Explicitly Computing With Modular Abelian Varieties
William Stein
Harvard University
February 6, 2004
Center for Communications Research in Princeton

Modular Abelian Varieties

Abelian variety: A complete group variety

Examples:

1. Elliptic curves, e.g., $y^{2}=x^{3}+a x+b$
2. Jacobians of curves
3. Quotients of Jacobians of curves

The Modular Curve $X_{1}(N)$

Let $\mathfrak{h}^{*}=\{z \in \mathbf{C}: \Im(z)>0\} \cup \mathbf{P}^{1}(\mathbf{Q})$.

Hecke

1. $X_{1}(N)_{\mathrm{C}}=\Gamma_{1}(N) \backslash \mathfrak{h}^{*}$ (compact Riemann surface)
2. $X_{1}(N)$ has natural structure of algebraic curve over \mathbf{Q}
3. $X_{1}(N)(\mathbf{C})=\{(E, P): \operatorname{ord}(P)=N\} / \sim$ (moduli space)

N	≤ 10	11	13	37	169	512	2003
genus $\left(X_{1}(N)\right)$	0	1	2	40	1070	7809	166167

1. Cuspidal modular forms (of weight 2):

$$
S_{2}(N)=\mathrm{H}^{0}\left(X_{1}(N), \Omega_{X_{1}(N)}^{1}\right)
$$

2. $f \in S_{2}(N)$ has Fourer expansion in terms of $q(z)=e^{2 \pi i z}$

$$
f=\sum_{n=1}^{\infty} a_{n} q^{n}
$$

3. Hecke algebra (commutative ring):

$$
\mathbf{T}=\mathrm{Z}\left[T_{1}, T_{2}, \ldots\right] \hookrightarrow \operatorname{End}\left(S_{2}(N)\right)
$$

The Modular Jacobian $J_{1}(N)$

1. Jacobian of $X_{1}(N)$:

Jacobi

$$
J_{1}(N)=\operatorname{Jac}\left(X_{1}(N)\right)
$$

2. $J_{1}(N)$ is an abelian variety over \mathbf{Q} of dimension $g\left(X_{1}(N)\right)$.
3. The elements of $J_{1}(N)$ parameterize divisor classes on $X_{1}(N)$ of degree 0 .

Examples and Conjectures

Suppose $\operatorname{dim} A=1$.

Modular Abelian Varieties

A modular abelian variety A over a number field K is any abelian variety A (over K) such Shimura that there is a homomorphism

$$
A \rightarrow J_{1}(N)
$$

with finite kernel.

$$
\mathrm{GL}_{2} \text {-type }
$$

Defn. A simple abelian variety A / Q is of GL_{2}-type if

$$
\operatorname{End}_{0}(A / \mathbf{Q})=\operatorname{End}(A / \mathbf{Q}) \otimes \mathbf{Q}
$$

is a number field of degree $\operatorname{dim}(A)$.

Shimura associated GL_{2}-type modular abelian varieties to \mathbf{T} eigenforms:

$$
\begin{aligned}
f & =q+\sum_{n \geq 2} a_{n} q^{n} \in S_{2}(N) \\
I_{f} & =\operatorname{Ker}\left(\mathbf{T} \rightarrow \mathbf{Q}\left(a_{1}, a_{2}, a_{3}, \ldots\right)\right), T_{n} \mapsto a_{n}
\end{aligned}
$$

Abelian variety A_{f} over \mathbf{Q} of $\operatorname{dim}=\left[\mathbf{Q}\left(a_{1}, a_{2}, \ldots\right): \mathbf{Q}\right]:$

$$
A_{f}:=J_{1}(N) / I_{f} J_{1}(N)
$$

Theorem (Ribet). Shimura's A_{f} is Q -isogeny simple since

$$
\operatorname{End}_{0}\left(A_{f} / \mathbf{Q}\right)=\mathbf{Q}\left(a_{2}, a_{3}, \ldots\right)
$$

Also there is an isogeny $J_{1}(N) \sim \prod_{f} A_{f}$, where the product is over Galois-conjugacy classes of f.

