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The Pythagorean Theorem

b Pythagoras
Approx 569—475BC



(3,4,5)
(5,12,13)
(7,24, 25)
(9,40, 41)
(11,60,61)
(13,84,85)
(15,8,17)
(21,20, 29)
(33,56, 65)
(35,12,37)
(39,80, 89)
(45,28,53)
(55,48,73)
(63,16, 65)
(65,72,97)
(77,36,85)

Pythagorean Triples
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Triples of integers a, b, c such that
CL2 + b2 — (32




Enumerating Pythagorean Triples

(z,y) Slope = ¢ = Y
(0,1) o 1—¢t2
—1,0 1—|—t2
2
R I
If t =L, then a=3s2—7r2 b=2rs, c=s24r2

IS a Pythagorean triple, and all primitive unordered triples arise
in this way. We can solve two-variable quadratic equations.
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What About Two-variable Cubic
Equations?

Elliptic curve: a (smooth) plane cubic curve
with a rational point (possibly “at infinity”).
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T he Secant Process
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The Tangent Process

New rational point from a single rational point.
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Iterate the Tangent Process

(0,0)
(17 _1)
(27 _3)

(21 56:>

25’ 125

(480106 332513754)
4225 ' 274625

Fermat
(53139223644814624290821 12282540069555885821741113162699381)

1870098771536627436025 °  80871745605559864852893980186125
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The Group Operation
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at infinity

@b e =
(_170) D (07 _1) — (272)

The set of rational points
on E forms an abelian group.



SAGE Software for Algebra and Geometry Experimentation

SAGE Version 0.7.8, Export Date: 2005-10-05-1650
Distributed under the terms of the GNU General Public License (GPL)
IPython shell -- for help type <object>?, <object>??, Ymagic, or help
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field
sage: P = E([0,0])

sage: 2x%P
(1, 0)
sage: 10%*P
(161/16, -2065/64)
sage: 20x%P
(683916417/264517696, -18784454671297/4302115807744)
sage: 50*P

(24854671723753819921380822649312751965653209957505606561/
29418784545883822188243570198416287437001335203340988816,
-65343698144990446428357439135977881124804221113554492507243553294512904673973173265/
159564798621271700005828929931002008441744804573070282618997694000714045237979692864 )

Help wanted! http://modular.ucsd.edu/sage
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The First 150 Multiples of (0,0)

4

3

Yy

(The bluer the point, the
bigger the multiple.)

Fact: The group E(Q) is
generated by (0,0).

In contrast, y2 + vy = 23 — 22 has
only 5 rational solutions!

What is going on here?
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Mordell’s Theorem

Theorem (Mordell). The group E(Q) of rational points on an
elliptic curve is a finitely generated abelian group:

EQ)=Z"aT,
with T finite.

Mazur classified the possibilities for T'. It is conjectured that r
can be arbitrary, but the biggest r ever found is (probably) 24.
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The Simplest Solution
Can Be Huge

Simplest solution to y2 = z3 + 7823:

_2263582143321421502100209233517777
~ 143560497706190989485475151904721

~186398152584623305624837551485596770028144776655756
V= 1720094998106353355821008525938727950159777043481

(Found by Michael Stoll in 2002.)
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T he Central Question

When does an elliptic curve
have infinitely many solutions?
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Conjectures Proliferated

“The s of this lecture is rather a special one. I want to de-
scribe some computations undertaken by myself and Swinnerton-
Dyer on EDSAC, by which we have calculated the zeta-functions
of certain elliptic curves. As a result of these computations we
have found an analogue for an elliptic curve of the Tamagawa
number of an algebraic group; and conjectures have proliferated.
[...] though the associated theory is both abstract and technically
complicated, the objects about which I intend to talk are usually
simply defined and often machine computable; experimentally
we have detected certain relations between different in-
variants, but we have been unable to approach proofs of these
relations, which must lie very deep.” — Birch 1965
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Counting Solutions Modulo p
N(p) = # of solutions (mod p)

v +y=23—2 (modT7)

5

2 3 4 5 '

'OO

N(7) =9
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The Error Term

Let

ap=p+1—N(p).

Hasse proved that

lap| < 24/p.

ap = -2, a3=-3, a5=-2, ay=-1, a11=-5 a13=-2

aiz7 =0, a19=0, a2x3=2, ap9=06,
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Stand and Be Counted
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Swinnerton-Dyer



Birch and Swinnerton-Dyer’s Guess

If an elliptic curve E has positive rank, then perhaps N(p) is on

average larger than p, for many primes p. Maybe

>0 AsS ©r — o0

. P
fe(z) = plgx N (p)

exactly when E has infinitely many solutions?

