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1. The Challenge -- Extend Cremona
Challenge: Create a table of data like Cremona's book, but for all
modular abelian varieties A  with  for .

...
There are 5951 new Simple Modular Abelian Varieties Factors of

 up to Level 1000. The largest dimension is .

Dim Count
1 2463
2 1195
3 616
4 373

Dim Count
15 35
16 33
17 25
18 32

Dim Count
29 6
30 4
31 5
32 5

Dim Count
43 2
44 1
45 3
46 2

f f (À (N)) 2 S2 0 N 000 Ô 1

J (N) 0 55 
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5 255
6 182
7 132
8 95
9 85
10 72
11 49
12 50
13 32
14 39

19 15
20 19
21 11
22 8
23 10
24 17
25 7
26 10
27 7
28 9

33 5
34 3
35 4
36 4
37 4
38 6
39 2
40 2
41 5
42 2

47 3
49 1
50 1
51 2
53 1
54 1
55 1

0

Dimensions of simple factors
Level Dimensions
11 [1]
14 [1]
15 [1]

Õ 6 5

N  
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17 [1]
19 [1]
20 [1]
21 [1]
23 [2]
... ...
388 [3, 5]
389 [1, 2, 3, 6, 20]
390 [1, 1, 1, 1, 1, 1, 1, 2]
... ...
990 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]
991 [33, 49]
992 [2, 2, 3, 3, 4, 4, 6, 6]
993 [2, 3, 10, 10, 15, 15]
994 [1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 7]
995 [1, 1, 3, 9, 13, 19, 21]
996 [1, 1, 1, 2, 4, 5]
997 [1, 1, 1, 4, 5, 5, 23, 42]
998 [2, 2, 2, 3, 3, 4, 4, 9, 13]
999 [1, 1, 2, 2, 6, 6, 6, 6, 8, 10]
1000 [2, 2, 2, 2, 4, 4, 4, 4]
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2. Defining Data for a Modular Abelian
Variety
Many attempts to generalize Cremona's tables have got hung up on the

-invariants (the Weierstrass equation), or special cases, and don't get
very far toward our stated goal. They always restrict to low dimension.
That said, these attempts are all fascinating contributions:

X. Wang, 1995, 2-dimensional simple factors
Hasegawa, 1995, quotients of modular curves
Galbraith, 1996, thesis on models for modular curves and their
quotients
Students of Frey
Quer, Lario, Gonzalez, et al.: the -curves group in Barcelona

We will thus replace defining equations by something else. For any
positive integer , the group

acts via linear fractional transformations on the extended upper half
plane . Let

a 

Q 

N  

À (N)  0 = d c  and N
ÚÒ

 a 
c 

b 
d 

Ó
: a À b = 1 j c

Û

h (Q) Ã = h [P1
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and

which are both defined over .

Definition (Modular Abelian Variety): An abelian variety  for
which there is a finite degree map  for some  is called

-modular.

Notes:

In this talk to fix ideas we only consider  and , but
most things we say make sense for  and .

1.

Wiles, Taylor, et al. proved that every elliptic curve over  is
modular.

2.

If  is simple and  is a totally real number field of
degree , then Serre's conjecture and a theorem of Ribet
imply that  is -modular. In fact, Serre's conjecture was
recently proved by Khare and Wintenberger.

3.

X (N) (N)nh  0 = À0
Ã

J (N) (X (N)); = J0 = Jac 0

Q 

A 
A (N) ! J0 N  

À  0

À (N) 0 J (N) 0

À (N) 1 J (N) 1

Q 

A End(A=Q)  ÊQ
dim(A) 

A À (N) 0
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Consider the integral and rational homology of the modular curve
:

where . We compute  explicitly using modular
symbols:

Modular symbols give an explicit presentation for  as sums of
symbols  with  modulo

X (N) 0

L (X (N); ) (X (N); ) ; J = H1 0 Z Ú VJ = H1 0 Q =Ø Q2d

d (J) = dim L  J

L  J
fË; g Ì Ë; (Q) Ì 2 P1

fË; g Ì; g Í; g : Ì + f Í + f Ë = 0
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This presentation also gives an explicit description of the action of the
Hecke algebra

Abel-Jacobi Theorem: We have

Thus we can understand the group  by understanding  with its
extra structure!

