 
 
 
 
 
   
 -Torsion
-Torsion
 
 
 
 such that
 such that 
 .
.
 be the abelian extension corresponding to
a character
 be the abelian extension corresponding to
a character 
 of order
of order  and conductor
 and conductor  .
.
The diagram we will plug into visibility theory is:
![$\displaystyle \xymatrix @=3pc{
{E[p]\,\,}\ar[r]\ar[d] & {E} \ar[dr]^{[p]}\ar[d] \\
{A}\ar[r] & {J} \ar[r]^{\tr} & {E.}
}$](img35.png) 
Michael Stoll helped me to prove the following lemma.
![$\displaystyle J(\mathbb{Q}_\ell)[p]=0.$](img39.png) 
 
 is the completion of
 is the completion of  at the prime over
 at the prime over  .
The action of
.
The action of 
 on
 on 
 = E[p](\overline{\mathbb{Q}}_{\ell})
$](img44.png) 
![$\displaystyle x^2 - a_\ell(E)x + \ell \in \mathbb{F}_p[x].
$](img45.png) 
 as a root, so
 as a root, so
=0.
$](img47.png) 
$](img48.png) then
 then 
 and
 and  is totally
ramified, so
 is totally
ramified, so 
 and
 and  .  Thus
.  Thus 
![$ J(\mathbb{Q}_{\ell})[p]=0$](img52.png) .
.
 
![$ (J/E)(\mathbb{Q}_{\ell})[p]=0$](img54.png) .
.
 .  By Lang's Lemma,
.  By Lang's Lemma,
 
![$ \Phi_{A,\ell}(\mathbb{F}_{\ell})[p]\neq 0$](img57.png) , then
, then 
![$ \mathcal{A}(\mathbb{F}_{\ell})[p]\neq 0$](img58.png) .  Since
.  Since 
 ,
Hensel's lemma (and formal groups) imply that
,
Hensel's lemma (and formal groups) imply that 
![$ A(\mathbb{Q}_{\ell})[p]\neq 0$](img60.png) , contrary to the fact that
, contrary to the fact that
![$ J(\mathbb{Q}_{\ell})[p]=0$](img52.png) .
.
 
 
 
 
 
