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ABSTRACT

We present a survey of the state of two problems in mathematics and computer science:
factoring integers and solving discrete logarithms. Included are applications in cryptography,
a discussion of algorithms which solve the problems and the connections between these algo-
rithms, and an analysis of the theoretical relationship between these problems and their cousins
among hard problems of number theory, including a new randomized reduction from factoring
to composite discrete log. In conclusion we consider several alternative models of complexity
and investigate the problems and their relationship in those models.



ACKNOWLEDGEMENTS

Many thanks to William Stein and Salil Vadhan for their valuable comments, and
Kathy Paur for kindly reviewing a last-minute draft.

ii



Contents

1 Introduction 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Computational Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.3 Modes of Complexity and Reductions . . . . . . . . . . . . . . . . . . . . . . . .6
1.4 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Applications: Cryptography 10
2.1 Cryptographic Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.1.1 RSA encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.1.2 Rabin (x2 mod N ) Encryption . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Diffie-Hellman Key Exchange . . . . . . . . . . . . . . . . . . . . . . . .16
2.1.4 Generalized Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . . .17
2.1.5 ElGamal Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.1.6 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . . . . . .18

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3 The Relationship Between the Problems I – Algorithms 20
3.1 Background Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.1.1 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.1.2 Subexponential Complexity . . . . . . . . . . . . . . . . . . . . . . . . .21

3.2 Standard Techniques Applied to Both Problems . . . . . . . . . . . . . . . . . . .21
3.2.1 Pollard’sp− 1 method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Pollard’s rho Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3.3 The Elliptic Curve Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.4 Sieving Methods for Factoring . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.4.1 The Rational Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.4.2 The Continued Fraction Method . . . . . . . . . . . . . . . . . . . . . . .31
3.4.3 The Quadratic Sieve . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
3.4.4 The Number Field Sieve and Factoring . . . . . . . . . . . . . . . . . . .33

3.5 Sieving for Discrete Logarithms . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.5.1 The Index Calculus Method . . . . . . . . . . . . . . . . . . . . . . . . .36
3.5.2 The Number Field Sieve and Discrete Log . . . . . . . . . . . . . . . . . .37

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

4 The Relationship Between the Problems II – Theoretical 40
4.1 Composite Discrete Log implies Factoring . . . . . . . . . . . . . . . . . . . . . .40
4.2 Factoring and Prime DL imply Composite DL . . . . . . . . . . . . . . . . . . . .45
4.3 Generalized Diffie-Hellman modN implies Factoring . . . . . . . . . . . . . . . . 48

iii



5 Alternative Computational Models 51
5.1 Generic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

5.1.1 Generic Discrete Log Algorithms . . . . . . . . . . . . . . . . . . . . . .51
5.1.2 Generic Algorithms and Factoring . . . . . . . . . . . . . . . . . . . . . .54

5.2 Quantum Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
5.2.1 The Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
5.2.2 The Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.3 Oracle Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
5.3.1 Oracle Complexity of Factoring . . . . . . . . . . . . . . . . . . . . . . .59
5.3.2 Oracle Complexity of Discrete Log . . . . . . . . . . . . . . . . . . . . .61

iv



1. Introduction

Problem 1.1 (Factoring) Given a positive composite integerN , to find an integerx, with 1 < x <
N , such thatx dividesN .

Problem 1.2 (Discrete Logarithm) Given a prime integerp, a generatorg of (Z/pZ)∗, and an
elementy ∈ (Z/pZ)∗, to find an integera such thatga = y.

In the recent history of applied mathematics and computer science, the two problems above have
attracted substantial attention; in particular many have assumed that solving them is sufficiently
difficult to base security upon that difficulty. This paper will analyze these two relevant problems
and consider the relationships between them.

The first is the problem of finding the prime factorization of an integerN , considered particu-
larly in the most difficult and relevant case whereN = p · q for large primesp andq. The second is
the discrete logarithm problem (or just “discrete log”), to find, given an elementy of a ring(Z/pZ)∗

constructed by raising a generatorg to a secret powera (that is,y = ga mod p), the logarithma.
Both problems are challenges of inversion. New problem instances are trivial to create easily, by

the easy tasks of multiplying integers or modular exponentiation respectively, but neither of these
tasks has yet admitted an efficient method of being reversed, and this property has led to the recent
interest in these problems.

From a pure mathematical perspective, neither problem is impossible to solve definitely in a
finite amount of time (and such problems certainly exist, e.g., the halting problem of computational
theory or Hilbert’s 10th problem—finding integer solutions to diophantine equations). Both fac-
toring and solving a discrete logarithm can be accomplished with a finite search, through the

√
N

possible divisors and thep− 1 possible exponents respectively.
However, in the real world, such solutions are unacceptably inefficient, as the number of algo-

rithmic steps required to carry them out is exponential in the size of the problem. We mean this
as follows: to write down the integerN in binary takeslog2N bits, so we say that the size ofN
is n = log2N . To find a factor ofN by the trivial method described already will takeN1/2 trial
divisions, or on the order(2n)1/2 = (

√
2)n steps, which is exponential inn, the size of the problem.

The research I will consider in this thesis is on the efforts to improve upon these solutions. The
ultimate goal of such efforts would be to find a solution which runs in time polynomial inn, but as of
yet no such solutions have been discovered, and much of cryptography is based on the assumption
that no polynomial time solutions exist.
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2 CHAP. 1. INTRODUCTION

1.1 Notation

Because we have a mixed audience of mathematicians and computer scientists, it will be worth a
few extra sentences about some notation conventions and some facts we will assume without proof.

• When in the context of algorithm input or output, the symbol1k (sim. 0k) represents a string
of k 1’s (0’s) over the alphabet{0, 1}. It does not indicate ak-fold multiplication.

• Vertical bars| · | are generally abused herein, and will have one of the following meanings
determined by context. IfX is a set, then|X| is the number of elements inX. If x is a bit
string, or some other object encoded as a string, then|x| is the length of the string in bits;
specifically ifN is an integer encoded as a bit string, then|N | = dlog2Ne. If a is a real
number not in the context of string encoding, then|a| is the absolute value ofa (this is used
rarely).

• We also will be liberal about our use of the symbol←. In the context of an algorithm, it
is an assignment operator. Thus the statementx ← x + 1 means “incrementx by 1” as

an instruction. IfS is a set, we writex
R←− S or sometimes justx ← S to say thatx is

an element ofS chosen uniformly at random. IfM is a distribution (that is, a setS and a
probability measureµ : S → [0, 1] such that

∑
s∈S µ(s) = 1), thenx←Mmeans to choose

x out of S according toM so that the probability for any particulars ∈ S that x = s is
µ(s). When we wish to presentM explicitly, we will often do it by presenting a randomized
algorithm which chooses an element; the setS and the measureµ is then implicitly defined
by the random choices of the algorithm.

• For any integerN , Z/NZ (the integers moduloN ) is the set of equivalence classes of the
integers under the equivalence relationa ∼ b ⇐⇒ N | a − b. (Z/NZ)∗ is the group of
units ofZ/NZ; equivalently, the group of elements ofZ/NZ with multiplicative inverses;
equivalently, the set{a ∈ Z : gcd(a,N) = 1} modulo the above equivalence relation.

• π(N) is the number of positive primesp ≤ N . We knowπ(N) ∼ N/ logN for largeN .

• φ(N) is the Euler phi-function (or totient function), whose value is the number of integers
0 < a < N relatively prime toN , i.e.,φ(N) = |(Z/NZ)∗|. For p primeφ(p) = p − 1;
for p, q relatively primeφ(pq) = φ(p)φ(q); and it is known thatφ(N) ≥ N/6 log logN for
sufficiently largeN .

1.2 Computational Complexity Theory

The broader goal of this paper is to consider (a small aspect of) the questionhow much “hardness”
exists in mathematics?Over the past decades we have built real-world systems, several of them
to be discussed later, which rely on the hardness of mathematical problems. Are these hardnesses
independent of one another, or are they simply different manifestations of a single overriding hard
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problem? If an efficient factoring algorithm were found tomorrow, how much of cryptography
would have to be thrown out? Only those cryptosystems which rely specifically on the intractability
of factoring, or others as well?

One goal of complexity theory is to think about ways to sort mathematical and computation
problems into classes of difficulty, and thus take steps towards understanding the nature of this
hardness. In order to provide a backdrop for the discussion of our two problems, we first present a
brief introduction to the basics of complexity theory.

Though some would strongly object in general, for our purposes the specific model of computa-
tion is not particularly important. To be perfectly specific, we would want to build up the theory of
computation and Turing machines to provide a very rigorous definition of “algorithm,” and to some
degree we will do so here in order to support specific results which are particularly relevant to the
main thread of this paper.

For our purposes, analgorithm is any finite sequence of instructions, or operations, which may
take finite input and produce finite output. In different settings, we will both describe the operations
of a given algorithm explicitly, and implicitly consider such an algorithm. The complexity of a given
algorithm is the number of operations performed as a function of the length of the input expressed
as a string in some alphabet. For brevity of description, we often specify the input of an algorithm
as a member of some arbitrary set, with the implicit understanding that such input can be encoded
as a string over the binary alphabet{0, 1}, and over this alphabet is its length considered. This
understanding is intuitively unproblematic for any countable input set we might want.

We also will sometimes express the output of an algorithm as an element of an arbitrary set,
and we do so with the implicit understanding that forcing algorithms to output a single bit{0, 1} is
sufficient to express all algorithms of finite output—to outputn bits, specify ann-tuple of algorithms
each providing a bit of the output. For the initial stages of developing this theory, we will consider
such algorithms which output only single bits.

Definition 1.3 A languageis a set of strings over the alphabet{0, 1}.

As discussed, most any interesting collection of mathematical objects can be considered to be a
language.

Definition 1.4 A languageL is decidedby an algorithmA if A outputs1 on inputx ∈ L andA
outputs0 on inputx 6∈ L.

Definition 1.5 An algorithmA is polynomially bounded if there exists a polynomial functionp(x)
such that whenA is run on inputx it outputs a value after no more thanp(|x|) operations. Recall
that |x| denotes the length ofx in bits.

In this paper we apply the word “efficient” to algorithms with the same meaning as “polyno-
mially bounded.” We also use the word “feasible” to describe a problem for which there exists an
efficient algorithm solving it.

For the sake of example, and to facilitate discussion of several results and relevant applications
of the discrete log problem, we present a useful and efficient number theoretic algorithm for a
problem which at first glance can appear daunting.
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Proposition 1.6 There exists a polynomial-time algorithm to compute the modular exponentiation
am mod n, wherea,m, n ∈ Z.

Proof . Consider the following algorithm:

MODEXP(a,m, n):

1. Writem in binary asm = B`B`−1 · · ·B1B0.

2. SetM0 = m, and for eachi = 1, . . . , `, letMi = M2
i−1 mod n.

3. Output
∏

i:Bi=1

Mi (working modn).

The successive squaring requires` = log2(m) multiplications, and the final multiplication of
the powers corresponding to the on bits ofm requires at most̀ more multiplications. Therefore the
algorithm is clearly efficient, with operations bounded by a polynomial in|m| < |(a,m, n)|.

Note that without working modulon, there isno efficient algorithm for computing exponenti-
ation in general—just giving an algorithm to write down2n (which haslog 2n = n binary digits)
would require at leastn steps, which is not polynomially in the length of the input.

The collection of languages which are decided by efficient algorithms earns substantial attention
from theoretical computer scientists, and is given the nameP.

Definition 1.7 A language isin P if it is decided by a polynomially bounded algorithm.

In addition toP, there is another common class of decidable languages often studied by com-
puter scientists, calledNP. There are several equivalent ways of expressing membership inNP,
but the key feature is thatNP contains languages decided bynon-deterministicalgorithms. But
what is such a thing? So far we have only allowed algorithms to perform specified operations; now
we must also allow algorithms to make random choices. There are several ways to formulate this,
for our purposes we will give the algorithm access to an “oracle” which flips a fair coin;A thus has
a source of truly random bits which we assume to be entirely separate fromA.

To be able to think ofA’s operations in a functional sense, we denoteA(x; r) as the output ofA
on inputx if the random oracle gives it the sequencer of coin tosses. We require that the algorithm
terminate after a finite number of steps regardless of the random choices, and we say that such an
algorithmA decides a language if for everyx ∈ L, there is some sequencer such thatA(x; r) = 1
and for everyx 6∈ L, for all r we haveA(x; r) = 0. The notationA(x) thus stands for a random
variable over the probability space of possibler, or “over the coin tosses ofA.”

Definition 1.8 A language isin NP if it is decided by a polynomially bounded nondeterministic
algorithm.

Though the above is standard, we give another equivalent characterization that will be more
helpful for our purposes, thatNP is the class of languages which have concise, easily verifiable
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proofs of membership. That is to sayL ∈ NP if there exists another languageW ∈ P and a
polynomialp such that

x ∈ L ⇐⇒ there exists (x,w) ∈W with |w| < p(|x|)

The elementw is called the witness, or proof. Its conciseness is captured in the requirement
|w| < p(|x|), so that the length of the proof is bounded by a polynomial in the length of the thing
being proved, and the easy verification is captured in the condition thatW ∈ P.

Problem 1.9 DoesP = NP?

This open problem remains one of the central questions of theoretical computer science. Of
course, the answer is widely believed to be no. The crux of the equation lies in the so-calledNP-
complete problems,NP problems to which all other problems inNP reduce. Ifanyof these prob-
lems were shown to be inP, thenP = NP would follow. We can thus identifyNP-completeness
as a single independent “hardness,” and the manyNP-complete problems as non-independent man-
ifestations of it.

Returning to the problems at hand—as already stated there is no known polynomial time al-
gorithm for factoring integers, so we do not know whether the problem is inP. Also, factoring
integers has neither been shown nor “disshown” to beNP-complete. However, while it is not
really a language, it can be considered anNP problem, with the following characterization:

Proposition 1.10 If P = NP, then there exists a polynomial-time algorithm for factoring integers.

Proof . We begin with a lemma. I claim that the language

L = {(N,x) : N has a positive proper divisor less thanx}

is inNP.
For now, suppose this lemma is true, and thatP = NP. ThenL ∈ P, so letA be a polynomial-

time algorithm which decides it. We can find a factor ofN by doing a binary search usingL:

F(N):

1. InitializeBL = 0, BU = b
√
Nc

2. Repeat the following untilBL = BU :

• LetX = d(BL +BU )/2e.
• Let b = A(N,X).
• If b = 1, setBU = X.

