
SAGE: Software for Algebra and Geometry
Experimentation

William Stein

April 29, 2006: SFSU AMS Meeting

William Stein SAGE: Software for Algebra and Geometry Experimentation

What is SAGE?

I started SAGE last year, and it has since mushroomed. There are
now dozens of contributors all over the world and an extremely
active mailing list.

1. Completely free and open source.

2. A new computer algebra system: Uses a mainstream
language (unlike Magma, Gap, Mathematica, Maple, etc.)

3. A new way to use your software: use all your favorite
(commercial or free) mathematics software together.

William Stein SAGE: Software for Algebra and Geometry Experimentation

Does Open Source Matter for Math Research?

“You can read Sylow’s Theorem and its proof in Huppert’s book in the
library [...] then you can use Sylow’s Theorem for the rest of your life free
of charge, but for many computer algebra systems license fees have to be
paid regularly [...]. You press buttons and you get answers in the same
way as you get the bright pictures from your television set but you cannot
control how they were made in either case.

With this situation two of the most basic rules of conduct in
mathematics are violated: In mathematics information is passed on
free of charge and everything is laid open for checking. Not applying
these rules to computer algebra systems that are made for mathematical
research [...] means moving in a most undesirable direction. Most
important: Can we expect somebody to believe a result of a program
that he is not allowed to see? ”

– J. Neubüser in 1993 (he started GAP in 1986).

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE: A New Computer Algebra System

algebras edu interfaces modular schemes
categories ext lfunctions modules sets
coding functions libs monoids structure
crypto geometry matrix plot tests
databases groups misc rings

$ cat */*.py */*/*.py */*/*/*.py */*.pyx */*/*.pyx |sort|uniq|wc -l
58858

$ cat */*.py */*/*.py */*.pyx */*/*.pyx |sort|uniq|grep "sage: " | wc -l
6845 <-------- EXAMPLE INPUT LINES!

William Stein SAGE: Software for Algebra and Geometry Experimentation

Cooperation: “Everything Under One Roof”

SAGE has many interfaces (bold included with SAGE):

I GAP (started 1986)– groups, discrete math
I Singular (started 1987) – polynomial computation
I PARI/GP (started 1987) – number theory
I Maxima (started 1967) – symbolic manipulation
I mwrank, ec, simon, sea – elliptic curves
I Macaulay2 (started 1993) – (soon to be included)
I KANT/KASH – sophisticated algebraic number theory
I Magma (started 1973) – high-quality research math

environment
I Maple – symbolic, educational
I Mathematica – symbolic, numerical, educational
I Octave (started 1992) – numerical analysis
I Specialized: mwrank, gfan, sympow, ntl, genus2reduction,

polymake, lcalc (Rubinstein), dokchitser; more to come...!

William Stein SAGE: Software for Algebra and Geometry Experimentation

Python: A Mainstream Programming Language

I Guido van Rossum released first Python in 1991.
I A “gluing language”, i.e., design to be easier to use libraries

and other programs.
I VAST range of libraries: graphics, 3d simulation, web

programming, numerical analysis, etc.
I Easy to read code
I function? gives documentation about function and

function?? gives the source code.
I IPython: Awesome!

William Stein SAGE: Software for Algebra and Geometry Experimentation

Pyrex: Compiled Python-like language

1. Written by Greg Ewing of New Zealand.

2. Code converted to C code that is compiled by a C compiler.

3. Easy to use C/C++ code and libraries from Pyrex.

4. Time-critical SAGE code gets implemented in Pyrex, which
is (as fast as) C code, but easier to read (e.g., since all
variables and scopes are explicit).

William Stein SAGE: Software for Algebra and Geometry Experimentation

Examples! Examples! Examples!

sage: E = EllipticCurve(’681b’); E
Elliptic Curve defined by

y^2 + x*y = x^3 + x^2 - 1154*x - 15345 ...
sage: E.analytic_rank()
0
sage: E.sha_an()
9
sage: E.non_surjective()
[(2, ’2-torsion’)]
sage: E.heegner_discriminants_list(10)
[-8, -20, -35, -56, -68, -83, -95, -107, -119, -143]
sage: n = E.heegner_index(-20); n
[8.99999215656, 9.00000831615]
sage: parent(n)
Float interval arithmetic pseudoring.
sage: n^2 + 10
[90.9998588182, 91.0001496907]

