
SAGE: Linear Algebra Plan

William Stein
February 12, 2007, SAGE week

William Stein SAGE: Linear Algebra Plan



The Goal

GOAL: Implement fast optimized linear algebra over exact rings
and fields in SAGE.

We have been working on this for what seems like forever, and are
not done!

On Friday 08 April 2005 03:09 am, Kevin Buzzard wrote:
> I had no idea it [SAGE] had got so far. I had
> conjectured that you would still be messing with
> the linear algebra stuff.

In particular, at a minimum we need modern fast optimized
implementations of algorithms for linear algebra over Z, Q, Fq , Qp,
number fields (especially cyclotomic fields), and k(t) for k each of the
fields listed before. Both dense and sparse with identical
functionality.

William Stein SAGE: Linear Algebra Plan



First Challenge

1 In the world of numerical computation, developing good linear
algebra tools has been extremely difficult (because of roundoff
error, etc.), but that group of people has succeeded.

2 Unfortunately, for linear algebra over exact rings and fields, the
situation is terrible in comparison because the main people who
have done this (Magma and cryptography researchers) often do
not make their tools available to the community (so ask them
to!!). But at least they have proved that good results are possible.

3 The linbox project has been around for over 5 years now, and is
a free C++ library that aims to address this problem:
http://www.linalg.org/NEWS-1.1.html

4 Linbox is now finally getting quite usable, and is in fact kicks ass
at certain things.

William Stein SAGE: Linear Algebra Plan

http://www.linalg.org/NEWS-1.1.html


High Level Plan for Linear Algebra in SAGE

1 (done) Initial Python implementation so what functionality is
needed is clear, and a package that uses linear algebra in a
highly nontrivial way over almost every base ring can be
implemented (namely modular symbols).

2 (done) Rewrite implementation SageX – compiled language,
and restructure implementation to make it possible to
systematically create optimized matrix classes for different base
rings.

3 Incorporate linbox into SAGE (in progress); complain, fix bugs,
discover gaps, etc.

4 Implement advanced optimized algorithms in the context of
SAGE (in progress); fix bugs, etc.

William Stein SAGE: Linear Algebra Plan



Yardstick
1 The fastest general purpose system in the world for dense linear

algebra is MAGMA.
2 Most general purpose math software is terrible compared to

MAGMA at exact linear algebra. PARI won’t save us here:
sage: m = random_matrix(ZZ,200)
sage: time k=m*m
CPU times: user 0.05 s, sys: 0.00 s, total: 0.06 s
Wall time: 0.12
sage: g = pari(m)
sage: time h=g*g
CPU times: user 0.71 s, sys: 0.00 s, total: 0.72 s
Wall time: 0.72
sage: time z = g.matker()
CPU times: user 47.64 s, sys: 0.21 s, total: 47.85 s
Wall time: 49.12
sage: n=m.change_ring(QQ)
sage: time w=n.kernel()
CPU times: user 0.14 s, sys: 0.02 s, total: 0.16 s
Wall time: 0.18

William Stein SAGE: Linear Algebra Plan



More precise plan
With linbox having matured enough in the last year to be usable,
success is finally within reach! I’m going to work very hard on this
during the next two weeks. The plan

1 Create a good set of benchmarks and challenge problems.
These will come from modular symbols, etc. My project for today.

2 Incorporate IML (integer matrix library) into SAGE.
3 Polish, test, and tune new code Robert Bradshaw and I have

been writing since this summer in SageX for fast dense echelon
and matrix multiply. In particular, we must be able to
completely turn off linbox with no loss in functionality (since
linbox is complicated and this helps with debugging).

4 Incorporate as much of linbox’s functionality as we can. NOTE:
Linbox is tricky to use, buggy in some ways, etc., so this
squeezing full value out of linbox is quite hard. But it’s well worth
it, and everybody benefits.

5 Build optimized algorithms out of components available in
linbox. For example, for dense echelon I think a wide range of
tricks should be used together – there’s no one best algorithm.

6 Improve interface to system solving over exact base rings.
William Stein SAGE: Linear Algebra Plan



Linear Algebra in SAGE: Tutorial

1 Matrices:
1 matrix command, random_matrix command, via a

MatrixSpace
2 Compute the following associated to A: kernel, inverse (if

invertible), characteristic polynomial, eigenspaces (and
understand the output), the product AA, echelon form,
Hessenberg form, determinant.

3 Create matrices form given rows or columns of A. Make A
immutable.

2 Vector spaces:
1 Choose a field k . Create the 4-dimensional vector space

V = k4 over k .
2 Create two three-dimensional subspaces W1 and W2 of V .
3 Compute the intersection of W1 and W2. Compute their sum.
4 Express an element of W1 ∩W2 in terms of the basis for W1

(using the coordinates method).
5 Do the above 3 steps with k replaced by Z.

William Stein SAGE: Linear Algebra Plan



Tour of Linear Algebra Source Code

1 docs.py; overall layout and design;
levels of implementation functionality

2 Abstract base class for matrices:
matrix0.pyx, matrix1.pyx,
matrix2.pyx, and matrix.pyx.

3 Dense and sparse base classses
4 Generic dense and generic sparse

matrices
5 Dense and sparse matrices modulo n.
6 Dense matrices over Z and Q.

William Stein SAGE: Linear Algebra Plan