• If b = 0, setBL = X − 1.

3. OutputBL.
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Since the search interval is cut in half on each iteration, we expect the total number of iterations
to be on the order oflog2(N1/2) = 1/2 log2(N), and so the total running time should be on the order
of log2(N) · T (A(N)), whereT is the running time ofA. But we know thatT (A) is polynomial in
|N | = O(log2(N)), thereforeF is polynomial-time as well.

We must now only prove our claim thatL ∈ NP. The witness language is quite easy to find,
since the proof of the existence of a divisor is the divisor itself. Thus

W = {((N,x), y) : 1 < y < x andy dividesN}.

ClearlyW ∈ P, since trial division, or even checking thatgcd(y,N) = y would be very efficient.
The size of the witnessw = ((N,x), y) is no more than twice|(N,x)|, so the proof is certainly
concise, and the definitions easily lead to the condition∃y[((N,x), y) ∈W ] ⇐⇒ (N,x) ∈ L.

We can produce an analogous result for our second problem, discrete logarithm, showing that
this problem shares the same realm ofP vs.NP complexity with factoring.

Proposition 1.11 If P = NP, then there exists a polynomial-time algorithm for evaluating discrete
logarithms over(Z/pZ)∗ as defined in Problem 1.2.

Proof . As above, we begin by proving that a language we would like to use for binary searching is
in NP. Let this language be

L = {(p, g, g1, x) : there exists a non-negative integery < x such thatgy ≡ g1 mod p}.

We can give an easy language of proofs in the same way as above.

W = {((p, g, g1, x), y) : 0 ≤ y < x andgy ≡ g1 mod p}.

The fact thatW ∈ P follows immediately from the fact that modular exponentiation is efficient
(Proposition 1.6); the length of an element ofW is less than twice the length of an element ofL, so
the proofs are concise; lastly the definitions give the equivalence∃(x, y) ∈W ⇐⇒ x ∈ L.

SinceL ∈ NP, the hypothesisP = NP would again yield a binary search algorithm over
all possible exponents in the range0, . . . , p − 1, and checkingL at each stage would be efficient,
yielding an efficient solution of the discrete log problem.

We have therefore succeeded in placing our two problems in the same general difficulty zone—
harder (so far as we know) than being inP, but efficient in the case thatP = NP. Certainly no
equivalence between the two problems follows from this, but as in our binary search algorithms, we
have helpfully narrowed the bounds.

1.3 Modes of Complexity and Reductions

At times we perceive the complexity of an algorithm in different senses: worst-case complexity,
a question of how long we will have to wait to for our algorithm to halt no matter what input we
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give it; and average-case complexity, a question of how long we expect our algorithm to take on a
random input, taking into account a distribution over the possible inputs.

The complexity notion which figures into the distinction betweenP andNP is the former,
worst-case complexity. For example, the factoring problem is not “inP” (quotes because it is not
a language) only because there existsomelarge productspq which are hard to factor. But consider
a random integerx—with probability1/2 we will have2 a factor ofx, and with probability2/3 x
has either 2 or 3 as a factor, etc. Therefore, in theaveragecase over all compositeN , factoring is
not hard.

Similarly, we will often consider reductions between problems. That is, we will make the state-
ment that a solution for problemX implies a solution to problemY , or equivalently, problem
Y reducesto problemX. This statement also has several interpretations. One, analogous to the
“worst-case” complexity notion, is that if we have a polynomial-time algorithmA which always
solves problemX on any input, then we can construct an algorithmB which, given the ability to
callA on any input it chooses (we often sayB has “oracle access toA”), can solve problemY on
any input.

Just as average-case complexity is more relevant to the applications of factoring and discrete log,
for these problems and their cryptographic relatives we are often more interested in an “average-
case,” or aprobabilistic reduction. That is, we suppose that we have an algorithmA which solves
problemX with probabilityε—taken over some distribution of problem instances and the random-
ness ofA. Then we wish to construct an algorithmB which, given oracle access toA, can solve
problemY with probabilityδ, whereδ is polynomially related toε.

We must therefore be more precise about how we want to consider the difficulty of factoring.
An important first step is to establish a distribution of problem instances. We will do this by defining
the distributionFk of k-bit factoring instances for anyk to be the random output of the following
algorithmF on input1k.

F(1k):

• Select twok-bit primesp andq at random.

• OutputN = p · q.

Example. For example ifk = 3, then the onlyk-bit primes are5 = 1012 and7 = 1112. It follows
thatFk has the three possible outputs5 · 5 = 25, 5 · 7 = 7 · 5 = 35, and7 · 7 = 49, which occur
with probability1/4, 1/2, and1/4 respectively. Naturally, for largerk the size of the distribution
space is substantially larger. �

We now give an average-case version of the factoring problem:

Problem 1.12 (Factoring with probability ε) Given a functionε = ε(k), to give a probabilistic
polynomial-time algorithmA such that for allk

Pr[A(X) is a factor ofX] ≥ ε(k),
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where the probability is taken over allX
R←− Fk and the coin tosses ofA.

We can construct a parallel definition for the discrete log problem, defining the following in-
stance generator. We letDk = D(1k) be the random output of the following algorithm on input
1k.

D(1k):

• Select ak-bit primep at random.

• Select at random a generatorg of (Z/pZ)∗.

• Select a randoma ∈ Z/(p− 1)Z, and calculatey = ga mod p.

• Output(p, g, y).

The corresponding probabilistic problem can be formulated in terms of this distribution:

Problem 1.13 (Solving discrete logarithm with probability ε) Given a functionε = ε(k), to give
a probabilistic polynomial-time algorithmA such that for allk

Pr[gA(p,g,y) mod p = y] ≥ ε(k),

where the probability is taken over all(p, g, y)← Dk and the coin tosses ofA.

1.4 Elliptic Curves

Elliptic curves appear in most of the sections of this paper in one form or another, both in the
creation of and in the attacks upon the cryptographic applications we demonstrate for factoring and
discrete log. Indeed, elliptic curves find interactions with both problems, and so here we present a
minimal development of the basics of elliptic curves. For a more thorough treatment, consider any
of the books by Silverman and Tate: [47], [48], [49].

We consider here only elliptic curves over finite fields, for example over the fieldFp for p
prime. Such an elliptic curve is defined by two field elementsa, b which are used as coefficients in
the equationy2 = x3 + ax+ b, such that the discriminant4a3 + 27b2 6= 0. We denote1 this curve
asEa,b, or when not ambiguous simplyE, and we define the set of points on the curve over a field
K byE(K). For reasons arising in the algebraic geometry used to construct these curves formally,
we define this set of points as a subset of the projective planeP2(K) over the field, which consists
of equivalence classes of non-zero ordered triples(x, y, z) ∈ K3, with two triples equivalent if one
is a constant multiple of another. The equivalence class of(x, y, z) is denoted(x : y : z). We then
define

E(K) = {(x : y : z) ∈ P2(K) : y2z = x3 + axz2 + bz3}. (1.1)

The only point onE with z 6= 1 is the point at infinity,(0 : 1 : 0), denoted byO, which satisfies
the elliptic curve equation for alla andb. The pointO has an important role when we note that

1The notation is in accordance with Lenstra’s paper [25], and later (section 5.3.1), Maurer’s paper [27].
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E(K) has an abelian group structure, with additive identityO. This claim specifies the group law
completely whenz 6= 1, for the other elements we can consider the normal picture ofE as a curve
in thex, y-plane and define the group law geometrically as follows: for two pointsP andQ onE,
draw the line connecting them and find the third point where this line meetsE.

Define−(P +Q) to be this point, and then(P +Q)

P

Q


–R

R

Figure 1.1: Adding points:P +Q = R.

is the reflection in thex-axis of this third point. This
addition can be carried out efficiently (say, by a com-
puter), with the following algebraic manifestation. If
P = (x1 : y1 : 1) andQ = (x2 : y2 : 1), let m =
(y2−y1)/(x2−x1) if P 6= Q andm = (3x2

1+a)/2y1 if
P = Q. (m is the slope of the line between the points);
let n = y1 = mx1. We then defineP +Q as the point
R = (x3 : y3 : 1) with x3 = m2 − x1 − x2 and
y3 = −(mx3 + n). This can be seen geometrically in
Figure 1.1.

We will also need to consider elliptic curves over
Z/NZ instead ofFp, even though we do not have a
field. We can construct an analogous domainP2(Z/NZ)
as the set of orbit of

{(x, y, z) ∈ (Z/NZ)3 : x, y, z generate the unit ideal ofZ/NZ}

under the action of(Z/NZ)∗ by u(x, y, z) 7→ (ux, uy, uz). As before, we denote the orbit of
(x, y, z) by (x : y : z). We can then defineEa,b(Z/NZ) exactly as in equation (1.1) by replacingK
with Z/NZ. The group structure will hold provided that the discriminant6(4a3+27b2) is relatively
prime toN ; only in that case to we actually callE = Ea,b anelliptic curve. We leave until section
3.3 a more thorough discussion of addition of points on such a curve, since the fact thatN is not
prime raises complications which Hendrik Lenstra [25] demonstrated can be exploited to factorN .
Furthermore, in section 5.3.1, we show how Ueli Maurer [27] used Lenstra’s technique to bound the
complexity of factoring in a specific complexity model.



2. Applications: Cryptography

As already discussed, these problems are only interesting from a real-world perspective. Solving
them mathematically is not difficult in the strongest sense, since algorithms exist to do just that. Our
interest is in measuring the degree of difficulty of implementing such solutions, and for the security
of the cryptographic applications presented in this section we rely on the assumption that this degree
is very high.

There are two standard ways to present cryptography: the first is to demonstrate independent
secure protocols, and the second is to establish definitions of secure cryptographic primitives and
then work towards creating specific objects which satisfy the definitions. Both methods make broad
reliance at times on the assumptions that factoring and/or discrete log are difficult.

2.1 Cryptographic Protocols

We begin with public-key encryption. Though the idea of public-key cryptography is relatively re-
cent, the idea of encryption has been around for centuries, and is the canonical task of cryptography,
though not the only one.

Definition 2.1 A public-key encryption schemeconsists of three algorithms:

1. a randomized key generation algorithmGen(1k) which takes as input the numberk encoded
in unary as ak-bit string of all 1s, and produces a pair of keysPK, which is made public,
andSK which is kept secret;

2. a randomized encryption algorithmEnc which, given the public keyPK and a messagem
produces a ciphertextc;

3. a deterministic decryption algorithmDec which, given the secret keySK and a ciphertextc
returns the original messagem.

Attached to the scheme is a message spaceM, which may be allowed to vary according to the
public keyPK. To be a correct encryption scheme, we require thatDecSK(EncPK(m)) = m for
all m ∈M and for all pairs(PK,SK) which can be generated by the key generation algorithm.

We can think of the key generation algorithm, which takes the1k argument (called thesecurity
parameter), as analogous to the instance generators discussed in the preceding chapter for hard

10
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problems. To feel secure in these encryption schemes, we want to make them unbreakable for the
averageinstance (or key), and not just for some particularly difficult keys. Therefore the following
definitions can serve for our model of security.

Definition 2.2 (Breaking an encryption scheme with probabilityε) Given a functionε(k), a prob-
abilistic polynomial-time algorithmA with single-bit output breaks a public-key encryption scheme
(Gen,Enc,Dec) with probabilityε if for anyk, and any two messagesm0,m1 ∈M∣∣∣∣ Pr[A(PK,EncPK(m0)) = 1]− Pr[A(PK,EncPK(m1)) = 1]

∣∣∣∣ ≥ ε(k)
the probability taken over all(PK,SK)← Gen(1k) and the coin tosses ofA.

Intuitively, the definition connects breaking the scheme to the goal ofdistinguishingbetween
two different messages. We can think of the goal ofA as to output0 or 1 indicating that it thinks it
sees an encryption ofm0 orm1 respectively (although the definition is stronger, and actually allows
A to attempt to guess any Boolean function ofm0 andm1).

Note that whileA must be able to distinguish over a random choice of the key, it may select the
messages which will be distinguished ahead of time—this models the fact that an adversary may
have external information about the distribution on the message space, and may even know that the
secret message is one of only two possible values.

Definition 2.3 (Negligible function) A functionδ : Z → [0, 1] is negligible if, for any polynomial
p(x), there exists ak0 such that fork > k0, δ(k) < 1/p(k). That is,δ goes to 0 faster thanp(x)−1

for any polynomialp.

The most common candidate isε(k) = 2−k, which is clearly negligible.

Definition 2.4 (Security) A public key cryptosystem issecureif there does not exist a probabilistic
polynomial-time algorithm which breaks it with probabilityε(k), for ε a non-negligible function.

The definition of security as negligible indistinguishability is actually very strong compared to
other possible definitions; in general cryptography tends toward such conservative positions. For
the purposes of relating the protocols to factoring and discrete log, we will be satisfied with weaker
and more intuitive properties, such as

• An encryption scheme isinsecureif exists an efficient algorithmA which, givenPK and
EncPK(m), can recoverm with high probability over allm, PK.

• An encryption scheme isinsecureif there exists an efficient algorithmA which givenPK,
can recoverSK with high probability over all pairs(PK,SK).
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2.1.1 RSA encryption

The RSA method, generally the most well-known and commonly used public-key cryptosystem,
was developed in 1976-77 by Rivest, Shamir, and Adelman at MIT’s Laboratory for Computer
Science. It was first seen in print in 1978 [43], but not until after Rivest and MIT worked out a deal
with the National Security Agency to allow the new method to be presented. Whether or not this
suggests that the NSA had previously discovered the technique, it has been recently declassified that
the British cryptographer Clifford Cocks had discovered a similar method as early as 1973 [7], but
the finding was classified by the UK Communications-Electronics Security Group.

The scheme of Rivest, Shamir, and Adelman is as follows. Key pairs are generated by theGen
algorithm:

Gen(1k):

1. Select randomk-bit prime numbersp andq, and letN = p · q.
2. Select at randome < φ(N) so thatgcd(e, φ(N)) = 1.

3. Solveed ≡ 1 (mod φ(N)) for d.

4. OutputPK = (N, e);SK = (N, d).

The space of possible messages for a given public key(N, e) is all integersm ∈ (Z/NZ)∗, and the
encryption operates as follows:

Enc(N,e)(m): Outputme mod N .

Decryption for RSA is the same operation as encryption, using the secret key as the exponent instead
of the public one.

Dec(N,d)(c): Outputcd mod N .