Here is how we explicitly represent absolutely any modular abelian
variety  over . There is a map  with finite kernel. The
image  is an abelian subvariety of . It induces a
homomorphism  on rational homology. The vector space 
determines . Using the dual isogeny we find an isogeny  with
some kernel . Then , and we give  by giving a lattice

 that contains .

Defining Data:

We specify a modular abelian variety  by giving a lattice
.

We specify a morphism  of modular abelian varieties by
giving the induced homomorphism  on lattices.

T [T ; ; ; ]: = Z 1 T2 : : : ; Tn : : :

J(C) V )=L : = ( J ÊR J

J(C) L  J

A Q '  : A! J
B (A) = ' J  

V  B Ú VJ V  B
B B  ! A
G A =G = B G 

L  A Ú VB L  B

A 
L  A Ú VJ

A  ! C
L  A ! LC
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Thus instead of giving a Weierstrass equation, we give modular abelian
varieties by giving lattices in . Every single modular abelian variety
can be specified this way, up to isomorphism. Also, in general we
replace  by any finite product of Jacobians , , and

.

In terms of this defining data  for , I have algorithms to:

Explicitly write  up to isogeny as a product of simples
(corresponding to newforms).

1.

Compute intersections and sums of 's in a common ambient
Jacobian .

2.

Compute complements (poincare reducibility); uses the
intersection pairing in general.

3.

Quotients by subvarieties and finite subgroups.4.
Compute the -torsion subgroup, the cuspidal subgroup, the
rational torsion subgroup (in some cases), etc.

5.

Compute kernels and images of morphisms.6.
Compute  for any . (Also, can do this over any
number field.)

7.

V  J

J  J (N) 0 J (N) 1

J (N) H

L  A A 

L  A

A 
J  

n 

Hom(A; ) C A;  C
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Demo

D = J0(39).decomposition(); D 

       

[
Simple abelian subvariety 39a(1,39) of dimension 1 of J0(39),
Simple abelian subvariety 39b(1,39) of dimension 2 of J0(39)
]

D[1].lattice() 

       

Free module of degree 6 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1  0  0  1 -1  0]
[ 0  1  1  0 -1  0]
[ 0  0  2  0 -1  0]
[ 0  0  0  0  0  1]

G = D[1].rational_torsion_subgroup(); G 

       Torsion subgroup of Simple abelian subvariety 39b(1,39) of dimension2 of J0(39)

G.order() 

       28
G.gens() 

       [[(1/14, 2/7, 0, 1/14, -3/14, 1/7)], [(0, 1, 0, 0, -1/2, 0)], [(0,0, 1, 0, -1/2, 0)]]

B, phi = D[1]/G 

       
B 

       Abelian variety factor of dimension 2 of J0(39)
phi 

       
Abelian variety morphism:
  From: Simple abelian subvariety 39b(1,39) of dimension 2 of J0(39)
  To:   Abelian variety factor of dimension 2 of J0(39)

phi.kernel() 

       
(Finite subgroup with invariants [2, 14] over QQ of Simple abelian
subvariety 39b(1,39) of dimension 2 of J0(39), Abelian subvariety of
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dimension 0 of J0(39))

 

       
J = J0(91); J 

       Abelian variety J0(91) of dimension 7
D = J.decomposition(); D 

       

[
Simple abelian subvariety 91a(1,91) of dimension 1 of J0(91),
Simple abelian subvariety 91b(1,91) of dimension 1 of J0(91),
Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91),
Simple abelian subvariety 91d(1,91) of dimension 3 of J0(91)
]

print D[0],'\n'
D[0].lattice() 

       

Simple abelian subvariety 91a(1,91) of dimension 1 of J0(91) 

Free module of degree 14 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1  0  0 -2 -2  0  2  0  1 -1  0  2  0  0]
[ 0  1  0 -1 -1  0  1 -1  1  0 -1  1  0  1]

print D[1],'\n'
D[1].lattice() 

       

Simple abelian subvariety 91b(1,91) of dimension 1 of J0(91) 

