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The impact of the Riemann Hypothesis

Figure: Peter Sarnak

“The Riemann hypothesis is the central problem and it
implies many, many things. One thing that makes it
rather unusual in mathematics today is that there must
be over five hundred papers—somebody should go and
count—which start ‘Assume the Riemann hypothesis,’
and the conclusion is fantastic. And those [conclusions]
would then become theorems ... With this one solution
you would have proven five hundred theorems or more at
once.”



An expository challenge

The approach you take when you try to explain anything depends
upon your intended audience(s). In our case we wanted to reach
two quite different kinds of readers (at the same time):

I High School students who are already keen on mathematics,

I A somewhat older crowd of scientists (e.g., engineers) who
have a nonprofessional interest in mathematics.



What sort of Hypothesis is the Riemann Hypothesis?

Consider the seemingly innocuous series of questions:
I How many primes (2, 3, 5, 7, 11, 13, . . .) are

there less than 100?
I How many less than 10,000?
I How many less than 1,000,000?

More generally, how many primes are there less than
any given number X ?

Riemann’s Hypothesis tells us that a strikingly simple-to-
describe function is a “very good approximation” to the num-
ber of primes less than a given number X . We now see that
if we could prove this Hypothesis of Riemann we would have
the key to a wealth of powerful mathematics. Mathematicians
are eager to find that key.



An expository frame—and goal

Figure: Raoul Bott (1923–2005)

Raoul Bott, once said—giving advice to some young
mathematicians—that whenever one reads a mathematics book or
article, or goes to a math lecture, one should aim to come home
with something very specific (it can be small, but should be
specific) that has application to a wider class of mathematical
problem than was the focus of the text or lecture.



Setting the frame

If we were to suggest some possible specific items to come home
with, after reading our book, three key phrases – prime numbers,
square-root accurate, and spectrum – would head the list.



PRIMES: order appearing random

Figure: Don Zagier

“[Primes]

I are the most arbitrary and ornery objects studied by
mathematicians: they grow like weeds among the
natural numbers, seeming to obey no other law than
that of chance, and nobody can predict where the
next one will sprout.

I exhibit stunning regularity . . . they obey their laws
with almost military precision.”



How to nudge readers to feel the orneriness of primes

There is something compelling about ‘physically’ hunting for a
species of mathematical object, and collecting specimens of it. Our
book emphasizes this approach for our readers. Here are some
routes that allow you to ’pan’ (in different ways) for primes:

Factor trees and Sieves

and

Euclid’s Proof of the Infinitude of Primes.



Factor trees
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Sieves
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The ubiquity of primes

Figure: Don Quixote and “his” Dulcinea del Toboso

Numbers are obstreperous things. Don Quixote encountered this
when he requested that the “bachelor” compose a poem to his
lady Dulcinea del Toboso, the first letters of each line spelling out
her name.



The stubbornness of primes and knights

The “bachelor” found

“a great difficulty in their composition because the
number of letters in her name was 17, and if he made
four Castilian stanzas of four octosyllabic lines each, there
would be one letter too many, and if he made the stanzas
of five octosyllabic lines each, the ones called décimas or
redondillas, there would be three letters too few...”

“It must fit in, however, you do it,” pleaded Quixote, not willing to
grant the imperviousness of the number 17 to division.



The Art of asking questions

Questions anyone might ask

spawning

Questions that shape the field



Gaps: an example of a ‘question anyone might ask’

Figure: Yitang Zhang

In celebration of Yitang
Zhang’s recent result, consider
the gaps between one prime
and the next.



Twin Primes

As of 2014, the largest
known twin primes are

3756801695685·2666669±1

These enormous primes
have 200700 digits each.



Gaps of width k

Define

Gapk(X ) :=

number of pairs of consecutive
primes (p, q) with q < X that
have “gap k” (i.e., such that
their difference q − p is k).

NOTE: Gap4(10) = 0.



Gap statistics

Table: Values of Gapk(X )

X Gap2(X ) Gap4(X ) Gap6(X ) Gap8(X ) Gap100(X ) Gap252(X )
10 2 0 0 0 0 0
102 8 7 7 1 0 0
103 35 40 44 15 0 0
104 205 202 299 101 0 0
105 1224 1215 1940 773 0 0
106 8169 8143 13549 5569 2 0
107 58980 58621 99987 42352 36 0
108 440312 440257 768752 334180 878 0



How many primes are there?

π(X ) := # of primes ≤ X
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Figure: Staircase of primes up to 25



How many primes are there?