Proof of correctness.We first prove that the key generation algorithm is correct. It follows from
elementary number theory thatax ≡ 1 has a solution modulon if and only if a ∈ (Z/nZ)∗.
Therefored can always be found givene with gcd(e, φ(N)) = 1.

As for correct decryption, we rely on Fermat’s Little Theorem, although Fermat certainly never
could have imagined his work would find its way into implementations of secrecy. Fermat’s The-
orem asserts that for anya < N , aφ(N) ≡ 1 mod N. For RSA, we haveDecSK(EncPK(m)) =
(me)d = med. But we know by construction thated = k · φ(N) + 1 for an integerk, therefore
med = m · (mφ(N))k = m.

Since the only operation of the encryption and decryption functions is modular exponentiation,
we know that these functions are polynomial time by Proposition 1.6.

We also note that the RSA encryption algorithm given here is deterministic—this actually leads
to problems (such as the ability to recognize when the same message is sent twice) which make so-
called “Plain RSA” insecure under our indistinguishability criterion, for an algorithm given access
toPK can easily generate his own encryptions ofm0 andm1, compare them to the ciphertext input,
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and know which message he is seeing. Nevertheless, this is the canonical theoretic version of the
RSA method, and incorporating random padding into the message is a painless and common way
of overcoming the determinism problem.

Examining the algorithm, we see that the public key consists of a random numbere, and the
composite modulusN = pq, which is distributed according toFk. Since, if we already knowe,
the knowledge ofp andq would allow an adversary to simulate the operation of theGen algorithm,
clearly the secret keySK is no more secret thanp andq themselves. This gives us the following
result.

Proposition 2.5 If there is an efficient algorithm for factoring integers with high probability, then
an efficient algorithm exists to recover RSA keys with high probability. Therefore in this event, RSA
is insecure.

In fact finer arguments can be made: RSA is insecure ifφ(N) can be computed fromN with
high probability overN ← Fk, or if eth roots can be extracted over(Z/NZ)∗. But fundamentally,
the structure of RSA keys links its security to the factoring assumption, since these other goals
reduce to factoring.

Our proposition tells us that breaking RSA isno moredifficult than factoring, but we do not
have the desirable converse statement that RSA is in factno easierto break than factoring, the sort
of claim that the marketers of any cryptosystem would love to make.

Even without this claim, however, the RSA method is the most prevalent public-key cryptog-
raphy system in commercial use today. Early uses of the method were rare after MIT patented the
technique in 1983 and granted the only license to the RSA Security company. At that point acquiring
licenses to use the algorithms were extremely expensive. However RSA released the algorithms into
the public domain in September 2000, just a few weeks before their patent would expire. Now RSA
is used for many applications, including the common privacy software package PGP (Pretty Good
Privacy), the Internet Secure Socket Layer protocol (SSL), and the Secure Electronic Transactions
(SET) protocol used by major credit card companies.

Since RSA is no more difficult that factoring integers, if that problem were found to be tractable
the damage to existing cryptosystems would be substantial.

2.1.2 Rabin (x2 mod N ) Encryption

As we saw above, RSA is broken if factoring is lost as a hard problem, but we cannot yet prove
that nothing less than factoring will cause its collapse. Just a few years after RSA was published,
Michael Rabin, also at MIT, proposed a new method [40], similar to RSA, but whichwas able
to make this claim. He showed that not only does breaking his scheme reduce to factoring, but
vice-versa.

The structure of the key generation and encryption functions is strongly reminiscent of what we
have just seen, but by using a fixed encryption exponente = 2, Rabin’s scheme not only decreases
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the computational workload of the actual encrypting machines, but allows the expanded theoretical
knowledge surrounding quadratic residues in finite fields to bring the desired provable results.

The tradeoff is a more complex decryption routine, for we know already that sincegcd(2, φ(pq))
will never be 1, there is no decryption exponentd which will undo the squaring operation as is
possible in RSA. However, sufficient mathematical work has been done on the topic of quadratic
residuosity to deal with this problem.

Definition 2.6 The quadratic residue symbol
(
a
p

)
has value+1 if a is a square in(Z/pZ)∗, and

value−1 if a is a non-square in(Z/pZ)∗. If a ≡ 0 mod p, we say
(
a
p

)
= 0.We extend the definition

to
(

a
n

)
for n composite by the formula

(
a

p1p2···pk

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a
pk

)
.

Elementary number theory gives us the following facts:

i.
(
ab

p

)
=

(
a

p

)(
b

p

)
ii.

(
a

p

)
= a

p−1
2 mod p (2.1)

This second fact gives us the following result which will become most helpful when we wish to
decrypt, that is, to take square roots modN :

Proposition 2.7 Let p be a prime such thatp ≡ 3 mod 4. Then there is an efficient algorithm
which, given

(y
p

)
= +1, generatesx such thatx2 ≡ y mod p.

Proof . Let x = y(p+1)/4 mod p. Thenx2 = y(p+1)/2 = y1+(p−1)/2 = y ·
(y
p

)
= y. Since modular

exponentiation is efficient, this algorithm is efficient.

Of interest however, is that there is no efficient deterministic algorithm known to generate a
square root ofy modulop ≡ 1 mod 4, although there is an efficient randomized one. Because of
this, and because we require an unambiguous way of distinguishing between the 4 square roots of
an quadratic residue modN , the typical implementation of Rabin’s encryption is the Blum variant,
where the primesp andq satisfyp ≡ q ≡ 3 mod 4. (IntegersN = pq composed of such primes are
called Blum integers.)

Definition 2.8 TheRabin public-key encryption schemeis composed of the following 3 algo-
rithms:

Gen(1k):

1. Selectk-bit prime numbersp andq with p ≡ q ≡ 3 mod 4.

2. ComputeN = p · q.
3. OutputPK = N ; SK = (p, q).

Like RSA, the message space for a given public keyN is all integersm ∈ (Z/NZ)∗.

EncN (m): Outputm2 mod N .
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To decrypt, use the secret factors ofN to find roots modulop, q, which we know can be done
efficiently, then combine those roots into a root moduloN using the Chinese Remainder Theorem.

Dec(p,q)(c):

1. Find xp such thatx2
p ≡ c mod p.

2. Find xq such thatx2
q ≡ c mod q.

3. Use Chinese Remainder Thm. to find an integerx such thatx ≡ xp mod p and
x ≡ xq mod q.

Here we run into the problem of ensuring thatDec ◦Enc is in fact the identity map, which is
the problem of making sure that when using the Chinese Remainder Theorem to constructx, the
Dec algorithm chooses the samex which was actually encrypted. The fact thatp ≡ q ≡ 3 mod 4
ensures that this is possible through the following observation.

Lemma 2.9 If N = pq andp ≡ q ≡ 3 mod 4, any quadratic residuey ∈ (Z/NZ)∗ has a unique
square rootx with the properties that

(
x
N

)
= +1, andx < N/2 when lifted into{0, . . . , N − 1}.

Proof . By (2.1-ii), we can determine that whenp ≡ 3 mod 4, we have
(−1

p

)
= (−1)(p−1)/2 = −1,

therefore−1 is not a square modulop. By (2.1-i), it follows that for anya, exactly one ofa and−a
is a quadratic residue modulop. Therefore when we find the square roots ofy modN , and we first
find the two rootsu1, u2 = −u1 of y modp and the two rootsv1, v2 = −v1 of y modq, exactly one
of u1 andu2 is a square, and exactly one ofv1, v2 is a square. Without loss of generality, let us say
the squares areu1 andv1.

By the definition of the quadratic residue symbol,
(

a
N

)
= +1 if and only if

(
a
p

)
=

(
a
q

)
6= 0.

Therefore if we label the 4 square roots ofy mod N by xij , each corresponding to the inte-
ger computed by the Chinese Remainder Theorem on the pair(ui, vj), we know thatx11 and
x22 have quadratic residue symbol+1 mod N , but x12 and x21 do not. We also know that(−1

N

)
=

(−1
p

)(−1
q

)
= (−1)(−1) = +1. It follows that since one of thexij must be−x11, it

must be the one with the same quadratic residue symbol. Thus we must havex11 = −x22. It fol-
lows that ofx11 andx22, the two square roots ofy with

(
x
N

)
= +1, only one is less thanN/2 (under

the canonical lift into{0, . . . , N − 1}). This proves the lemma.

It follows that the encryption scheme can be made unambiguous by requiring messagesm to
satisfy

(
m
N

)
= +1 andm < N/2. Both properties can be efficiently tested for a givenm andN

(the first by using quadratic reciprocity). When decrypting, our algorithm will actually find all 4
roots, then return the only root with these properties, and will therefore always recover the original
message.

The security of Rabin’s scheme rests on the inability of an adversary to calculate square roots
moduloN without knowing the factorization ofN .

Proposition 2.10 Breaking Rabin’s scheme and factoring are of equivalent difficult, in the sense
that each reduces to the other. More specifically, if an algorithmA exists which decrypts Rabin
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ciphertexts with probabilityε, an algorithmA′ exists which solves the factoring problem (Prob.
1.12) with probabilityε/2.

Proof . One direction is trivial : if we can factorN , then given the public key we can determine the
secret key, and clearly the scheme is broken by possession of the secret key.

For the second direction, we employ some randomness in our construction ofA′.

A′(N):

1. Selectu 6= ±1 at random from(Z/NZ)∗.

2. Calculatey = x2 mod N .

3. Calculatev = A(N, y).

4. Outputgcd(u− v,N).

Suppose thatA was successful in decrypting the ciphertexty, that is to say it returned an element
whose square isy (a possible message for whichy is the ciphertext). Then we haveu2 ≡ v2 mod N ,
or (u−v)(u+v) ≡ 0 mod N . If we haveu 6= ±v, it follows thatN divides this product but neither
of the factors. Thereforegcd(u− v,N) will be a proper factor ofN . Consider the probability that
u = ±v given thatu2 = v2 in the above algorithm. Sinceu is randomly selected, it will be
uniformly distributed over the 4 square roots ofv2 moduloN no matter whichv is returned by
A. ThereforePr[u 6= ±v] = 1/2. So ifA is successful with probabilityε, A′ is successful with
probabilityε/2.

2.1.3 Diffie-Hellman Key Exchange

Though we present it after RSA and Rabin’s schemes, the method of Diffie and Hellman is actu-
ally considered the first example of public-key cryptography. Their landmark paper in 1976 “New
Directions in Cryptography” [14] was the first to propose that a secure cryptosystem might allow
some parameters to be made public.

The goal of the Diffie-Hellman protocol is not directly encryption, although it can be extended
to support encryption. Its purpose is to perform asecure key exchange, a protocol by which two
parties can agree upon a secret key over an insecure channel. The key can then be used as the secret
key in a symmetric-key encryption scheme, but is more often used for the purpose of authentication.
It is also the least complicated and most prevalent example of assuming the difficulty of the discrete
log problem for security.

The protocol operates as follows: Let the two parties be Alice and Bob. They agree, in the open,
upon a primep and a generatorg of (Z/pZ)∗. Alice chooses a randoma ∈ (Z/pZ)∗ and computes
κA = ga mod p. Bob similarly choosesb ∈ (Z/pZ)∗ and computesκB = gb mod p. They then
send these values to one another over an insecure channel. Alice, upon receivingκB, computes
KA = κa

B; Bob similarly computesKB = κb
A. It follows that

KA = (κB)a = (gb)a = gab; KB = (κA)b = (ga)b = gab,
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so the two parties have indeed agreed on the same key.
To say that an adversary, observing this exchange, is unable to figure out the key, reduces to

what is called the Diffie-Hellman Computation problem, which states that no efficient adversary is
able to computegab in (Z/pZ)∗ given ga andgb (as well asg andp). In fact, usually a stronger
problem is assumed, which states that not only can an adversary not determine the key, but he cannot
even identify it if it is shown to him. This problem, the Diffie-Hellman Decision problem, states
that no efficient algorithm can distinguish between a triple of the form(ga, gb, gab) and one of the
form (ga, gb, gc) for a randomc.

While the assumption that these problems are difficult is not exactly the same as assuming that
the discrete log problem is difficult, it is clear that if a polynomial-time algorithm for taking dis-
crete logs were to be discovered, both of the Diffie-Hellman problems would immediately become
feasible, and therefore (though we do not define security in this case):

Proposition 2.11 If there exists a polynomial time algorithm to solve the discrete log problem, then
the Diffie-Hellman key exchange is not secure.

2.1.4 Generalized Diffie-Hellman

The above protocol deals with 2 parties agreeing on a key, but we could easily conceive of extending
it to work for k > 2 parties. In this protocol, we have the partiesP1, . . . , Pk, and eachPi selects at
random an elementai from (Z/pZ)∗ (or whatever group with generatorg has been agreed upon),
and computesκi = ga

i . They initially pass around theseκi, and can iteratively compute messages
of the form(I, κI) whereI is a proper subset of{1, . . . , k}, andκI = g(

∏
i∈I ai), and they also

pass around these messages. After enough passing, eachPi will be able to compute the secret key
K = κS = g(

∏k
i=1 ai).

If we want the key to be secure, we wish for the following problem to be infeasible, which we
call the Generalized Diffie-Hellman Problem. Like above, it can be considered computationally or
decisionally; the computational version is to find, giveng a generator of a fixed groupG, and for
some setS, the value ofK = g(

∏
i∈S ai) given access toκI = g(

∏
i=I ai) for any proper subset

I ( S.
Clearly the security of this scheme has the same dependence on the hardness of discrete log that

the 2-party version did, but it will turn out that it also has an unexpected relationship to factoring,
which we will show in Section 4.3.

2.1.5 ElGamal Encryption

We can also harness the hardness of discrete log directly for encryption using the ElGamal public
key cryptosystem [15], given by the following three algorithms:

Gen:

• Select a random primep and a generatorg of (Z/pZ)∗.

• Select a random elementa ∈ (Z/pZ)∗, and computey = ga mod p.
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• OutputPK = (p, g, y); SK = a.

The dependence on discrete log complexity is clear from the keys; if discrete logs were efficiently
computable, the secret key could be immediately deduced from the public key. To encrypt a message
m ∈ Z/pZ with this public key cryptosystem, proceed as follows:

EncPK(m):

• Select a randomb ∈ (Z/pZ)∗.

• Outputc = (gb mod p,m · yb mod p).

The message is therefore padded in a sense byyb = gab, and the random stringb is sent along to
help in the decryption, although it must be sent in the hidden formgb because clearlyb alone would
be enough to extractm from y andm · yb mod p. To decrypt using the secret key,

DecSK(c = (h, z):

• Computeha (note that this isgab), and compute the inverse(ha)−1.

