition(J0(389));
> [<Dimension(A), LRatio(LSeries(Dual(A)),1)> : A in D];
[ <1, 0>, <2, 0>, <3, 0>, <6, 0>, <20, 51200/97> ]

Remark. The BSD conjecture predicts that L(A,1)/Q4 = L(AY,1)/Q4v, since L(A,s) = L(AY,s),
#III(A) = #III(AY), and likewise for Reg, and (I think!) the c,.
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5 The Order of the Torsion Subgroup

Torsion Multiple

If p 12N then there is a natural injective homomorphism
A(Q)ror — A(F).
Amazingly, it is straightforward to compute #A(F,) and #.A4"(F,), using the “Eichler-Shimura” formula
#A(F,) = #A"(F,) =F(p+1),
where F' is the characteristic polynomial of a, = a,(f). We thus obtain a multiple of #A(Q )t and #A(Q),,-

Listing 5.1 (Torsion Multiples).

> D := Decomposition(J0(389));
> [<Dimension(A), TorsionMultiple(A,7)> : A in DJ;
[ <1, 1>, <2, 1>, <3, 1>, <6, 1>, <20, 97> ]




¢ The Order of the Torsion Subgroup

Torsion Divisor

We obtain a divisor of #A(Q)tor using that differences of certain cusps lie in Jy(N)(Q)sor-

Listing 6.1 (Torsion Divisor).

J :=J0(389);

D := Decomposition(J);

[<Dimension(A), #RationalCuspidalSubgroup(Dual(A))> : A in D];

<1, 1>, <2, 1>, <3, 1>, <6, 1>, <20, 97> 1] // multiples of torsion for A~dual

—, V V V

> C := RationalCuspidalSubgroup(J) ;
> [<Dimension(A), #(C meet A)> : A in D]; // divisors of torsion order for A
[ <1, 1>, <2, 1>, <3, 1>, <6, 1>, <20, 97> ]

Thus #A(Q)ior = #A(Q),, = 1, except for the A of dimension 20 where #A(Q)ior = #AY(Q)tor = 97.

Remark. RationalCuspidalSubgroup computes the group generated by rational cusps, not the largest Q-rational
subgroup of the group generated by all cusps, which might sometimes give a better bound.
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v Tamagawa Numbers

When p | N the Tamagawa number at p is ¢, = #(AFP/AOFP)(Fp).
e When p || N, in my thesis | give an algorithm to compute ¢, (sometimes only up to a power of 2). This uses
Mumford-Tate uniformization (a higher-dimensional analogue of Tate curves), modular degree algorithm,
and supersingular points or quaternion algebras.

e When p? | N, Lenstra and Oort proved that so if £ | ¢, then £ < 2-dim(Ay) + 1 or £ = p.

The TamagawaNumber command combines all this and returns a divisor d of ¢,, an integer m some power
of which is a multiple of ¢,, and whether or not d = ¢, = m.

Listing 7.1 (Tamagawa Numbers).
> J := J0(389);

> D := Decomposition(J);
> for A in D do print "dim =",Dimension(A)," tam =", TamagawaNumber(A,389); end for;
dim =1 tam = 1 1 true
dim = 2 tam = 2 2 false
dim = 3 tam = 2 2 false
dim = 6 tam = 2 2 false

dim = 20 tam = 97 97 true
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s Tamagawa Numbers

Another Example...

Listing 8.1 (Tamagawa Numbers Example).

> J := JO(19%20);

> time D := Decomposition(NewSubvariety(J)); // takes a while (much overhead)
Time: 17.820

> [Dimension(A) : A in DJ;

[ 1,1, 2, 2]

> A := D[#D]; A; // dimension 2

> TamagawaNumber (A,2) ;

1 30 false

> TamagawaNumber (A,5) ; // hard work!
3 3 true

> TamagawaNumber (A,19) ;

2

2 true
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Listing 8.2 (Tamagawa Numbers Example (continued)).