20 40 60 80 100

5

10

15

20

25

Figure: Staircase of primes up to 100



Prime numbers viewed from a distance

Pictures of data magically
become smooth curves as you
telescope to greater and
greater ranges.
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Figure: Staircases of primes up to 1,000 and 10,000



Proportion of Primes
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Figure: Graph of the proportion of primes up to X for each integer
X ≤ 100



Proportion of Primes at greater distance
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Figure: Proportion of primes for X up to 1,000 (left) and 10,000 (right)



Gauss

Figure: A Letter of Gauss



Gauss’ guess

The ‘probability’ that a
number N is a prime is
proportional to the reciprocal
of its number of digits; more
precisely the probability is

1/ log(N).



This would lead us to this
guess for the approximate value
of π(X ):

Li(X ) :=

∫ X

2
dX/ log(X ).



Approximating π(X )
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Figure: Plots of Li(X ) (top), π(X ) (in the middle), and X/ log(X )
(bottom).



The Prime Number Theorem
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Figure: Plots of Li(X ) (top), π(X ) (in the middle), and X/ log(X )
(bottom).

All three graphs tend to ∞ at
the same rate.



Ratios

PNT:

The ratios

π(X )

Li(X )
and

π(X )

X/ log(X ))

tend to 1 as X goes to ∞.



Ratios versus Differences

Much subtler question: what
about their differences?

| Li(X )− π(X )|?



Riemann’s Hypothesis

The Riemann Hypothesis (first formulation)

π(X ) is approximated by
Li(X ), with essentially
square-root accuracy.



More precisely . . .

RH is equivalent to:

| Li(X )− π(X )| ≤
√
X log(X )

for all X ≥ 2.01.



Square-root accuracy

The gold standard for
empirical data accuracy

Discussion of random error,
and random walks
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Figure: One Thousand Random Walks



The mystery moves to the error term

Mysterious quantity(X ) =

= Simple expression(X ) +

+ Error(X ).



Our mystery moves to our error term

Mystery = Simple + Error.

π(X ) = Li(X )−
(
Li(X )−π(X )

)
.



That ‘error term’
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Figure: Li(x)− π(x) (blue middle), its Césaro smoothing (red bottom),

and
√

2
π ·
√

x/ log(x) (top), all for x ≤ 250,000



The tension between data and long-range behavior
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The wiggly blue curve which seems to be growing nicely ‘like
√

X ’
will descend below the X -axis, for some value of X > 1014.

Skewes Number



The tension between data and long-range behavior

1014 ≤ Skewes Number < 10317



Spectrum

From Latin:
“image,” or “appearance.”



Spectra and the Fourier transform

(The essential miracle of the theory of the Fourier transform:)

G (t) ↔ F (s)

Each behaves as if it were the
’spectral analysis’ of the other.



packaging the information given by prime powers

g(t) =

= −
∑
pn

log(p)

pn/2
cos(t log(pn).)



pn ≤ 5
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Figure: Plot of −
∑

pn≤5
log(p)
pn/2 cos(t log(pn)) with arrows pointing to the

spectrum of the primes



pn ≤ 20
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Figure: Plot of −
∑

pn≤20
log(p)
pn/2 cos(t log(pn)) with arrows pointing to the

spectrum of the primes



pn ≤ 50
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Figure: Plot of −
∑

pn≤50
log(p)
pn/2 cos(t log(pn)) with arrows pointing to the

spectrum of the primes



pn ≤ 500
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Figure: Plot of −
∑

pn≤500
log(p)
pn/2 cos(t log(pn)) with arrows pointing to

the spectrum of the primes



From primes to the Riemann Spectrum

Conditional on RH, g(t)
converges to a distribution
with singular spikes at the red
vertical lines: the Riemann
spectrum,

θ1, θ2, θ3, . . .



From the Riemann Spectrum to primes

f (s) =

= 1 +
∑
i

cos(θi · log(s))).



From the Riemann Spectrum to primes
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Figure: Illustration of −
∑1000

i=1 cos(log(s)θi ), where θ1 ∼ 14.13, . . . are
the first 1000 contributions to the Riemann spectrum. The spikes are at
the prime powers pn, whose size is proportional to log(p).



From the Riemann Spectrum to primes
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Figure: Illustration of −
∑1000

i=1 cos(log(s)θi ) in the neighborhood of a
twin prime. Notice how the two primes 29 and 31 are separated out by
the Fourier series, and how the prime powers 33 and 25 also appear.



From the Riemann Spectrum to primes
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Figure: Fourier series from 1, 000 to 1, 030 using 15,000 of the numbers
θi . Note the twin primes 1019 and 1021 and that 1024 = 210.



Information and Structure

The Riemann spectrum holds
the key to the position of prime
numbers on the number line.

What even deeper structure of
primes can they reveal to us?



Riemann

Figure: Bernhard Riemann (1826–1866)

Figure: From Riemann’s 1859 Manuscript



William

https://vimeo.com/90380011

Figure: William

https://vimeo.com/90380011