• Outputz · (ha)−1.

It is clear thatz · (ha)−1 ≡ m · gab · g−ab ≡ m, so the decryption is valid.

This cryptosystem has been of substantial importance since the National Institute of Standards
and Technology released the Digital Signature Standard [16], which is based on ElGamal.

2.1.6 Elliptic Curve Cryptography

A method similar to ElGamal can be performed over elliptic curves, and such a technique is accepted
as a variant of the standard Digital Signature Algorithm [20].

Our key generator now selects a primep and two elementsa andb of Z/pZ such that6(4a3 +
27b2) is not divisible byp. It follows thatEa,b given byy2 = x3 + ax+ b is an elliptic curve, and
we can consider the setEa,b(Fp) of ordered pairs(x, y) ∈ (Z/pZ) × (Z/pZ) which satisfy this
equation. We saw in chapter 1 that this set of points has a natural group structure with operations
that can be efficiently computed. Therefore we can easily conceive of creating instances of the
discrete log problem over this group of points.

Our generator is some pointP ∈ E(Fp) with high order, and this is made public as in ElGamal.
Each user of the system creates a secret key which is an integera, computes the pointP1 = a · P
and makes this public. (The group operation on elliptic curves is written additively, but this is the
equivalent toga in ElGamal.) To send the messagem, we encodem as some pointM in E(Fp),
then choose a randomk < p and send the pair(k · P, k · P1 +M).

Decryption is analogous to the previous section: on receipt of the pair(H,Z), we use our
knowledge of the secret keya to compute

Z − a ·H = k · P1 +M − a · k · P = k · (a · P ) +M − a · k · P = M.
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The problem assumed to be difficult for the security of this cryptosystem is specifically that of
computing fromP andP1 = a · P , the powera. In general, this is currently thought to be more
difficult than the discrete log problem in group modulop. In part, this is because our current level
of knowledge about elliptic curves does not give us the same power to exploit the representation of
group elements that we have when those representations are integers. Therefore the best algorithms
available are the so-called “generic” ones, and these algorithms have established lower bounds on
their complexity, which present later (see section 5.1.1).

2.2 Cryptographic Primitives

Theoretical cryptographers often consider the perspective of rigorous definitions rather than indi-
vidual protocols like those listed above. By demonstrating various provable constructions, we can
build such secure objects asone-way functions, pseudo-random generators(introduced by Blum
and Micali in 1982, published in 1984 [3]) andpseudo-random functions(introduced by Goldreich,
Goldwasser, and Micali in 1984, published 1986 [18])

These primitives, particularly the last two—pseudo-random generators and functions— imply
naturally the existence of secure encryption schemes. Given any finite messagem, we know that if
we choose a randomr of the same bit length, the bitwise exclusiver ⊕m completely concealsm
from an information-theoretic perspective (a technique known as the one-time pad). The difficulty
in using this fact for encryption is that in order to decrypt,r must be a secret known by both parties,
and having a key the same length as your message is very restrictive. What these pseudo-random
primitives allow is the creation of a lot of near-random bits from a small number of truly random
ones. Pseudo-random generators are a way of creating a long sequence of near-random bits from a
short secret “seed” which is the shared key; pseudo-random functions allow shared randomness of
arbitrary size as well, where the shared key is parameters into some family of functions which are
indistinguishable from a random function.

To avoid being either incomplete or unnecessarily lengthy, we avoid presenting these notions
in full. For a complete presentation of cryptography building up these definitions, consider Oded
Goldreich’s book [17].

While the one-time pad is not a number-theoretic cipher on its own, the constructions of the
pseudo-random objects which generate these pads are often based on assumptions of number-
theoretic difficulty. Along this line, Naor, Reingold, and Rosen [32] demonstrated an efficient
pseudo-random function secure under the difficulty of the Generalized Diffie-Hellman problem
(therefore assuming the difficulty of taking discrete logarithms), and Dedic, Reyzin, and Vadhan
[12] constructed a pseudo-random generator based on the difficulty of factoring.



3. The Relationship Between the
Problems I – Algorithms

3.1 Background Mathematics

3.1.1 Smoothness

We begin by defining a class of integers which are easy to factor. These integers will appear repeat-
edly in the methods that follow, as searching for them by one or another means has proven valuable
towards factoring more difficult integers, and also towards solving discrete logarithms.

Definition 3.1 An integerx isB-smooth if all prime numbers dividingx are less than or equal to
B. An integerx isB-powersmoothif all prime powers dividingx are less than or equal toB.

Since we intend to search for these values, it will serve us to present some analysis of their
frequency. We define the de Bruijn functionψ(x,B) as the number ofB-smooth positive integers
less than or equal tox. Following Wagstaff [50], fort ∈ [0, 1] andx > 2 define

p(x, t) = Pr
0<N≤x

[the largest prime factor ofN is less thanxt],

the probability taken over all positiveN ≤ x. It follows thatp(x, t) = ψ(x, xt)/x. DefineF (t) =
limx→∞ p(x, t), the Dickman function, after the mathematician who gave, in 1930, the following
heuristic argument that this limit exists for allt.

Considers in the interval0 < s < 1. For anyx, the number of integers whose largest prime
factor lies betweenxs andxs+ds for smallds is x · F ′(s) ds. By the prime number theorem, the
number of primes betweenxs andxs+ds is (see [50] p. 55)

π(xs+ds)− π(xs) ≈ xs + (lnx)xs ds

lnxs
− xs

lnxs
=
xs ds

s
.

For each of these primesp, the number ofn such thatpn ≤ x andn has no prime factor greater
thanp is the same as the number ofn ≤ x1−s (sincep ≤ xs), whose greatest prime factor is less
thanxs = (x1−s)s/(1−s). But the number of suchn is x1−sF (s/(1 − s)). Therefore, heuristically
we have

x · F ′(s) ds =
xs ds

s
· x1−s F (s/(1− s)).

20
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Thex terms all cancel, and then by integrating we get Dickman’s functional equation

F (t) =
∫ s

0
F

( s

1− s

)ds
s
.

Typically when searching for smooth numbers we will wantt to be very near zero, so we con-
siderρ(u) = F (1/u). It is not hard to derive the functional equationρ′(u) = −ρ(u − 1)/u from
the above functional equation forF . Dickman’s heuristic argument shows thatρ(u) defined by this
equation and the conditionρ(u) = 1 for u ≤ 1 (necessarily alln < x arext-smooth ift ≥ 1) is the
limit limx→∞ ψ(x, x1/u)/x. This theorem was proved rigorously by Ramaswami in 1949 [41].

Playing with the definition ofρ leads to the resultρ(u) < ρ(u − 1)/u for all u > 1, and it has
been shown thatρ(u) is closely modeled byu−u for sufficiently largeu. Thusψ(x, x1/u) ≈ u−u,
and even if we allowu to vary withx, it has been shown that as long asu < (1−ε) log x/(log log x),
the approximation is valid. To approximateψ(x,B), as we will often want to do, we note that if we
let u = (log x)/(logB), we havelnB = lnx/u, soB = x1/u. Thereforeψ(x,B) ≈ xu−u, with
u = (log x)/(logB).

3.1.2 Subexponential Complexity

Though we know of no polynomial time algorithms to solve factoring and discrete log, it would not
be correct to say that all known algorithms haveexponentialrunning times. Several of the modern
methods we present do better than exponential. Although we present for the sake of historical
continuity the exponential algorithms first (the ones Cohen [8] sorts under “Factoring in the Dark
Ages”), here we introduce some standard notation which will facilitate the eventual analysis of the
more modern algorithms.

Definition 3.2 For any0 ≤ α ≤ 1, define the function

Lx[α; c] = exp(c(log x)α(log log x)1−α).

This L function lets us identify running times along the continuum from polynomial to ex-
ponential. For example, an algorithm with running timeLN [0; c] is O((logN)c), and therefore
polynomial time. An algorithm with running timeLN [1; c] is O(N c), so exponential. If an algo-
rithm has running timeLN [α, c] for some0 < α < 1, as we will show for several factoring and
discrete log methods here, it is calledsubexponential.

Because it occurs quite often in multiple roles, we abbreviate one of these such functions simply
byL(x), with the definition

L(x) = Lx[1/2; 1] = exp((log x)1/2(log log x)1/2).

3.2 Standard Techniques Applied to Both Problems

3.2.1 Pollard’sp− 1 method

Our first algorithm for factoring hopes to find a factorp of N by taking advantage of the (possible)
smoothness ofp − 1. The algorithm dates to 1974, and was discovered by John M. Pollard [36],
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a number theorist and cryptographer working for British Telecom (and more recently the 1999
recipient of the RSA Award in Mathematics given by RSA Data Security, Inc. for his contributions
to cryptography).

Proposition 3.3 (Pollard) If N has a prime divisorp such thatp − 1 is B-powersmooth, where
B is bounded by a polynomial inn = logN , thenp can be found efficiently with arbitrarily high
probability.

Proof . The proof of this is Pollard’s algorithm, which operates as follows:

POLLARD(N ):

1. LetQ = lcm(1, 2, . . . , B), whereB is the smoothness bound.

2. Select at random an integerx ∈ (Z/NZ)∗. (Do this by selecting out ofZ/NZ
and checking thegcd(x,N). If gcd > 1, we have a factor.)

3. Computed = gcd(xQ − 1, N). If 1 < d < N , outputd. Else fail.

We assert that the algorithm is correct. For ifp−1 isB-powersmooth, then all its factors divide
Q. Thereforep − 1 | Q. It follows from Fermat thatxQ ≡ 1 mod p, thereforep | xQ − 1. So if
d = gcd(xQ − 1, N), thenp | d.

The algorithm will only fail ifd = N . However in this eventxQ ≡ 1 mod N , which indicates
the boundB, and thereforeQ, was too large, and we can try again with a lowerB.

Consider the running time of the algorithm. The main operations are computingQ and raising
x to the powerQ, and the second dominates the running time. So to analyze this algorithm we
need to consider how largeQ is. We can give the following alternate definition:Q =

∏
p≤B p

e(p)
over all primesp ≤ B, wheree(p) = max{e : pe ≤ B}. SoQ is the product of all the largest
possible powers of primes less thanB. It follows that logQ =

∑
p≤B e(p) log p. Since we could

redefinee(p) = max{e : e log p ≤ logB}, it follows thate(p) log p < logB. ThereforelogQ ≤∑
p logB = π(B) logB = O(B).
So POLLARD performsO(B) modular multiplications, for a total complexity ofO(B logN).

Note that there is an alternate presentation of the algorithm (for example, in [29]) which puts
the weaker requirement onp − 1 that it beB-smooth instead ofB-powersmooth. In this version
Q is constructed the same way over all

∏
p≤B p

e(p), but nowe(p) = max{e : pe ≤ N}. There
is a corresponding tradeoff in complexity, for nowlogQ = π(B) · logN = O(B logN/ logB)
multiplications are required instead of onlyO(B).

Example. We use Pollard’sp − 1 method to factorN = 9557780739229. It appears daunting,
but we might hope that there is a factorp with smoothp − 1—we will try first B = 20, very
optimistically.

• We computeQ = lcm(1, . . . , 20) = 232792560.

• We choose at randomx = 3, and computey = xQ mod N = 5068864611225
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• We computegcd(y − 1, N), which is unfortunately 1.

We have therefore failed, but perhaps we were too optimistic. So we can try again with a largerB,
sayB = 30.

• We computeQ = lcm(1, . . . , 30) = 2329089562800.

• We choose at randomx = 5, and computey = xQ mod N = 2792592641549

• We computegcd(y−1, N), which is fortunatelyp = 12601. We note thatp−1 = 23 ·32 ·52 ·7
is quite smooth.

We see that there is a significant tradeoff between the power of using a larger smoothness boundB
in order to be able to factor more integers, and the size of the values we must operate with.�

Adapting Pollard p− 1 to Discrete Log

We have just witnessed how the presence of a factorp with p − 1 smooth enables this factor to be
efficiently found. We can see an immediate connection to discrete log over a prime modulusp, and
demonstrate a way to compute discrete logs easily in the case thatp− 1 is smooth.

The algorithm is due to Pohlig and Hellman [35], who without specifically discussing smooth-
ness present an algorithm for solving discrete logarithms over a cyclic group of ordern given the
factorization ofn. This clearly applies, since the smoothness ofp− 1 = |(Z/pZ)∗| implies that the
factorization can be quickly found.

In general, since we wish to compute an exponenta which exists modulop − 1, if we have
a factorizationp − 1 = qe1

1 · · · qes
s , we can computea modulo eachqei

i and then use the Chinese
Remainder Theorem to reconstruct the full exponenta ∈ Z/pZ. The smoothness thus comes into
play in the computation of discrete log moduloqei

i , which can be done by brute force search if the
modulus is small.

This characterization is intuitive if we sayp − 1 must beB-powersmooth for a low bound; we
can reduce to the less restrictiveB-smooth property with the algorithm in its entirety:

POHLIG-HELLMAN (p, g, y):

1. Compute the factorization ofp− 1 = qe1
1 · · · qes

s , eachqi prime and eachei ≥ 1.

2. For eachi = 1, . . . , s, computeai = a mod qei
i as follows:

(a) Seth = g(p−1)/qi . Note that the order ofh is qi.

(b) Initialize γ = 1, l−1 = 0.

(c) For eachj = 0, . . . , ei − 1:

i. Setγ ← γglj−iq
j−1
i , z ← (y/γ)(p−1)/qj+1

i .

ii. Computelj such thathlj = z (e.g., by brute force).

(d) Setai = l0 + l1qi + · · ·+ lei−1q
ei−1
i .
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3. Combine theai into a using Chinese Remainder Theorem.

The algorithm is sufficiently complex to warrant some justification. First, since as indicated the
order of the generatorh in theith step isqi; so if we assume thatp− 1 isB-smooth, we require no
more thanO(B) operations to compute logarithms to the baseh by brute force. Now, consider the

jth iteration of the inner loop. At this point we haveγ = gl0+l1qi+···+lj−1qj−1
i . Recall that we are

searching for thep-ary representation ofai = l0 + l1qi + · · ·+ lei−1q
ei−1
i ., wherey = ga. Therefore

z = (y/γ)(p−1)/qj+1
i

= (ga−l0−l1q1−···lj−1qj−1
i )n/qj+1

i

= (gn/qj+1
i )a−l0−l1qi−···−lj−1qj−1

i

= (gn/qj+1
i )ljqj

i +···+lei−1q
ei−1
i

= (gn/qi)lj+···+lei−1q
ei−1−j
i

= hlj · hqi(··· ) = hlj .