B := D[3]; // dimension 2

TamagawaNumber (B,2) ;

30 false

TamagawaNumber (B,5) ;

7 true

TamagawaNumber (B, 19) ;

2 true

E := D[1]; // dim 1

TamagawaNumber (E,2) ; // uses Lenstra-Oort

6 false

TamagawaNumber (E,5) ; // uses my algorithm

1 false // ** stupid -- should return true!!
TamagawaNumber (E, 19) ; // uses my algorithm

2 false

EE := EllipticCurve(E);

TamagawaNumber (EE, 2) ; // uses Tate’s algorithm

TamagawaNumber (EE,5) ;

TamagawaNumber (EE, 19) ;

N VPV WV VNNV A~V P~V VNNV NV~ YV YV
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9 The Néron Real Volume ()4

The Néron volume is 24 = | fA(R)wL where HY( A, Qua/z) = Zw.

RealVolume on corresponding modular symbols space (!) computes 24v/c, where ¢ is the Manin constant.

Algorithm: Compute basis for So(I'o(N), Z)[If], and integrate against basis of integral modular symbols.

Listing 9.1 (Real Neron Volume).

> D := Decomposition(J0(389));
> [<Dimension(A), RealVolume(ModularSymbols(A)[1],200)> : A in D];
[ <1, 4.980354644089219778568132200033753610666>,

<2, 11.55172924281529305177831848824>,

<3, 34.87066551027868630219369768960>,

<6, 244.71906604134159642433584901635>,

<20, 4.157086696844426469441248597099> ] <--- big 20-dim abvar. is small!
> EE := EllipticCurve(D[1]);
> 2*RealPeriod(EE) ; // uses Gauss AGM (?)
4.9804251217101101506427155838846049203121163606791400801100
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10 Regulator of A

r=0 = Regy=1

But when r > 0, so far | think nobody knows how to compute Reg, without finding equations for A, finding
explicit points, doing “descent”, etc. See [Flynn-Leprévost-Schaefer-Stein-Stoll-Wetherell] for examples of this

when dim(A) = 2. This is perhaps hopeless when dim(A) is large. (If we assume #III(A) = 1 and the BSD
conjecture, we can often compute what Reg, would be, which could be useful for numerical experiments.)

HOPELESS?7?

Question: Assume full BSD conjecture is true and A = A¢. Give an algorithm to decide whether p | #111(A).
(When dim(A) = 1, Manin proved one can do this, but the general case is unclear to me. | have an idea that

uses congruences between modular forms.)
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11 Computing Conjectural #I1I(A)

Let #I11(A)» be BSD-conjectural order of III(A). Using everything above, we can compute [, u, € Z U {o0}
such that
l, < ordy(#II(A)7) < u,.

For example, [ = 0 and u = oo! When A C Jy(389) is the 20-dimensional factor, we find that I, = u, = 0 for

all p#£2,5. Alsols =11 and us =31 and | 5 = us = 2

Computation. | computed an [, and w, for all 19608 A, with N < 2333. | found 168 A of rank 0 such that
l, > 0 for some odd p. See Agashe-Stein, “Visible Evidence for the Birch and Swinnerton-Dyer Conjecture for
Modular Abelian Varieties of Analytic Rank Zero” in this month's AMS Math. Comp. (For J;(p) computations,
see Conrad-Edixhoven-Stein.)
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12 Computing the Group III(A)

One can sometimes use Mazur's notion of visibility as a computational tool to construct a provably-nontrivial
subgroup of III(A).

Theorem 12.1 (Agashe-Stein). Let A and B be abelian subvarieties of an abelian variety C
over Q such that AN B is finite and that A has rank 0. Suppose p is an odd prime such

that Blp] C A and p satisfies certain technical hypothesis (e.g., it doesn’t divide any Tamagawa
numbers). Then there is an inclusion

B(Q)/pB(Q) — LI(A).

Conjecture (Stein). If A C Jy(IV) is modular, then all of III(A) can be explicitly constructed in terms of

Mordell-Weil groups using appropriate generalizations of the above theorem and abelian varieties B C Jo(NM)
for multiples M of N.

17



Example of Constructing Elements of III(A)

Listing 12.2 (Sha of Order 5).

> D := Decomposition(J0(389));
> B := D[1];

> Rank(EllipticCurve(B));

2

> A := D[5];

> B5 := Kernel(nIsogeny(B,5));
> B5 subset A;

true

Thus E(Q)/5E(Q) = (Z/5Z)%? is a subgroup of II1(A). This conclusion assumes no conjectures.

(Done — Questions?)
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