Free module of degree 14 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1  0  0  0  0  0  0  0 -1 -1  0  0  0  0]
[ 0  1 -2 -1 -1 -2  1  1  1  2 -1  1  0 -1]

print D[2],'\n'
D[2].lattice() 

       

Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91) 

Free module of degree 14 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1  0  0  0 -2  2  0 -2  1 -1  2  0 -2  2]
[ 0  1  0  0 -1  1  0 -2  1  0  1  1 -2  1]
[ 0  0  1  0  0  1 -1 -2  1  0  1  0 -1  1]
[ 0  0  0  1  0  1 -1 -1  0  0  0  0  0  0]

print D[3],'\n'
D[3].lattice() 

       

Simple abelian subvariety 91d(1,91) of dimension 3 of J0(91) 

Free module of degree 14 and rank 6 over Integer Ring
Echelon basis matrix:
[ 1  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  1  0  0 -1 -1  0  0  0  0  0  0  1  0]
[ 0  0  1  0  0  1 -1  0  0  0  0 -1  0  0]
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[ 0  0  0  1  0 -1  1 -1  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0 -1  1 -1  1]
[ 0  0  0  0  0  0  0  0  0  1 -1  1 -1  1]

# Example with lattice not just a vector space intersect $L_J$.
A = D[2].dual()[0]
L = A.lattice(); L 

       

Free module of degree 14 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1/2    0    0    0   -1    1    0   -1  1/2 -1/2    1    0   -1   
1]
[   0  1/2    0  1/2 -1/2    1 -1/2 -3/2  1/2    0  1/2  1/2   -1 
1/2]
[   0    0    1    0    0    1   -1   -2    1    0    1    0   -1   
1]
[   0    0    0    1    0    1   -1   -1    0    0    0    0    0   
0]

D[2].lattice().index_in(L) 

       4
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3. Enumeration of all Modular
Abelian Varieties of Given Level
We have

where J (N)  is the sum of the images of 's under all natural
"degeneracy" maps for all proper divisors of .

Theorem (Atkin-Lehner-Shimura): J (N)  is isogenous to a
product of distinct simple abelian varieties that are in bijection with the

-orbits of newforms

Thus the isogeny classes of simple abvars of level  are in bijection
with the conjugacy classes of newforms of level . The conjugacy
classes can be enumerated using linear algebra (various interesting
tricks to make this fast...).

Demo

J (N) (N) (N)  0 Ø J0 new Â J0 old

0 old J (M) 0

N  

0 new

Gal(Q=Q) 

f q (À (N)): =
X

an
n 2 S2 0

N  
N  
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for f in ModularForms(91).newforms('alpha'):
   view(f) 

       

for A in J0(91).new_subvariety().decomposition():
   print A 

       

Simple abelian subvariety 91a(1,91) of dimension 1 of J0(91)
Simple abelian subvariety 91b(1,91) of dimension 1 of J0(91)
Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91)
Simple abelian subvariety 91d(1,91) of dimension 3 of J0(91)

 

       
A,B,C,D = J0(91) 

       
A.intersection(B) 

       
(Finite subgroup with invariants [2, 2] over QQ of Simple abelian
subvariety 91a(1,91) of dimension 1 of J0(91), Simple abelian
subvariety of dimension 0 of J0(91))

B.intersection(D) 

       
(Finite subgroup with invariants [2, 2] over QQ of Simple abelian
subvariety 91b(1,91) of dimension 1 of J0(91), Simple abelian
subvariety of dimension 0 of J0(91))

C.intersection(D) 

       
(Finite subgroup with invariants [2, 2, 2, 2] over QQ of Simple
abelian subvariety 91c(1,91) of dimension 2 of J0(91), Simple
abelian subvariety of dimension 0 of J0(91))

t2 = J0(91).hecke_operator(2); t2 

       Hecke operator T_2 on Abelian variety J0(91) of dimension 7
show(t2.matrix()) 

q q q q (q ) À 2 2 + 2 4 À 3 5 +O 6

q q q q (q ) À 2 3 À 2 4 À 3 5 +O 6

q q q (q ) + a2
2 À a2

3 + a( 2 + 3) q5 +O 6

q q (q ) + a3
2 + Àa

À
2
3
+ a3 + 2

Á
q3 + a

À
2
3
À 2

Á
q4 + Àa( 3 + 1) q5 +O 6
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show(t2.fcp()) 