It follows that settinglj equal to the discrete log ofz to the baseh is exactly what we should do
to generatea completely. As mentioned, each inner loop takesO(B) operations, and the number
of such loops is

∑
ei, or the total number of prime factors ofp − 1 counting multiplicity, which is

naturally less thanlog2(p − 1) < log2 p Therefore ifp − 1 is B-smooth, we can evaluate discrete
logs modulop in O(B log p) time.

The two above algorithms thus show the first practical correlation between the two problems: a
certain smoothness condition which leads to polynomial time solutions to each. We note that this
fact is not particularly useful for the applications of Chapter 2, for there we assume that the problems
are hard over a particular distribution of instances, and the instances are engineered to avoid things
like smoothness, usually by selecting primesp such thatp = 2q + 1 for another primeq. Such ap
is known as a Sophie Germain prime after the pioneering female number theoretician of the turn of
the 19th century, andp− 1 is clearly not at all smooth.

3.2.2 Pollard’s rho Method

We arrive at a second method which demonstrates commonalities between the two problems. The
specifics of the rho method, although it is specialized and (for factoring) only provides efficient
access tosmall factors, apply to solving both factoring and discrete log.

Both applications of the technique are due to Pollard and were published in the 1970s not long
after hisp − 1 method. Because they operate by simulating a random walk over the finite field, he
called them “Monte Carlo” methods, which refers to the class of randomized algorithms to which
rho belongs. The method for factoring appeared in 1975 [37] and the method for discrete log in
1978 [38].
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The rho Method : Factoring.

To find a factorp ofN , we make use of the recursive sequence defined byx0 = 2, xn = f(xn−1) =
x2

n−1 + 1 mod N . Without knowingp, we can imagine this sequence reduced modulop. Since this
reduction preserves multiplication and addition it is clear that the reduced sequencex̄0, x̄1, . . . also
satisfies the recursive relation̄xn = x̄2

n−1 + 1 mod p. Therefore we have an infinite sequence of
elements drawn from a finite set, so eventuallyx̄i = x̄j , and the sequence must begin to cycle.

To avoid the necessity of storing the entire sequence in order to find a collision, we make use of
the following lemma:

Lemma 3.4 (Floyd’s cycle-finding method)If x0, . . . , xn is a recursive sequence defined byxn =
f(xn−1) over a finite set, then there is somem such thatxm = x2m.

Proof of lemma.We know that the sequence must eventually collide and begin repeating. Letλ′

be the least integer such that there existsλ < λ′ andxλ = xλ′ . Then the sequence is periodic
with period ρ = λ′ − λ. It follows that if m is any multiple ofρ andm > λ, we will have
xm = x2m = xm+kρ. [From [29]: Lettingm = ρ(1 + bλ/ρc) provides the smallest suchm.]

Therefore, we only need consider pairs(xi, x2i), which can be easily (and with minimal storage
space) derived from the previous pair(xi−1, x2i−2), and look for collisions. And when we do
find a pairxi, xj such that the reductions̄xi, x̄j collide, it meansxi ≡ xj mod p, or equivalently
p | gcd(xi − xj , N). Therefore, unless this gcd isN itself, a collision will mean we have found a
factor ofN .

The algorithm thus takes the following form:

RHO(N ):

1. Initialize x = y = 2.

2. For i = 1, 2, 3, . . ., do the following:

• Updatex← f(x), y ← f(f(y)).
• Computed = gcd(x− y,N). If 1 < d < N , outputd.
• If d = N , algorithm fails.

Consider the running time of this algorithm on inputN . While we cannot prove a certain order
of complexity, we can modelf(x) as simulating a random walk. With this heuristic assumption, we
can invoke the “birthday problem”1, and thus we expect the period of a random walk over a finite set
of sizes to be

√
πs/8 = O(

√
s), and the number of terms occurring before the periodicity begins

(the “tail”) to also be
√
πs/8. (The name rho originates in this “tail”/“loop” shape of a sequence,

nicely represented by the characterρ.) Therefore (from the note at the end of the proof of Floyd’s
method in Lemma 3.4 above), we expect (again, heuristically) the first duplicate to be found after
O(
√
p) = O(n1/4) iterations. So compared to trial division, which requiresO(n1/2) computations,

we have made significant progress—but we are nowhere near efficient.

1That is, the combinatorial fact that we need only about
√

365 (uniformly random) people in a room to expect two of
them to share a birthday.
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The rho method : Discrete Log

Interestingly enough, the same approach can be used to solve the discrete log problem. This is not
particularly surprising, since the critical fact above we used was the finite size ofZ/pZ and thus
finding a collision in a sequence over it. For factoringN , the groupZ/pZ is somewhat indirectly
attached; for discrete logs over a prime,Z/pZ is part of the essence of the problem—thus the rho
algorithm should intuitively fit well there as well.

In order to actually get access into the exponent, the system is slightly more complex than for
factoring. We partitionZ/pZ into three setsS1, S2, S3 by defining

Si = {x ∈ Z/pZ : x̃ ≡ i mod 3 for x̃ the canonical lift ofx into {0, . . . , p− 1}}.

The actual partition is not as important as that membership be easy to check and that the partitions
be of roughly equal size. We recall that our goal is, givenp, g, andy = ga, to recovera. Using
these, we define our recursive function byx0 = 1, and

xn = f(xn−1) =


y · xn−1, if xn−1 ∈ S1

x2
n−1, if xn−1 ∈ S2

g · xn−1, if xn−1 ∈ S3

Therefore we can think of this iterative function as operating “behind-the-scenes” as follows: each
xi is of the formgαiyβi , where the sequences{αi}, {βi} are induced by the functionf to satisfy
α0 = β0 = 0 and the recursive relations

αn =


αn−1, if xn−1 ∈ S1

2αn−1, if xn−1 ∈ S2

αn−1 + 1, if xn−1 ∈ S3

, βn =


βn−1 + 1, if xn−1 ∈ S1

2βn−1, if xn−1 ∈ S2

βn−1, if xn−1 ∈ S3

(3.1)

We use the same general method as we did for factoring above to find a matching pairxm = x2m.
It follows thatgαiyβi = gα2iyβ2i , thusgαi−α2i = yβ2i−βi = ga(β2i−βi). It follows that

a ≡ (αi − α2i)/(β2i − βi) (mod p− 1). (3.2)

Therefore, provided thatβ2i 6≡ βi (mod p − 1) (which occurs negligibly often), we can solve for
a. It is clear that we can efficiently computexi, x2i for eachi, maintaining theα andβ sequences
as we go according to (3.1), and when we eventually do findxi = x2i, computea according to
(3.2)—it being so clear, we omit the actual algorithm.

As above, if we conjecture that this function behaves as a random walk, then we expect to find
the first i such thatxi = x2i somewhere aroundi = 2

√
πp/8), so our algorithm runs in time

O(
√
p). Just as the rho method did for factoring, it has reduced the complexity of a naive discrete

log search algorithm by a power of1/2.

And so we see for the second time that the same idea for an algorithm contributes to solving both
of our problems; the idea behind rho being to take a random walk around a finite space and take
advantage of the collision which must result in order to get the answer. We note without further
investigation that this method is, in general, the best available algorithm to solve the discrete log
problem on elliptic curves mentioned in Section 2.1.6.
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3.3 The Elliptic Curve Method

A derivative of the Pollardp − 1 method, the Elliptic Curve Method (or ECM) was discovered by
H.W. Lenstra [25] and published in 1987, thirteen years after Pollard’sp − 1 method. It remains
one of the fastest general purpose factoring methods (that is, applicable to arbitrary integers and not
just those of a special form), particularly for finding factors with size about1020 − 1040. It is less
effective than some of the sieving methods presented later for finding larger factors, but is often
used within those algorithms when intermediate values of medium size need to be factored.

In a sense, it is the odd-ball of the factoring methods presented here, since currently there is no
known way to adapt this method for solving discrete logs as well. However in some sense it is the
natural bridge between the preceding “exponential” methods (since it follows so directly from the
p− 1 method) and the class of subexponential ones to follow, of which it counts itself a member.

Even though the ECM does not have a discrete log variant, elliptic curves still do play a role in
the lives of both of these problems, though ironically in different directions—from what we know
at this point, elliptic curves make factoring easier and discrete log harder!

Recall that the aim of Pollard’sp − 1 method was to find prime factorsp of N such thatp − 1
is smooth. However, in the average case it is very improbable that such ap will exist, and as
mentioned it is feasible to specifically constructN which do not have any such factors. Lenstra’s
ECM method allows us to factorN if there is a prime factorp such that there is some smooths near
p, not necessarilys = p−1. Here the density of smooth numbers comes into play, but under certain
heuristic assumptions the likelihood of finding such ans is high enough to make ECM viable.

The algorithm is based on the observation that for any elliptic curvey2 = x3 + ax + b, which
we denoteEa,b or simplyE, if N factors aspe1

1 · · · p
ek
k , then

E(Z/NZ) = E(Z/pe1
1 Z)× E(Z/pe2

2 Z)× · · · × E(Z/pZek
k )

Therefore, if the order of one of the groups on the right is smooth, for example suppose|E(Z/pe1
1 Z)|

is B-powersmooth, then (mirroring Pollard’sp − 1) by taking a large multiple of a pointP ∈
E(Z/NZ), saym = lcm{1, . . . , B}, we must get that them · P̄ ≡ O = (0 : 1 : 0), whereP̄ is
the projection ofP into E(Z/pe1

1 Z). In that case it follows thatm · P ≡ (0 : 1 : 0) mod p, and
so it must be that the third coordinate ofm · P must be divisible byp. Equivalently, we attempt to
computem · P using the algebraic addition formulas introduced in section 1.4, and if we ever find
thatx1 − x2 is not invertible moduloN , we will have a factor ofN .

To implement this method, the curves typically used are of the classy2z = x3 + axz2 + z3

for a randoma, mainly for the reasons that there is only a single parameter and there is always a
convenient point(0 : 1 : 1) on the curve. LettingP equal this point, we choose a smoothness bound
B and computem = lcm{2, . . . , B} as in Pollard’s method. Then we compute(x : y : z) = m · P
on the curveEa(Z/NZ). Note that this computation will always be possible as a projective point—
the failure may occur when we try to rewrite this value as(x/z : y/z : 1) moduloN , in the event
thatz is not a unit moduloN . If we find gcd(z,N) > 1, output this factor ofN .

It is clear that ifEa(Z/pZ) is B-powersmooth, then the method will succeed with very high
probability. The only source of failure is thatm · P might be equal to(0 : 1 : 0), which is certainly
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congruent toO modulop, but does not lead to a factor. This will only happen ifEa(Z/qZ) is
B-powersmooth for allq | N , and therefore simply suggests that ourB was too large. See [25] for
a full description.

The following well-known result is a theorem of Hasse which is extremely relevant to the search
for smooth values ofEa(Z/pZ): For any elliptic curveE, if n = |E(Z/pZ)|, thenp+ 1− 2

√
p ≤

n ≤ p+ 1 + 2
√
p. Deuring showed in 1941 that for anyn in that range (called the Hasse interval),

there exists an elliptic curveE such that|E(Z/pZ)| = n, and moreover gave a formula for the
number of curves which have that order [13].

Since we will only be able to analyze the algorithm assuming the choice ofrandomcurves,
fixing b = 1 andP = (1 : 0 : 1) does not really work, although it is very often done in practice.
A better way is to choose a randoma, and then a random pointP = (x0 : y0 : 1), and then let
b = y2

0 − x3
0 − ax0. That way we have a truly random curveEa,b and a random point on it. This

will give us a roughly random value for|E(Z/pZ)| in the Hasse interval.

We must now make a conjectural leap. By the results from the introduction to this chapter, we
have some knowledge about the probability that a random integer less thanp will be B-smooth;
in order to apply that formula here we must assume that the distribution of smooth integers in the
Hasse interval matches the overall distribution.

Once we assume this conjecture, the probability that this group order isB-smooth (and will
thus lead to a factor ofN ) is u−u for u = log p/ logB by earlier analysis. Therefore we expect to
have to tryuu curves to be successful. As in the analysis of Pollard’sp − 1 method, the number
of group operations necessary to computem · P on any one curve is roughlyπ(B) · logB = B.
We therefore want to choose a boundB to minimize the total work required, given byBuu. Recall
the definitionL(x) = exp((log x)1/2(log log x)1/2) from earlier, and definea = logB/ logL(p).
ThusB = L(p)a, andlogB = a(log p)1/2(log log p)1/2. Therefore

u = (log p)/(logB) = (1/a)(log p)1/2(log log p)−1/2.

and

log u = log(1/a) + (1/2) log log p− (1/2) log log log p ≈ (1/2) log log p,

since the other terms are relatively small. It follows that

uu = exp(u log u) = exp((1/2a)(log p)1/2(log log p)1/2) = L(p)1/2a.

It follows that to minimize our total workBuu = L(p)aL(p)1/2a, it is enough to minimizea+1/2a.
Differentiation yields the optimal choice ofa = 1/

√
2, so the optimalB is L(p)1/

√
2, and the

minimum total work isL(p)
√

2.

We note one very interesting aspect of this complexity, which is that it depends on the size of
the prime factorp to be found, not onN itself.
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3.4 Sieving Methods for Factoring

We assume for this chapter thatN , the integer to be factored, is odd, greater than 1, and is not a
prime power. Our goal in general is to use the following fact:

Proposition 3.5 Givenx ∈ (Z/NZ)∗ with x2 = 1, andx 6= ±1, a nontrivial factor ofN can be
found.

Proof . The existence of such a square root of 1 moduloN follows from the Chinese remainder
theorem. Given such anx, with x2 − 1 ≡ 0, it follows thatN divides(x − 1)(x + 1), but since
x 6= ±1,N does not divide either factor. Therefore we can simply evaluategcd(x− 1, N) and will
have a factor ofN .

In general, consider the subgroup{x : x2 = 1} of (Z/NZ)∗. We can consider this as a vector
space over the 2-element fieldF2, and its dimension, by the Chinese remainder theorem, is equal to
the number of prime factors ofN . Therefore listing the generators of this subgroup is equivalent to
fully factoringN .