Swinnerton-Dyer



sage:
sage:

sage:

sage:

sage:

sage:

sage:
sage:

sage:

sage:

p

C t xr) =
ompute fp(x) = p<x N(p)

E = EllipticCurve([0,0,1,-1,0])
E.Np(7)

def f(x): return mul([p / E.Np(p) for p in primes(x)])

£(3)

6/35

f (20)

2717/69120

£(20)*1.0
0.039308449074074076
def f(x): return mul ([float(p / E.Np(p)) for p in primes(x)])
sage: f£(10000)
0.012692560835552851
£ (20000)
0.013677015955706331
£ (100000)
0.010276462823395276
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Graphs of WfE( = Hpgx%

re log-scale graphs of, fg(x):
631B: y? + axy = z3 + 22 — 1154z — 15345
(Shaf.-Tate group order 9)

T he following

|

33A: y2—|—$y=a:3—|—a72— 11x

37B: y2 4+ y =23+ 22 — 232 — 50

\ 14A: 2 +2y+y=23+42-6

\ _______ S s 11A 2 by =23 — 22 — 100 — 20
%§Z6Ay +y,—w,q—.fv >

(Y
DO IA\. - L — 2T

4+
el el e2 e3 et e ed 5077A: y2 ‘|' Yy = 53324: Tx+ 6




Something Better: The L-Function

Theorem (Wiles et al., Hecke) This function extends to a

holomorphic function on the whole complex plane:

L(E,s) = TI ( : )
| pa\l—ap-p~54+p-p=25)

Note that formally,

1 p p
L(E,1) = || — || — ||
( ) A (1 —ap-p_l | p-p_2> A <p—ap | 1) Np




Real Graph of the L-Series of

2 +y=a3—u

Real

\

Zero of order 1 at s = 1
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More Graphs of Elliptic Curve
L-functions

y L-series
1 R
= | L E,
/// £ i /'/?// E3
N =
0 g = .
//
-1 /
0 | 1 2 3
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The Birch and Swinnerton-Dyer
Conjecture

Conjecture: Let E be any elliptic curve over Q. Then E has
infinity many solutions if and only if L(E,1) = 0. (More precisely,
the order of vanishing of L(E,s) as s = 1 equals the rank of

E£(Q).)
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The Kolyvagin, Gross-Zagier, Kato
T heorem

Theorem 1: If L(E,1) # 0 then E has only finitely many solu-
tions. If L(E,1) =0 but L/(E,1) # 0, then E(Q) has rank 1.




Ranks of Elliptic Curves

Order elliptic curves by conductor.

Folklore Conjecture: 100% of elliptic curves satisfy the hy-
pothesis of Theorem 1, i.e., have ord,—1 L(E,s) < 1.
Moreover the average rank is 1/2.

Should we believe this folklore conjecture?

Joint work with: Barry Mazur, Mark Watkins, Baur Bektemirov
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Genus

Question Suppose C' is an algebraic curve with a rational point.
How likely is it that C will have infinitely many rational points?

e Genus 0 — probability 1 (e.g., Pythagorean triples)

e Genus 1 — probability 1/2777 (elliptic curves)

e Genus > 2 — probability 0 (Faltings’'s theorem)
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A Story

. T he minimalist conjecture. As above, it has long been a
folk conjecture that the average rank of elliptic curves is 1/2.

. Refined heuristics for special families. For y2 = z3—d?z,
prediction that number of those with even parity and infinitely
many rational points is asymptotic to

F(D) = c¢- D3/*log(D)11/8 (1)

. A random matrix heuristic.

. Contrary numerical data.
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Manjul Bhargava

A new non-minimalist theorem for number fields.

Theorem. When ordered by absolute discriminant, a positive
proportion (approximately 0.09356) of quartic fields have asso-
ciated Galois group D4. The remaining approximately 0.90644
of quartic fields have Galois group Sa.
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Goldfeld’s Conjecture

Family E; of quadratic twists, e.g., y2 = z3 — d?z.

Conjecture. The average rank of the curves E, is % in the

sense that
- Yld<prank(Eq) 1
D—oo #{d:|d| <D} 2

(Here the integers d are squarefree.)

31



Random Matrix Theory Heuristic
(Watkins)

Conjecture:

e Number of curves of even rank > 2 up to conductor X is

~ X19/2% exp(c1v/10g X).

e Number of elliptic curves of conductor up to X is

~ X5/6 exp(corv1og X).

Note that 19/24 ~ 0.792 and 5/6 ~ 0.833.
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Brumer-McGuinness Rank Distribution

Rank 0 1 2 3 4 5
Proportion | 0.300 | 0.461 | 0.198 | 0.038 | 0.003 | 0.000

Average Rank: 0.982
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Rank Distribution of Cremona’s
Database (Conductor < 120000)

Rank 0 1 2 3
Proportion | 0.404 | 0.505 | 0.090 | 0.001

Average Rank: 0.688



T he Stein-Watkins Database

Any E/Q is given by exactly one equation of the form
y2 = 23— 27cax — S4cg, (2)

with cg,c6, A = (¢ — c2)/1728 € Z and for which there is no
prime p with p% | ¢4 and p'? | A.

Stein-Watkins Database: All E/Q with |ca| < 1.44-1012, |A| <
1012 and composite conductor < 108 or prime conductor < 1019,
Plus all quadratic twists and isogenous curves.

Type Number
Curves with conductor < 108 136832795
Curves with square-free conductor < 108 21841534
Curves with prime conductor < 1010 11378911
Curves with prime conductor < 108 312435
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Rank Distribution Among All Curves of
Conductor < 108

Rank O 1 2 3 > 4
Proportion | 0.336 | 0.482 | 0.163 | 0.019 | 0.000

Average Rank: 0.865
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Rank Distribution for Prime
Conductor < 1010

Rank

0

1

2

3

> 4

Proportion

0.309

0.462

0.188

0.037

0.004

Average Rank: 0.964
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Rank Distribution For About 150000
Random Curves With Prime

Discriminant Near 104

Rank

Proportion

0.332

0.471

0.164

0.029

0.003

Average Rank: 0.901
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