       

t2.kernel() 

       
(Finite subgroup with invariants [2, 2] over QQbar of Abelian
variety J0(91) of dimension 7, Abelian subvariety of dimension 1 of
J0(91))

(t2+2).cokernel() 

       

(Abelian subvariety of dimension 1 of J0(91), Abelian variety
morphism:
  From: Abelian variety J0(91) of dimension 7
  To:   Abelian subvariety of dimension 1 of J0(91))

(t2+2).image() 

       Abelian subvariety of dimension 6 of J0(91)
 

       
 

       
 

       

 0 

B B B B B B B B B B B B B B B B B B B B B B B B B B B @ 

 

1 
1 
0 
0 
0 
1 
0 
0 
0 
1 
0 

À1 
0 
0 

0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

À1 

1 
1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
1 
2 
0 
0 
0 
0 
0 
1 
0 

0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 

1 
0 
0 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
1 

À1 
À1 
À1 
0 
0 

À1 
À1 
À1 
À1 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
1 
0 
0 
0 
0 

À1 
0 
0 
0 

À1 
À1 
0 

À1 
À1 
À1 
À2 
0 
0 

À1 
À1 
À1 
À2 
À1 

0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
1 
1 
1 
0 

1 
0 
0 
0 
0 
0 
0 

À1 
0 
1 
0 
0 
1 
1 

À2 
À1 
À1 
À1 
0 

À1 
À1 
0 

À1 
À1 
À1 
À1 
À1 
0 

1 
2 
1 
1 
0 
1 
1 
1 
0 
1 
1 
0 
0 
0 

À1 
À2 
À1 
À1 
À1 
À1 
À2 
À1 
0 

À1 
0 
0 

À1 
À1 

 1 

C C C C C C C C C C C C C C C C C C C C C C C C C C C A 

x x ) x ) x x ) Á ( + 2 Á ( 2 À 2 Á ( 3 À x2 À 4 + 2
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Challenge: Given a practical algorithm that...
INPUT: A positive integer 
OUTPUT: All simple modular abelian varieties of level  divided up
into isogeny classes with each isomorphism class listed exactly once.

By practical I mean that it will run for every  in a reasonable
amount of time. I'm OK with assuming GRH for algebraic number
theory computations, e.g., class groups.

As suggested above we can already construct one representative of
each isogeny class, following Shimura. Given a newform , let

I (f)

and let

A (N)[I ]

be the connected component of the part of  annihilated by all

N  
N  

N 000 < 1

f  

f = AnnT

f = J0 f
0

J (N) 0

Sage Worksheet: Computing Modular Abelian Varieties http://localhost:8000/home/admin/3/print

16 of 22 7/18/08 9:43 AM



elements of I . Then A  is a new simple modular abelian variety with
defining data the lattice L [I ]. There are various other ways to
construct abelian varieties  in the isogeny class of A  (e.g., make 
the dual of A ). But can one tell if  is abstractly isomorphic to ?
YES!

Endomorphisms

Let  be a simple new factor of .

Proposition (Shimura):  equals the image of T  in
.

We view  as a subring of .

Proposition (--): We have

Remark: The above proposition generalizes to .

Thus we can explicitly compute  on the nose (not just up to
finite index).
A = J0(91)[2]; A 

       Simple abelian subvariety 91c(1,91) of dimension 2 of J0(91)
R = End(A); R 

       Endomorphism ring of Simple abelian subvariety 91c(1,91) ofdimension 2 of J0(91)

for x in R.gens(): print x.matrix(),'\n' 

f f

= LJ f

B f B 

f B A 

A J (N) 0

End(A=Q)  ÊQ Q

End(A)  ÊQ

End(A=Q)  ÊQ Mat (Q) 2dÂ2d

End(A=Q) End(A=Q) ) (Z): = ( ÊQ \Mat2dÂ2d

Hom(A; ) B

End(A) 
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[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1] 

[ 0  4 -2  0]
[-1  5 -2  1]
[-1  2  0  2]
[-1  1  0  3]

 

       
 

       

Given simple modular abelian varieties  and  we can decide if  is
isomorphic to  as follows:

Check if  is isogenous to  by finding an explicit isogeny from
each to an A . If not isogenous, return false.