We now describe a general sieving process:
Step 1 : Choose a factor base.Let P be a finite index set, and choose a collection of elements

{αp}p∈P ranging over this set, with eachαp ∈ (Z/NZ)∗. Let ZP denote the set of integer vectors
(vp)p∈P ranging overP ; and letf : ZP → (Z/NZ)∗ be the group homomorphism mapping
(vp)p∈P 7→

∏
p∈P α

vp
p .

Step 2 : Collect relations.We can think of each vectorv = (vp) in ker(f) as arelation among
theαp, in that

∏
p∈P α

vp
p = 1. In this step we search for such relations until we have at least|P | of

them, and we then hope that the collection we have found is sufficient to generateker(f).
Step 3 : Search for dependencies among the relations.Let V be the collection of relations.

For eachv ∈ V , reduce it modulo 2 coordinate-wise and letv̄ ∈ FP
2 be the resulting vector. Since

we ensured|V | > |P |, the resulting vectors̄v cannot be linearly independent overF2, so we wish
to explicitly find the dependencies among them using linear algebra. The matrix is of course, very
large and sparse, but traditional Gaussian elimination is usually employed with some optimizations.

We have the convenience of being able to omit coefficients working overF2, and therefore
can write down any relation as a subsetR ⊆ V such that

∑
v∈R v̄ = 0. It follows that each

coefficient ofr =
∑

v∈R v is even, and thereforer/2 ∈ ZP . Also, sincer is a linear combination
within V , r ∈ ker(f). We can therefore consider the elementx = f(r/2) ∈ (Z/NZ)∗. We have
x2 = f(r) = 1.

It may be, of course thatx = ±1, and we have found only a trivial factorization. It is thus our
hope that we will have generated enough relations and found enough dependencies between them
to completely factorN .

3.4.1 The Rational Sieve

In this algorithm we select a boundB, and choose our factor base to be all primes underB. So we
haveP = {p ≤ B : p is prime}, and chooseαp = p mod N for eachp ∈ P . We note now that our
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original desire was to have eachαp a unit ofZ/NZ, and the selection method just given does not
guarantee this. However, if we ever do get anαp 6∈ (Z/NZ)∗, we have found a nontrivial factor of
N , so we do not worry about this possibility.

We then search for integersb such that bothb andN + b areB-smooth. Having these, we will
have the factorizations of bothb andN + b in terms of theαp. Sinceb ≡ N + b mod N , we can use
these factorizations to generate a vectorv ∈ ZP in the kernel of our functionf : ZP → (Z/NZ)∗,
thus each suchb yields a relation for step 2 above.

Example. Let’s use the Rational Sieve to factor the numberN = 1517. We’ll setB = 35, which
thus givesP = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31} and since we haveB < N , theαp are the same
as the elements ofP ; conveniently (through coaxing ofN ) each of theαp is in fact a unit!

By inspection, we find someb such thatb andN + b are35-smooth:

• b = 2;N + b = 1519 = 72 · 31.
This gives the kernel vector(−1, 0, 0, 2, 0, 0, 0, 0, 0, 1).

• b = 3;N + b = 1520 = 24 · 5 · 19.
This gives the kernel vector(4,−1, 1, 0, 0, 0, 0, 1, 0, 0, 0).

• etc.

We need to find some collection of more than 11 such vectors to guarantee dependencies, and we
can do this usingb = 2, 3, 4, 13, 19, 22, 30, 31, 33, 51, 56, 58; these respectively give the following
matrix of kernel vectors

−1 0 0 2 0 0 0 0 0 1
4 −1 1 0 0 0 1 0 0 0
−2 2 0 0 0 2 0 0 0 0
1 2 1 0 0 −1 0 0 0 0
9 1 0 0 0 0 −1 0 0 0
−1 4 0 0 −1 0 1 0 0 0
−1 −1 −1 1 0 1 0 0 0 0
2 2 0 0 0 0 0 0 0 −1
1 −1 2 0 −1 0 0 0 0 1
5 −1 0 2 0 0 0 0 0 0
−3 0 0 −1 2 1 0 0 0 0
−1 2 2 1 0 0 0 0 −1 0

mod 2→

1 0 0 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0 0
1 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 0
1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
1 1 0 0 1 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0

We needn’t search too hard for dependencies, seeing that the third vector is itself 0. Therefore we
considerf(v3) = 2−2 ·32 ·132 = 1, and we havex = f(v3/2) = 778. We havegcd(x−1, N) = 37,
and have found a factor ofN . �

Several other methods of extracting these relations are used in practice today.
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3.4.2 The Continued Fraction Method

We have long known how to approximate accurately a given real number with rational numbers by
constructing continued fractions. Morrison and Brillhart [31] developed a factoring algorithm based
on this ability.

Recall that to evaluate a continued fraction[a0, a1, a2, . . .] (whereai ∈ Z andai > 0 for i > 0)
one proceeds as follows: Initially setP−1 = 1; Q−1 = 0; P0 = a0; Q0 = 1; and then
proceed through the continued fraction, iteratively computing

Pk = akPk−1 + Pk−2; Qk = akQk−1 +Qi−2.

It can then he shown that if[a0, a1, . . .] represents the real numbery,∣∣∣∣Pk

Qk
− y

∣∣∣∣ ≤ 1
Q2

k

. (3.3)

Since theQi are a strictly increasing sequence of integers, this result guarantees us arbitrarily close
rational approximations of low height for any real number.

Returning to the problem of factoring, suppose we are givenN to factor. Consider approximat-
ing
√
N using continued fractions. Since we assumeN is not a perfect square, we have a continued

fraction of an irrational number, which will not terminate but will eventually repeat. Using a variant
of the typical algorithm to compute the continued fraction termsai from

√
N which does not rely

on knowing
√
N to extreme precision, we can maintain a third sequence of integersRi such that for

all i,
P 2

i −N ·Q2
i = (−1)iRi;

√
Ri < 2

√
N.

But from this we haveP 2
i ≡ (−1)iRi (mod N)—a quadratic relation. The term on the right being

bounded by2
√
N , we might hope to factor it over a small factor base of primes, and then use the

same linear algebra mod 2 to find dependencies, each of which provides a congruencex2 ≡ y2

(or equivalently in the language of the above description(xy−1)2 = 1) which provides a chance to
factorN .

3.4.3 The Quadratic Sieve

A cousin of the continued fraction method, the quadratic sieve also searches for relationsx2 = q
for q small and factorable over a factor base. However it is more efficient in that it attempts to factor
theseq using quadratic polynomials, instead of trial division.

Definef(x) = x2 −N , and lets = d
√
Ne. Consider now the sequencef(s), f(s+ 1), f(s+

2), . . ., and suppose that we could completely factor each of these. If a primep dividesf(x), we
know thatp|x2 − N , and therefore unlessp dividesN , N ≡ x2 is a quadratic residue modulop.
Therefore if we select a factor base be the setS of all the primesp such that eachp < B and each
such that

(
N
pi

)
= +1 (such thatN is a quadratic residue modulopi), and if we can findR > |S|

valuesf(x) which areB-smooth, it follows that we can factor these values among thepi. Then the
linear algebra techniques modulo2 will again give quadratic relations which might factorN .
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We would like to be able to factorf(s + i) using a sieve – that is, to be able to identify which
p will divide it without trial division. So how can we know ifp | f(s+ i)? Sincef(x) = x2 −N ,
this happens if and only if(s+ i)2 ≡ N (mod p). But all positive solutions tox2 ≡ N (mod p) lie
in one of two arithmetic sequences{r1 + kp}k≥0, {r2 + kp}k≥0, wherer1 andr2 are the principal
square roots ofN mod p (that is, the ones in{0, 1, . . . , p − 1}), which we know exist because(
N
p

)
= +1.

These principal roots can be found efficiently (sincep is prime), and therefore we can predeter-
mine all thei for which f(s + i) will be divisible byp. We thus proceed through our factor base,
dividing out eachpj from thef(s + i) which it divides. Trial division is therefore avoided—we
know a priori which divisions will be successful.

If we perform the sieve overi in some rangea < i < b, (for a > s) we expect that number of
divisions required for each primep is therefore about(2/p)(b− a), since 2 out of everyp numbers
are square roots ofN modulop. So if we sieve out all primes less thanB, it will take us (b −
a) ·

∑
p<B(2/p), and this sum isO(log logB), substantially less than theO(B/ logB) required for

trial division in the continued fraction method.
Wagstaff [50] notes that this process can be made more efficient by storing the logarithms of

f(a+ i) in an array instead of the values themselves. Then division byp becomes the more efficient
subtraction bylog p. At the end, we search the array for small values (not quite zero because of some
other optimizations— not actually wasting our time sieving small primes but instead sieving higher
powers of them). When we do see a value below whatever threshold we decide upon (and this can be
updated dynamically depending on our success), we can reconstructf(a+ i) and actually factor it,
using our knowledge of the square roots ofN modp to assist. If we do factor it completely over our
factor base, we have a relation, and we repeat and proceed as above to factorN with dependencies
among these relations modulo 2.

Consider the running time of the algorithm outlined above. Following Wagstaff [50], we es-
timate the size of the polynomial valuesf(s + i) from which we would like to findB-smooth
numbers. Ifi < M �

√
N , we have

f(s+ i) = (s+ i)2 −N = s2 + 2si+ i2 −N ≈ 2si+ i2 ≈ 2si < 2M
√
N.

We recall that in the continued fraction method we hoped to findRi < 2
√
N which were smooth;

for the quadratic sieve we are searching for numbersM times larger.
By the analysis of section 3.1.1, if assume that thef(s + i) are roughly the size of

√
N , then

the probability thatf(s + i) isB-smooth is approximatelyu−u, whereu = (log
√
N)/(logB) =

logN/2 logB. We would like to choose a value forB which minimizes the total work required to
find these smoothf(s+ i). We noted earlier that the time on average it takes test eachi is roughly
log logB. Since the probability thati leads to aB-smooth value isu−u, we expect to have to try
uu(K + 1) differenti to succeed. LetK = |S| be the size of our factor base, and since we choose
this base to be all primesp < B with

(
N
p

)
= +1, K ≈ π(B)/2 = O(B/ logB). Therefore if we

let (as in Crandall and Pomerance [9])T (B) be the expected amount of work using boundB,

T (B) = uu(K + 1) log logB, → log T (B) = u log u+ logB − log logB + log log logB,
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and we will assume that asB gets large enough this is dominated byS(B) = u log u + logB. It
follows that we can minimize the work by find a zero of

S′(B) =
− logN

2B(logB)2
(log logN − log logB − log 2 + 1) +

1
B

(from [9]).

This leads to the optimal choice ofB of exp(1
2(logN)1/2(log logN)1/2) = L(N)1/2, and the

running time is aboutB2 = L(N) = exp((logN)1/2(log logN)1/2).
We note that the analysis and the eventual result here are both very similar to the ECM method

described earlier, however we reiterate the distinction that ECM’s complexity is in terms ofp, and
here we are in terms ofN . In practice, the quadratic sieve is useful for factoring much larger integers
than the ECM, especially those formed of 2 prime factors of similar size, although the latter method
may get quite lucky at factoring large integers with medium sized prime factors.

3.4.4 The Number Field Sieve and Factoring

Though the number field sieve is most commonly presented as a natural sequel to the quadratic sieve,
we can conceive of it perhaps more accurately as a generalization of the rational sieve introduced
at the beginning of this section. In the quadratic sieve, we seek moduloN congruences of the form
x2 ≡ Q, whereQ is something we can easily factor over our factor base. In the rational sieve we
sought relations of the formp ≡ Q, wherep was a small prime, thus already factored over the factor
base, as wasQ. We can generalize to seeking relations of the most general formP ≡ Q, where
bothP andQ are easily factored over the factor base. It is clear that this will be enough to generate
relations and dependencies to factorN .

The number field sieve is due to Pollard who first proposed the idea in 1988, much later than his
earlier exponential offerings of thep− 1 and rho methods. For an account of the development, see
[21] and the other papers in the same volume edited by Lenstra and Lenstra.

In the number field sieve, we attempt to find such relationships by leaving theZ/NZ world
(temporarily) and moving into an extension fieldK = Q(α). In order to keep ourselves grounded in
integers, and specifically to be able to write relations moduloN , we will need a ring homomorphism
h : OK → Z/NZ on the ring of integers ofK. Then by working with irreducible algebraic integers
β such that we can easily factorh(β) over the integers, we will be able to convert relations overK
involving integers expressed as a product of suchβ into useful relations moduloN which we can
use to factor.

To constructK = Q(α), we need a monic irreducible polynomial

f(X) = Xd + cd−1X
d−1 + · · ·+ c1X + c0

with integer coefficients, and we letα be a complex root off . We then haveQ(α), and we will also
make use ofZ[α], a subring of the ringOK of algebraic integers. To define our homomorphism, we
would like to know a rootr of f moduloN (that is anr such thatf(r) ≡ 0 (mod N)), and then
if we defineh(α) = r, we will indeed induce a homomorphism, and so for anyβ =

∑d−1
i=0 bjα

j in
Z[α], we haveh(β) =

∑d−1
i=0 bjr

j (mod N).
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Typically, to select such a polynomial, we select a degreed, and then letr be an integer near
N1/d (but below it). We then writeN in baser,N =

∑d
i=0 cir

i. It follows thatf(X) =
∑d

i=0 ciX
i

hasr as a root moduloN . [This makes the polynomial easy to find in cases whereN is of a special
form se+t for smalls and|t|, in which case this algorithm can be optimized and is called the Special
Number Field Sieve.] We can assume thatf(X) is irreducible, for if notN = f(r) = g(r)h(r)
gives a nontrivial factor.

Reminding us of our goal, it follows that (as a simple example) if we can finda andb such that
a − br = x2 is a square moduloN anda − bα = γ2 is a square inOK , then if we lety = h(γ) it
follows that

y2 ≡ h(γ)2 ≡ h(γ2) ≡ h(a− bα) ≡ a− br ≡ x2 (mod N)

and we have a chance of factoringN .
In general, we choose a factor base of “small” algebraic integers of the formai − biα, and our

search for relations is a search forsetsS of pairsa, b such that the generalized above example holds,
that is so that

∏
(a,b)∈S(a − bα) is a square inZ[α] and

∏
(a,b)∈S(a − br) is a square moduloN .

Such examples will occur as modulo2 linear dependencies, if we can find enougha, b pairs such
thata− bα anda− br can be written as a product of elements in our factor base.