William Stein SAGE: Software for Algebra and Geometry Experimentation

L-functions

sage: E = EllipticCurve(’681b’)
sage: L = E.Lseries_dokchitser() # T. Dokchitser
sage: L(1)
1.8448152061268208
sage: L(2)
1.1760028810441643
sage: L(1+I)
0.28769581060576460 - 0.59781383500693885*I
sage: E.Lseries_zeros(5) # M. Rubinstein
[1.1931974371, 2.9775032355, 4.1340673324, 5.1249133553, 5.8247228768]
sage: E.Lseries_sympow(2,16) # M. Watkins
’1.010475324678458E+00’

William Stein SAGE: Software for Algebra and Geometry Experimentation

Image of a line segment under L(E , s)

sage: E = EllipticCurve(’37a’)
sage: v = E.Lseries_values_along_line(1, 1+10*I, 300)
sage: w = [(z[1].real(), z[1].imag()) for z in v]
sage: L = line(w, rgbcolor=(0.5,0,0))
sage: L.save(’line.png’)

William Stein SAGE: Software for Algebra and Geometry Experimentation

Graphing a Complex L-series

sage: E = EllipticCurve(’389a’)
sage: L = E.Lseries_dokchitser()
sage: L(1+I)
-0.63840993858803874 + 0.71549523920466740*I
sage: L(1+0.2*I, 50)
-0.030658879217008016 + 0.0035873942766903410*I

William Stein SAGE: Software for Algebra and Geometry Experimentation

Arithmetic of our favorite rank 1 curve

sage: E = EllipticCurve(’37a’)
sage: E.sha_an() --> 1
sage: E.non_surjective() --> []
sage: E.sha_an() --> 1
sage: E.regulator() --> 0.051111408239999996
sage: E.gens() --> [(0 : 0 : 1)]
sage: E.heegner_discriminants(50) --> [-3, -4, -7, -11, -40, -47]
sage: E.heegner_index(-7) # Kolyvagin ==> Sha trivial
[0.999990645298, 1.00000935475]
sage: E.q_expansion(5)

--> q - 2*q^2 - 3*q^3 + 2*q^4 + O(q^5)
sage: E.simon_two_descent ()
(1, 1, [(0 : 108 : 1)])
sage: E.sea(next_prime(10^50))
100000000000000000000000001917684156174529696959920

William Stein SAGE: Software for Algebra and Geometry Experimentation

Saving and Loading Objects

Most objects in SAGE can easily be loaded and saved in a
compressed format. (This is a standard feature of Python!)

sage: M = ModularSymbols(Gamma1(13),2); M
Full Modular Symbols space for Gamma_1(13) ...dimension 15...
sage: D = M.decomposition(3)
sage: [A.dimension() for A in D]
[1, 1, 1, 2, 2, 2, 2, 4]
sage: save(M, ’modsym13’)
... <quit and restart > ...
sage: M = load(’modsym13’)
sage: D = M.decomposition(3) # instant!
sage: D[-1].hecke_operator(2).charpoly().factor()
(x^2 + 3*x + 3)^2

William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE is not only for number theory!

sage: P.<x,y,z,w> = ProjectiveSpace(3,QQ)
sage: C = P.subscheme([y^2-x*z, z^2-y*w, x*w-y*z])
sage: len(C.irreducible_components()) # twisted cubic
1
sage: J = C.defining_ideal()
sage: G = J.groebner_fan()
sage: len(G.reduced_groebner_bases())
8
sage: G.fvector()
(1, 8, 8)
sage: f = prod(J.gens()) # \/-- newton polytope
sage: NP = polymake.convex_hull(f.exponents())
sage: NP.facets()
[(3/2, 5/2, -1, 0), (3, 1, -1, 0), (1, 0, 0, 0),
(-3/2, 2, 1, 0), (3, -1, 4, 0), (-3, 1, 5, 0)]

(And Stein is not only a number theorist anymore...)
William Stein SAGE: Software for Algebra and Geometry Experimentation

SAGE: A Future?

I August 2006: MSRI grad student Workshop on Computing
with Modular Forms (with SAGE).

I October 2006: SAGE Days 2 in Seattle.

I UW startup money: Very generous financial support for SAGE
development (hiring a team of students, mainly undergrads).

I Most SAGE users are coauthors/developers of SAGE.

William Stein SAGE: Software for Algebra and Geometry Experimentation