1.

Let  be an isogeny. We want to know if  is "really an
endomorphism".

2.

Compute . If  is not a square, return false, since
degrees of endomorphisms are squares of norms.

3.

Compute the number field  explicitly.4.
Compute  explicitly.5.
Compute the image  of  in  got by composing
with .

6.

Compute the order  in  that is the image of .7.
Find representative solutions (up to units of ) of the norm
equation  in . If no solutions, return false.

8.

For each solution (up to units), check if it lies in .9.
If a solution  lies in H  return true and 10.
If no solution lies in H  return false.11.

A B A 
B 

A B 
f

'  : B ! A ' 

d (') = deg d 

K (A)  = End ÊQ
Hom(A; ) (Z) B Ú Mat2dÂ2d

H  ' Hom(A; ) B K 
' 

O K End(A) 
O 

Norm(x)  = Æ
p
d O 

H  '
x f x  Î 'À1

f
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Open Problem: I do not know how to determine if two arbitrary
non-simple modular abelian varieties are isomorphic.

If A  is a newform abelian subvariety of  and  is the
order , then we have a well-defined map

that sends a maximal ideal  that represents an ideal class to the
abelian variety . This map is well defined.

Proposition: If  is an isogeny with irreducible kernel  whose
support is a multiplicity one irreducible maximal ideal , then  is in
the image of the above map.

= Af J (N) 0 O  A
End(A) 

Cl(O )  isogeny class of Ag A ! f

m 
B =A[m] = A

A  ! B G 
m B 
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Also, one can consider quotients of  by simple submodules of 
intersected with the cuspidal and Shimura subgroups of . For
irreducible  of multiplicity greater than , one can probably take all
simple submodules of .

Open Question:Taking all the constructions above together, does one
fill out the isogeny class of ?

4. Invariants of Modular Abelian
Varieties
Here is a list of invariants we would like to compute for each . We
can compute some in all cases, some in some cases, something about
some in other cases, and sometimes nothing:

A A 
J (N) 0

m 1 
A[m] 

A 

A 
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Leading coefficient 
Real volume 
Tamagawa numbers c
Real component group 
The regulator .
The order  of the Shafarevich-Tate group.
The order #A(Q)  of the torsion subgroup.
The period lattice .
For each good , the -adic -series .
For each good , the -adic Regulator .
The modular degree  of .
The minimal degree of an isogeny , and whether or not 
is principally polarized.

5. Addendum
In fact compared to what I have in mind, very very little for modular
abelian varieties is implemented in Sage compared to what is needed
for our project, and I have to greatly optimize the current
implementation. Almost nothing interesting is implemented yet and a
massive amount of work remains in order to turn the theory of this talk
into a practical implementation available in Sage. (My Magma
implementation has more, but is still fairly limited too, and is built on a
shaky foundation.)

Fixing this is right now a very high priority for me. I do not
recommend anybody but me seriously use this particular code
right now, unless they are seriously interested in helping finish it. I
created Sage for this project.

L (A; ) Ã 1

Ê  A
A;p

c (A(R)=A(R) ) 1 = # 0

Reg(A) 
#Sha(A) 

tor
Ã  Ú Cd

p p L L (A; ) [[T ]] p T 2 Qp

p p Reg (A) p

m  A A 
A  ! A_ A 
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Things to do include:

Pizer's algorithm for computing Brandt matrices (Hecke
operators), which is needed for my algorithm for computing
Tamagawa numbers
Isomorphism testing for simple modular abelian varieties (embed
endomorphism ring in number field, solve norm equations, pull
back solutions).
Period lattice
Complex and -adic -functions
Heegner points of ring class fields (Numerical)
Tons of optimization, bug fixing, deal with things working only for

 when they should work in general.

 

       

p L 

À (N) 0
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