To do this, we extend the notion of smoothness toOK , and we say that an algebraic integer
γ is B-smooth if its rational normN(γ) is B-smooth. Wagstaff [50] demonstrates how to easily
compute the norm of an algebraic integera + bα. He notes that ifα1, . . . , αd are thed complex
roots off , they are the conjugates ofα, and thusa − bα1, . . . , a − bαd are conjugates ofa − bα.
Therefore

N(a− bα) =
∏

i = 1d(a− bαi) = bd
d∏

i=1

(a/b− αi) = bdf(a/b).

It follows that if we defineF (x, y) = ydf(x/y), which is the homogeneous polynomial

xd + cd−1x
d−1y + · · ·+ c1xy

d−1 + c0y
d,

thenN(a − bα) = F (a, b). It follows that we can sieve this polynomial in order to find pairsa, b
such thata− bα has a smooth norm.

Since we have seen sieving already in some detail, we will not go any deeper into the specifics
of how the algorithm proceeds. The literature on the number field sieve is extensive, and the process
has many unexpected complications, none of which would offer particular insight upon elaboration
into the relationship between factoring and discrete log. For reference into these specific issues,
consider [21] and the relevant chapters of [50], [9], or [8].

The one unmentioned issue which will highlight the relationship is the complexity of the number
field sieve. Our analysis parallels Crandall and Pomerance’s in [9]. As in the quadratic sieve, our
main concern is in the probability that the numbers we want to be smooth are smooth. We saw
above that the smoothness boundB = L1/2[N ] leads to the optimal situation, and this can actually
be proven under the heuristic assumption that the values we test for smoothness are random. In the
quadratic sieve these were the valuesf(s+ i); here they are the valuesF (a, b) from above and also
G(a, b) = a− br = h(a− bα). Thus we wish to find smooth valuesF (a, b)G(a, b).
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Now assume that the rootr is no larger thanN1/d (d is the degree off ), and that the coefficients
of f are equally bounded byN1/d, and that we are searching fora, b-pairs in the range|a|, |b| ≤M .
It follows that

|F (a, b)G(a, b)| ≤ 2(d+ 1)Md+1 ·N2/d.

If we call this quantityX, then by Pomerance’s theorem under our heuristic assumptions, we
would expect to require testingL1/2[X]

√
2+o(1) a, b-pairs to succeed. We can see exactly that num-

ber of pairs if we make our boundM such thatM2 = L1/2[X]
√

2+o(1). Then substituting into the
above definition ofX and taking the log of both sides,

logX = log 2 + log(d+ 1) +
2
d

logN + (d+ 1)

√
1
2

logX log logX.

The first two terms on the right are dwarfed by the last, so we ignore them. Now let us letN →∞
and assume thatd→∞ as well. This leaves us with

lnX =
2
d

logN + d

√
1
2

logX log logX,

and taking the derivative with respect tod gives

X ′

X
=
−2
d2

logN +

√
1
2

logX log logX +
dX ′(1 + log logX)

4X
√

1
2 logX log logX

,

which givesX ′ = 0 for d = (2 logN)1/2((1/2) logX log logX)−1/4. Substituting back in gives
3
4 log logX ∼ 1

2 log logN , or

logX ∼ (64/9)1/3(logN)2/3(log logN)1/3.

The running time of the algorithm is then

L1/2[X]
√

2+o(1) = L1/3[c;N ],

with c = (64/9)1/3 + o(1).

3.5 Sieving for Discrete Logarithms

It turns out that both the general concept of sieving and some of the specific variants just seen for
factoring apply well to solving the discrete log problem as well.
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3.5.1 The Index Calculus Method

The basic construction of a sieve which we saw on page 29 can be adapted easily to find discrete
logarithms instead of factors. The resulting algorithm is called theindex-calculusmethod, which
dates to ideas in the work of Kraitchik in the 1920s and in current form is due to multiple individuals
including Cunningham and Adleman.

The form is as follows. We present it over the group(Z/pZ)∗, but note that it could be used
generally to solve logarithms over any cyclic group. The high-level goal of the algorithm is to build
up knowledge about the logarithms of some elements of the group which generate a significant
portion of the group, and use these logarithms to solve easily for the logarithm we don’t know.

Step 1 : Choose a factor base.Let S = {p1, . . . , ps} be a subset of(Z/pZ)∗, which we choose
in hopes that it will be enough to generate all of(Z/pZ)∗.

Step 2 : Collect relations among the logarithms of thepi. To do this, we create a random element
whose logarithm we know, and hope it is generated byS. Specifically, chooseb ∈ (Z/pZ)∗ at
random, and computegb. Attempt to writegb as a product of elements of the factor base:

gb =
s∏

i=1

pei
i , ei ≥ 0.

If this was successful, then we have a linear relation on the logarithms:b =
∑
ei logg pi. Since this

is taking place in the exponents, it is a congruence modulop − 1, or generally in the order of the
cyclic group being used. If we were unsuccessful, we try again for a newb. Since we are trying to
solve for each of thelogg pi, we will be working ins unknowns; therefore we should repeat until
we have a collection of more thans relations (says+ k) of the above form.

Step 3 : Solve for thelogg pi. We do this as hinted above by solving the linear system of
equations modulop− 1 given by the relations collected in step 2. We hope that thes+ k relations
will not be dependent, and therefore we can get a unique answer.

Step 4 : Use the known logarithms to solvey = ga. To do so, selectb at random from(Z/pZ)∗.
Then calculatey · gb, and hope that it is generated by elements ofS whose logarithms we know. If
it is not, then repeat with a differentb, if it is we can writey · gb =

∏
i p

ci
i , which implies the linear

congruence
a+ b ≡

∑
i

(di logg pi) (mod p− 1).

Knowing all these elements excepta, we can solve fora and we have the logarithm.

Example. Let p = 307, andg = 5, which is a generator of(Z/307Z)∗. Suppose we are given
y = 214, and we will use the index-calculus method to finda such thaty = ga (mod 307).

We will begin by choosing our factor base to be the first few prime numbers:S = {2, 3, 5, 7, 11, 13}.
Let lp denote the logarithm ofp to the baseg, which we initially do not know (exceptl5 = 1).

1. Now we choose some randomb, sayb = 30. We havegb = 54 = 2 · 33, so we have the
relation30 ≡ l2 + 3l3 (mod 306). Similarly,
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2. b = 55→ gb = 120 = 23 · 3 · 5→ 55 ≡ 3l2 + l3 + l5.

3. b = 39→ gb = 128 = 27 → 39 ≡ 7 · l2.

4. b = 118→ gb = 175 = 52 · 7→ 118 ≡ 2l5 + l7.

5. b = 156→ gb = 182 = 2 · 7 · 13→ 156 ≡ l2 + l7 + l13.

6. b = 259→ gb = 198 = 2 · 32 · 11→ 259 ≡ l2 + 2l3 + l11.

and while we don’t have any more thans relations, we might feel pretty good about them, and in fact
we can do some manual linear algebra to solve this system: from (3):l2 ≡ 39/7 (mod 306) = 93;
from (1): l3 = 81; from (2): l5 = 1; from (4): l7 = 116; from (6): l11 = 4; from (5): l13 = 253.

With these in hand, we try to actually take the log ofy. So choose at randomb = 155 (it took
me 3 guesses to find one that would work), and we havegb · y = 176 = 24 · 11. It follows that,
modulo 306,155 + a ≡ 4l2 + l11 ≡ 4(93) + 4 ≡ 70, soa = 221. �

3.5.2 The Number Field Sieve and Discrete Log

The above index calculus discrete method closely parallels the quadratic sieve method for factoring;
similarly the modification of the factoring sieve to use number fields also has a discrete log corollary.
Here there is no particular name, and the method retains the title of number field sieve. The principal
work in this area was presented by Daniel Gordon in 1993 [19] and improved by Schirokauer in 1999
[44].

The algorithm proceeds very much like its factoring predecessor. Given a primep and a gener-
atorg which are the parameters of our problem, we choose an irreducible monic polynomialf(x)
overZ with a known rootr ∈ Z such thatf(r) ≡ 0 (mod p). We also require thatp not divide the
discriminant off .

Now letα be a complex root off , defineK = Q(α) and letOK be the ring of integers inK.
Since will be looking to “factor” inK, we invoke the following theorem ([19] Prop. 1)

Proposition 3.6 If q is a prime number not dividing the index[OK : Z[α]] = |OK/Z[α]|, and if
f(x) factors modulos as the product of distinct, irreducible monic polynomialsf(x) =

∏
gi(x)ei

(mod s), then the ideal(q) factors as(q) =
∏

sei
i for distinct prime idealssi = (s, gi(α)), which

have normN(si) = sd
i , wheredi is the degree ofgi.

It follows from this that the idealp = (p, α− r) divides(p), sincex− r dividesf(x) modulop.
Since it has degree 1,N(p) = |OK/p| = p, and in factOK/p ∼= Fp. We say that a “good” prime
ideal is one whose norm does not divide the index[OK : Z[α]], and there exist efficient ways of
determining if(p) is a good prime ideal.

We will want our factor base to consist of such good prime ideals of low norm, and Gordon
gives us a way of finding ideals which will factor over this factor base.
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Proposition 3.7 ([19] - Prop. 2) If c and d are integers withgcd(c, d) = 1 andN(c + dα) is
relatively prime to the index[OK : Z[α]], then the ideal(c+dα) inOK can be written as a product
of good prime ideals of degree 1.

Therefore, to take discrete logarithms overFp, we build a factor base with two parts. One part
B0, consists of integer primes less than our smoothness boundB, and a second part,BK consists
of good prime ideals of degree 1 and with norm less thanB.

We then sieve over pairs of integers(c, d) such that bothc+ dr and(c+ dα) can be written as
a products of terms in our factor basesB0 andBK respectively. To do the latter we actually sieve
to findN(c+ dα), for suppose that

c+ dr =
∏

pi∈B0

pei
i and |N(c+ dα)| =

∏
pi∈B0

p
e′i
i .

Then by the above proposition for eachi with e′i > 0 we can find a unique idealpi containingpi

and dividingc + dα. Definee′pi
= e′i for this ideal and 0 for all other ideals of normpi. Then the

above becomes
c+ dr =

∏
pi∈B0

pei
i and (c+ dα) =

∏
pi∈BK

p
e′pi
i .

We are know well poised to search for dependencies by solving a linear system of the exponent
vectorsei ande′pi

once we have slightly more than|B0| + |BK | pairsc, d with the above property.
Such a dependency will be a setS of pairsc, d such that∏

(c,d)∈S

(c+ dα)e(c,d) = u, u a unit and
∏

(c,d)∈S

(c+ dr)e(c,d) isB-smooth.

With enough such sets, we can find some unionS = S1 ∪ · · · ∪ Sj such that the unitsu cancel
out and we have

∏
(c,d)∈S(c+dα)e(c,d) = 1, and of course the corresponding product of the(c+dr)

will still be B-smooth. Recalling the homomorphismh : OK → Z/pZ which sendsα 7→ r, we
have ∏

(c,d)∈S

(c+ dr)e(c,d) ≡
∏

(c,d)∈S

h(c+ dα)e(c,d) ≡ 1 (mod p).

Since we know how to factorc+dr overB0 (this was how we selected thec, d pairs), we have some
relation ∏

p∈B0

ps(p) ≡ 1 (mod p).

Therefore, taking the discrete log both sides with respect to the generatorg,∑
s∈B

s(p) logg p ≡ 0 (mod p− 1).

Therefore with sufficiently many setsS, we can solve a linear system modulop − 1 and deter-
mine all thelogg p for p < B. Steps 3 and 4 of the above index calculus method can then be applied
to find logg y.
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The running time for this version of the number field sieve parallels that of the factoring al-
gorithm; Gordon [19] shows that optimal values for the boundB and the size of the rootm are
Lp[1/3; c] for some values ofc, and then derives the optimal running time ofLp[1/3, 32/3].We note
that since the algorithm Gordon proposes relies on the elliptic curve method to find smooth integers
nearp, this running time is based on the same heuristics Lenstra assumed that the distribution of
B-smooth integers in the Hasse interval aroundp is the same as the general distributionψ(p,B).

3.6 Conclusions

The topic of this paper was originally motivated by the observations just seen in the preceding
chapter that the same ideas can be applied to solve two seemingly disjoint problems in number
theory, and that when programmed as algorithms, the running times are the same. This remains
remarkable, given that no concrete mathematical reason to expect this occurrence has yet been
proved.

We have seen in Chapter 2 the importance that the difficulty of these problems plays in modern
systems, and as suggested in Chapter 1 one of the reasons to consider the relationships of these
problems is out of concern that our security assumptions may not be sufficiently diversified among
independent hard problems.

Practically, from the algorithmic point of view, the evidence presented in this chapter leads us
to conjecture that the hardnesses of factoring and discrete log are not independent, and that if in one
year’s time an even faster factoring method were discovered, running in say timeLN [1/5, c], not
long from that date would theLp[1/5, c] discrete log algorithm be unveiled.

These observations of comparable running time, based purely on the subset of yet-discovered
algorithms, should not be confused with the claim that factoring and discrete log have been proven
to have equivalent complexity, though this confusion is not uncommon in the world of practiced
cryptography. (Or, in the related form “If factoring were tractable, all number-theoretic cryptogra-
phy would be lost” is a common misconception.) Let it remain clear that this statement has not been
proven.



4. The Relationship Between the
Problems II – Theoretical

Having now seen evidence of a historical and empirical nature that the efficiency of these two
problems is closely correlated, we turn to the mathematics behind the problems in search of a
rigorous connection.

We will show, in turn, the three reductions figured below. In the diagram, an arrow fromX → Y
indicates that problemX reduces to problemY , which is in general to say that it is possible to solve
X given the ability to solveY , or that “Y impliesX”. As mentioned in the opening chapter, this
can take several different specific meanings depending on context, and we leave the discussion of
that issue to each individual section. The branching arrowX → (Y, Z) is possibly non-standard,
and we wish for it to mean that the problemX is solvable if bothY andZ are solvable.

e

The two light arrows indicate trivial reductions between these problems, and are included only to
make our graph complete; we will not specifically prove them here. For a more complete picture of
reductions between number theoretic problems other than factoring and discrete log (and specifically
easier than them), see Heather Woll’s 1987 paper [51].

4.1 Composite Discrete Log implies Factoring

Problem 4.1 (Composite Discrete Log)Given an integerN , not necessarily prime, an elementg
of (Z/NZ)∗, and an elementy ∈ (Z/NZ)∗ such thaty = ga for somea, to find the integera.