Conjecture. (Ribet)
The simple modular abelian varieties A over \mathbf{Q} are exactly the simple abelian varieties over \mathbf{Q} of GL_{2}-type.

Ribet proved that his conjecture follows from Serre's unproven conjectures on modularity of odd mod p Galois representations.

2. Computing With Abelian Varieties

Goal: Develop a systematic theory for computing with modular abelian varieties.

Basic Problems: Presentation, isogeny testing, isomorphism testing, endomorphism ring, enumeration.

Arithmetic Problems: Special values of L-functions, computing Shafarevich-Tate groups, Tamagawa numbers, enumerating elements of isogeny class.

Presentation

Modular abelian varieties can be specified in many ways:

- Equations
- Built from newform abelian varieties A_{f}
- Arise theoretically (e.g., Jacobians of Shimura curves).

For all our questions today we will view a modular abelian variety as being defined in the following way. Any modular abelian variety B can be obtained by quotienting an abelian subvariety $A \subset J_{1}(N)$ by a finite subgroup G. Thus we represent B by giving a pair (A, G), where $G \subset A \subset J_{1}(N)$.

Specifing A

An inclusion $\varphi: A \hookrightarrow J_{1}(N)$ induces an inclusion on homology

$$
\mathrm{H}_{1}(A, \mathbf{Q}) \hookrightarrow \mathrm{H}_{1}\left(J_{1}(N), \mathbf{Q}\right)
$$

and A is completely determined by the image of $\mathrm{H}_{1}(A, \mathbf{Q})$ in the vector space $\mathrm{H}_{1}\left(J_{1}(N), \mathbf{Q}\right)$.

We give A by giving a subspace $V=V_{\mathbf{Q}} \subset \mathrm{H}_{1}\left(J_{1}(N), \mathbf{Q}\right)$. Specifing G

By the Abel-Jacobi theory there is a canonical isomorphism

$$
J_{1}(N)(\mathbf{C}) \cong \mathrm{H}_{1}\left(J_{1}(N), \mathbf{R}\right) / \mathrm{H}_{1}\left(J_{1}(N), \mathbf{Z}\right)
$$

Likewise $A(\mathbf{C}) \cong V_{\mathbf{R}} / V_{\mathbf{Z}}$, where $V_{\mathbf{Z}}=V \cap \mathrm{H}_{1}\left(J_{1}(N), \mathbf{Z}\right)$, so

$$
A(\mathbf{C})_{\mathrm{tor}} \cong V_{\mathbf{Q}} / V_{\mathbf{Z}}
$$

We give G by giving finitely many elements of $V_{\mathbf{Q}} / V_{\mathbf{Z}}$.

Modular Symbols

Modular symbols provide a presentation of

$$
H_{1}\left(X_{1}(N), \mathbf{Z}\right)
$$

Manin
on which one can give formulas for Hecke and other operators. They have been intensively studied by Birch, Manin, Shokurov, Mazur, Merel, Cremona, and others.

```
> M := CuspidalSubspace(ModularSymbols(Gamma1(11)));
> Basis(M);
[
-1/5*{-1/2, 0} + -2/5*{-1/4, 0} + 3/5*{-1/7, 0} + -1/5*{7/15,1/2},
-2/5*{-1/2, 0} + 1/5*{-1/4, 0} + 1/5*{-1/7, 0} + -2/5*{7/15,1/2}
]
```


Recognition Problem

Problem: When does a subspace $V \subset \mathrm{H}_{1}\left(J_{1}(N)\right.$, Q) correspond to an abelian subvariety A of $J_{1}(N)$ over K ?

Solution: Given an isogeny decomposition of $J_{1}(N)$ over K as a direct sum of simple abelian varieties, I have an algorithm to solve this problem. (It is straightforward to compute such a decomposition when $K=\mathrm{Q}$.)

Problem: Given a group G defined by a finite list of elements of $V_{\mathbf{Q}} / V_{\mathbf{Z}}$, find the smallest number field over which G is defined. This is important because if G is defined over K, then $B=A / G$ is defined over K.

Solution??: I have not solved this problem, which is likely very difficult.

Enumeration Problem Over Q

Problem: Give an algorithm to systematically enumerate every modular abelian variety over Q .

The isogeny classes of simple modular abelian varieties over \mathbf{Q} are in bijection with newforms, which are eigenvectors for Hecke operators in the space $S_{2}\left(\Gamma_{1}(N)\right.$) of modular forms. Using the Atkin-Lehner-Li theory of newforms, modular symbols, and linear algebra, we can thus enumerate the isogeny classes over \mathbf{Q}.

I do not know how to find all abelian varieties in an isogeny class, except when A has dimension 1, where it is solved. Maybe at least find several by intersecting $A \subset J_{1}(N)$ with other abelian varieties over \mathbf{Q}, quotienting out by intersection, and proving quotient is not isomorphic to A.

Example

```
> Factorization(J1(17));
[*
<Modular abelian variety 17A of dimension 1, level }1
and conductor 17 over Q, [
    Homomorphism from 17A to J1(17) given on integral
    homology by:
    [-3
    [-2 -2 0
]>,
<Modular abelian variety 17A[2] of dimension 4, level }1
and conductor 17^4 over Q, [
    Homomorphism from 17A[2] to J1(17) (not printing
    8x10 matrix)
]>
*]
```


Enumeration Problem Over $\overline{\mathbf{Q}}$

Problem: Give an algorithm to systematically enumerate every modular abelian variety over $\overline{\mathbf{Q}}$.

There is a huge amount of work by Shimura, Ribet, González, Lario, and others, but still nobody has given an algorithm to enumerate all isogeny classes of modular abelian varieties over $\overline{\mathbf{Q}}$ explicitly. By explicit, I mean in the sense of giving defining data, i.e., a pair $\left(V, G \subset V_{\mathbf{Q}} / V_{\mathbf{Z}}\right)$.

Obstructions:

- Difficulty of constructing End $\left(A_{f} / \overline{\mathbf{Q}}\right)$ explicitly (I have an algorithm, but it is way too slow to be useful)
- Difficulty of decomposing $A_{f} / \overline{\mathbf{Q}}$ as a product of simples, even given End $\left(A_{f} / \overline{\mathbf{Q}}\right)$. Need a good "Meataxe" over \mathbf{Q}.

Computing Endomorphism Rings

Problem: Given a modular abelian variety A over K, compute End (A) explicitly, i.e., give matrices in $\operatorname{End}(V)$ that generate $\operatorname{End}(A)$ as an abelian group.

Solution: When $A \subset J_{1}(N)$ is simple, $\operatorname{End}(A) \otimes \mathbf{Q}$ is a skew field, which can be computed. For example, if $K=\mathbf{Q}$, then $A=A_{f}$ is attached to a newform and $\operatorname{End}(A) \otimes \mathbf{Q}$ is generated by the image of the Hecke algebra. We can then find End (A) in $\operatorname{End}(A) \otimes \mathbf{Q}$ as the \mathbf{Z}-submodule of elements that preserve the lattice V_{Z}.

We can also explicitly compute $\operatorname{Hom}(A, B)$ for any modular abelian varieties A and B, by writing A and B as simples, computing endomorphism algebras, and finding the Z-module of homomorphisms that induce a map that fixes integral homology.

Example

> A := JO(33); A;
Modular abelian variety $\mathrm{JO}(33)$ of dimension 3 and level $3 * 11$ over Q $>$ End (A) ;
Group of homomorphisms from JO(33) to JO(33)
> Basis(End(A));
[
Homomorphism from JO(33) to JO(33) (not printing $6 x 6$ matrix),
Homomorphism from JO(33) to JO(33) (not printing $6 x 6$ matrix),
Homomorphism from JO(33) to JO(33) (not printing $6 x 6$ matrix),
Homomorphism from $\mathrm{JO}(33)$ to $\mathrm{JO}(33)$ (not printing $6 x 6$ matrix),
Homomorphism from JO(33) to JO(33) (not printing $6 x 6$ matrix)
$\xrightarrow{7}$
> Matrix (Basis(End(A)) [2]);
[$\left.0 \begin{array}{llllll}0 & 1 & 0 & 0 & 0 & -1\end{array}\right]$
$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & -1 & 0\end{array}\right]$
$\left[\begin{array}{llllll}0 & 1 & -1 & 1 & -1 & 0\end{array}\right]$
$\left[\begin{array}{cccccc}0 & 1 & -1 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{llllll}-1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

Isogeny Testing

Problem: Given modular abelian varieties A and B, determine whether or not A is isogenous to B.

Determine whether A is isogenous to B is easy, since we may assume A and B are attached to newforms $\sum a_{n} q^{n}$ and $\sum b_{n} q^{n}$, and then A is isogenous to B if and only if the newforms are Galois conjugate.

Isomorphism Testing

Problem: Suppose A is isogenous to B. Decide whether A is isomorphic to B.

I do not know how to do this in general. Assume we have computed End (A), End (B), and $\operatorname{Hom}(A, B)$ explicitly. Given a basis for $\operatorname{Hom}(A, B)$, how do we know if some linear combination of that basis has determinant 1? It's not clear (to me).

If A and B are both simple and have commutative endomorphism ring, then I found an algorithm to decide whether A is isomorphic to B. This algorithm can be extended to abelian varieties that are products of such A, assuming the factors occur with multiplicity 1 (up to isogeny). However, I do not know in general how to decide whether $A \oplus A$ is isomorphic to $B \oplus B$, though I have a vague strategy that I think might work.

Algorithm for Testing Isomorphism

Suppose A and B are explicitly defined modular abelian varieties over \mathbf{Q} that are both isogenous to an abelian variety A_{f}. The following algorithm determine whether A is isomorphic to B.

Let $H=\operatorname{Hom}(A, B)$. Both A and B are given explicitly by pairs $\left(V, G_{1}\right)$ and $\left(V, G_{2}\right)$, so we can compute an isogeny $f: B \rightarrow A$. Let $H_{f}=\{\phi \circ f: \phi \in H\} \subset \operatorname{End}(B)$. Note that A is isomorphic to B if and only if H_{f} contains an element of degree $\operatorname{deg}(f)$. Also note that H_{f} has finite index in $\operatorname{End}(B)$.

By hypothesis $K=\operatorname{End}(B) \otimes \mathbf{Q}$ is the field generated by the Fourier coefficients of f. The norm of an element of K is the positive square root of the degree of the corresponding homomorphism (see Milne in Cornell-Silverman, pg 126, Prop. 12.12).

Thus if $\operatorname{deg}(f)$ is not a perfect square, then there can be no element of B of degree $\operatorname{deg}(f)$, so A is not isomorphic to B. Thus suppose $\operatorname{deg}(f)=d^{2}$.

Typically there will be infinitely many element in \mathcal{O}_{K} of norm d, but there are only finitely many up to units. There is an algorithm, which involves computing the class group of \mathcal{O}_{K}, which enumerates representive elements of \mathcal{O}_{K} of norm d, up to units (e.g., the NormEquation command in MAGMA). Thus suppose we have computed representative elements z_{1}, \ldots, z_{n} of the elements of \mathcal{O}_{K} with norm d. Then A is isomorphic to B if and only if there is a unit u and a z_{i} such that $u^{-1} z_{i} \in H_{f} \subset K$. Equivalently, such that $z_{i} \in u H_{f}$. There are only finitely many possibilities for $u H_{f}$, since H_{f} has finite index in \mathcal{O}_{K} and $\left[\mathcal{O}_{K}: u H_{f}\right]=\left[\mathcal{O}_{K}: H_{f}\right]$, since $\mathcal{O}_{K}=u \mathcal{O}_{K}$. We can thus list all subgroups $u H_{f}$ (since we can compute generaturs for \mathcal{O}_{K}^{*}) and hence determine whether H_{f} contains an element of norm d, as required.