40
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Parallel to the discussion of section 1.3, we can also frame this problem probabilistically, by
defining an instance generator and the notion ofε-solving the problem according to those instances.

DC(1k):

• GenerateN ← Fk.

• Chooseg with high order in(Z/NZ)∗.

• Choosea at random from(Z/φ(N)Z)∗, and computey = ga mod N .

• Output(N, g, y).

Some care must be taken over the meaning of “high order” as applied to elements of(Z/NZ)∗.
Given justN ← Fk, we do not know how to find such ag. So we assume that during the operation
of DC we have access to the intermediate values used in the selection ofN fromF , specifically the
prime factorsp andq of N and the factorizations ofp − 1 andq − 1. It is easy to find generators
g1 of (Z/pZ)∗ andg2 of (Z/qZ)∗ these intermediate values, and the Chinese Remainder Theorem
gives us an elementg in (Z/NZ)∗ which is of maximal orderlcm(p− 1, q − 1). So we take this as
our meaning of “high order”. See [29] section 4.6 for details.

Problem 4.2 (Solving Composite DL with probability ε) Given a functionε(k), to construct a
probabilistic polynomial-time algorithmA such that for any integerk,

Pr[gA(N,g,y) mod N = y] ≥ ε(k),

taken over all(N, g, y)← DC(1k).

Although I name it “Composite Discrete Log,” we do not require in the definition thatN be
composite. Therefore, considering that whenp is prime, every element of(Z/pZ)∗ is a generator,
and therefore everyy ∈ (Z/pZ)∗ is some power ofg, this problem is trivially no easier in the worst
case than the discrete log problem using a prime modulus which we defined in Problem 1.2 and
have been discussing all along.

However, we can establish our first theoretical connection to factoring, which is slightly less
expected, that factoring can be accomplished by taking discrete logs. This result was shown by
Eric Bach [1] in 1984, extending earlier work of Gary Miller from 1976 [30]. The proof below,
which is a worst case reduction, is expanded from that in Bach’s paper. We follow it with our own
randomized reduction, using an adaptation of Bach’s method.

Proposition 4.3 (Bach, Miller, et al.) If there exists a polynomial-time algorithmA to solve the
Composite Discrete Log problem on all inputs, then a polynomial-time algorithm exists which solves
the Factoring problem with arbitrarily high probability.

Proof of Proposition.We assume thatN is odd and not a prime power. These conditions can be
efficiently tested and, if they fail to hold, lead immediately to a factor ofN .
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Consider the structure of(Z/NZ)∗. If N has prime factorizationpe1
1 · · · pes

s , then

(Z/NZ)∗ = (Z/pe1
1 Z)∗ × · · · × (Z/pes

s Z)∗.

This group has orderφ(N) = φ1 · · ·φs, eachφi = φ(pei
i ) = pei−1

i (pi−1), however it is not cyclic,
and there is no element of orderφ(N). However, if we raise anya ∈ (Z/NZ)∗ to a powere such
that eachφi | e, it follows thatae ≡ 1 mod pei

i for eachi, and thereforeae ≡ 1 mod N . So each
element of(Z/NZ)∗ has order dividingL = lcm(φ1, . . . , φs).

We prove our result in two stages. First we show that given the ability to find the order of
elements in(Z/NZ)∗, we can factorN . Then we demonstrate how to compute orders by taking
discrete logs modN .

Our first goal is to factorN by determining the order of an element. We’ve established that
xL ≡ 1 for all x, but as mentioned earlier, sinceN is composite we know there are square roots of
1 other than±1. Therefore consider the subgroupK of (Z/NZ)∗:

K = {x ∈ (Z/NZ)∗ : xL/2 ≡ ±1 (mod N)}.

We can show thatK 6= (Z/NZ)∗ as follows. First, define the symbole2(k) for k ∈ Z to be
the exponent of2 in the prime factorization ofk, or equivalently the highest power of 2 which
dividesk. Now sort thepi using this symbol, such thate2(φ1) ≥ e2(φi) for all i. It follows that
e2(φ1) = e2(L). Since each group(Z/pei

i Z)∗ is cyclic, choose generatorsg1, . . . , gs. Then let
a ∈ (Z/NZ)∗ have coordinates(g1, g2

2, . . . , g
2
s). It follows that

aL/2 = (gL/2
1 , gL

2 , . . . , g
L
s ) = (gL/2

1 , 1, . . . , 1)

is not±1, sinceg has orderφ1, of whichL/2 cannot be a multiple sincee2(L/2) = e2(φ1) − 1.
Thereforea 6∈ K. SinceK is thereby a proper subgroup it follows that at least half of the elements
of (Z/NZ)∗ are outside ofK.

Now suppose thatx ∈ (Z/NZ)∗ but x 6∈ K, and that we have somem such thatxm ≡
1. Consider the sequencexm, xm/2, xm/4, . . . , xm/2e2(m)

. I claim that for somek, we must have
xm/2k ≡ 1, but xm/2k+1 6≡ ±1. Suppose the actual order ofx in (Z/NZ)∗ is r. It follows that
L = c0 · r for an integerc0. Furthermore, sincex 6∈ K, we knowxL/2 6≡ 1, thereforec0 must
be odd. Also,m = c · r, and we can pull out all the 2s inc to getm = 2e2(c) · c1 · r for c1 odd.
Therefore if we makek = e2(c), we seexm/2k ≡ xc1r ≡ 1, and considerxm/2k+1

. Observe now
that for any oddd, wheneverz2 ≡ 1 (mod N), then we must havez ≡ ±1 (mod pei

i ) for eachi,
and since both±1 are their owndth power,zd ≡ z (mod pei

i ), and sozd ≡ z (mod N) as well.
It follows thatxL/2 ≡ xc0·r/2 ≡ xr/2 (sincec0 is odd andxr/2 is a square root of 1). Likewise
xm/2k+1

= xc1r/2 ≡ xr/2. Therefore

xm/2k+1 ≡ xL/2 6≡ ±1.

This proves the claim.1

1Since this claim holds only becauseN is composite, the sequence can also be used to check primality; the resulting
method is known as the Miller-Rabin primality test. See [30].
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It follows thatxm/2k+1
is a non-trivial square root of 1, therefore we can factorN by taking

gcd(xm/2k+1 ± 1, N) as in Proposition 3.5.

We are only left with demonstrating that an “exponent”2 of an element can be found with an
oracle for composite discrete log. We note that it is not enough to ask for the discrete logarithm of1
to the basex, sincem = 0 is a valid exponent which will not lead to a usable sequence in the above
method, 0 having a not-well-defined number of 2s dividing it.

But suppose thatp is a prime such thatgcd(p, φ(N)) = 1. If so, there would exist an integer
solutionq to the congruencepq ≡ 1 mod φ(N). Then by Fermat,xpq ≡ x mod N , and so we
could ask for the discrete log ofx to the basexp, get a valid answerq, and then takem = pq− 1 as
our exponent ofx.

Of course, we do not even knowφ(N), so we cannot specifically test this condition onp;
however algorithmically we can test by asking forlogxp x for p and seeing if theq we get back
satisfiesxpq ≡ x. Sinceφ(N) < N , we can guarantee that there must be a primep which is
relatively prime toφ(N) among the firstlogN + 1 primes. Therefore we can complete a search for
ap such thatlogxp x exists in polynomial time.

Since we knowx 6∈ K with probability≥ 1/2 for a random selection ofx, it follows that our
algorithm, if repeated̀ times, will fail to provide a factor with probability≤ 1/2`. Therefore we
have an arbitrarily high probability of success.

We repeat the observation that this proof as given by Bach [1] is a worst-case reduction, not
probabilistic, first because we allowN to be any integer with any prime factorization, and also
because we assume the ability to take arbitrary discrete logs to any base moduloN . However
we can extend it without too much trouble into a probabilistic reduction in terms of our instance
generatorsF andDC .

Proposition 4.4 If A is a probabilistic polynomial time algorithm which solves the Composite Dis-
crete Log problem (4.2) with non-negligible probabilityε, then there exists a probabilistic polyno-
mial algorithmB which solves the Factoring problem (1.12) with non-negligible probability.

Note that the two problems referred to above draw the composite integersN from the same
distributionFk.

Proof . We condense our proof of proposition 4.3, with some modifications, into an algorithm.

B(N):

1. Selectx
R←− (Z/NZ)∗.

2. LetH = N2 − 2N
√
N +N , and selectr

R←− {2, . . . ,H}.
3. Let y = xr mod N

4. UseA to computes = A(N, y, x)

2Terminology is Bach’s [1]: anexponentof x is anyy such thatxy ≡ 1.
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5. If xrs−1 6≡ 1, fail.

6. Letm = rs− 1.

7. Compute the sequencexm, xm/2, . . . (all modN ) until impossible, or until for
somet, xm/2t+1 6≡ ±1 while xm/2t ≡ 1.

8. If such at was found, outputd = gcd(xm/2t+1 − 1, N).

As in the above proof, we know that ifx 6∈ K, once we havexm ≡ 1 we are home free,
and guaranteed to get a non-trivial factor ofN . We asserted that for a randomx ∈ (Z/NZ)∗,
Pr[x 6∈ K] ≤ 1/2, so we are left with the probability thatA will lead us to a validm. We know
that this happens ifxrs = x; therefore ifA successfully findss = logxr x, and we know that thiss
exists whenevergcd(r, φ(N)) is 1. Since the instance generatorDC always creates instances where
the exponenta is relatively prime toφ(N), if gcd(r, φ(N)) is not 1, we presentA with invalid
input—note the fact thatA solves CDL with probabilityε does not imply any behavior on invalid
input, all we know is thatA is correct with probabilityε given a random input according toDC (that
is, an input whereN , thegeneratorand theexponentwere chosen at random). It is clear that since
are showingB solves factoring with probabilityε, thenN will already be random according toF .

We now limit the consideration tor relatively prime toφ(N). Let N = p · q, since it came
fromF . In this case, it follows thatr is relatively prime toφ(p) and toφ(q). Thusr has an inverse
sp ∈ (Z/pZ)∗, and so every elementy ∈ (Z/pZ)∗ is of the formxr for some uniquex, namely
x = ys. Likewise in(Z/qZ)∗. Therefore in these two groups, ifx is random in(Z/NZ)∗ andr is
relatively prime top and toq, xr is random in each group(Z/pZ)∗ and(Z/qZ)∗, and therefore in
their product(Z/NZ)∗. It follows that the generator of our problem instance is random whenever
gcd(r, φ(N)) = 1. Since for the input toA to be valid we require our generator to have high order
moduloN , we must now consider the probability that a randomy will have high order.

First, note that ifx is a generator modulop, andr is relatively prime toφ(p) = p− 1, thenxr is
also a generator. It follows that there areφ(φ(p)) generators modulop [out ofφ(p) total elements in
(Z/pZ)∗]. Let ordp(x) denote the order ofxmodulop. So ifordp(x) = p−1 andordq(x) = q−1,
then

ordN (xr) = lcm(ordp(xr
p), ordq(xr

q)) = lcm(p− 1, q − 1),

in which case our generatory will have high order as defined inDC . Since our algorithm generates
x mod p andx mod q independently at random, it follows that the probability of this success is

φ(φ(p))
φ(p)

φ(φ(q))
φ(q)

. (4.1)

Also, we know for anys relatively prime toφ(N), there is a uniquer relatively prime toφ(N)
such thats is the solution tors ≡ 1 mod φ(N). Equivalently, taking inverses in(Z/φ(N)Z)∗ is a
permutation. Therefore if we have a randomr which is relatively prime toφ(N), then we have a
random exponents ∈ (Z/φ(N)Z)∗ in our instance of CDL.

So while, as Bach argues correctly, we do know that there exists anr < logN + 1 that must
be relatively prime toφ(N), we must go about selecting such anr at random in order to invoke



4.2. FACTORING AND PRIME DL IMPLY COMPOSITE DL 45

what we know aboutA’s probability of success, thus step 2 above looks as it does. We note that
sinceN = pq andp andq are roughly the same size (eachk bits), we can approximateφ(N) =
(p− 1)(q − 1) = N − p− q + 1 ≈ N − 2

√
N + 1. Our boundH in step 2 of the algorithm is thus

designed to approximate closelyNφ(N).
Based on this assumption,H is near a multiple ofφ(N), so that if r is drawn at random

from {2, . . . ,H}and gcd(r, φ(N)) = 1, then r mod φ(N) should be uniformly distributed in
(Z/φ(N)Z)∗. Also under this assumption the probability thatr is relatively prime toφ(N) is

φ(φ(N))
φ(N)

(4.2)

In summary,B factors successfully in the event that the random choices ofr andx form a valid
random problem instance inDC , conditions which hold with independent probabilities given in
(4.2) and (4.1) respectively;and in the event thatA is successful on the instance, which occurs with
probability≥ ε. Therefore

Pr[B(Fk) dividesFk] ≥
φ(φ(N))
φ(N)

φ(φ(p))
φ(p)

φ(φ(q))
φ(q)

· ε

≥ ε

63 · log log φ(N) · log log φ(p) · log log φ(q)
,

which is non-negligible ifε is non-negligible. This completes our proof.

4.2 Factoring and Prime DL imply Composite DL

We have seen that we can factor integers efficiently given an algorithm to solve discrete log modulo
N efficiently. The converse of this statement is currently not known to be true, but if we are given
the ability both to factor and to take discrete logs modulo a prime, then discrete log moduloN
becomes feasible.

Proposition 4.5 Suppose that efficient algorithms exist to solve both factorization and discrete log
modulo a primep. It follows that there exists an efficient algorithm to solve discrete log modulo any
N .

We preface this proof with an important lemma.

Lemma 4.6 For any primep, if given the ability to efficiently solve discrete log modulop, it is
possible to efficiently solve discrete log modulope as well for anye.

Proof of Lemma.The converse of the lemma is trivial, for it is clear that if discrete logs modulope

are computable, then so are discrete logs modulop. For the direction which interests us, observe
that the structure of the groups involved is

(Z/peZ)∗ ∼= (Z/pZ)∗ × (Z/pe−1Z),
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where the group operation of the last term is addition, not multiplication. The isomorphism from
left to right is given byx 7→ (π(x), ψ(x)); the projectionπ is reduction modulop, which can clearly
be evaluated efficiently, while the projectionψ is slightly more complicated, and we construct it as
follows.

We can, by considering a quotient, consider the structure of(Z/peZ)∗ as

(Z/peZ)∗ ∼= (Z/pZ)∗ × U,

whereU is the subgroup{x ∈ (Z/peZ)∗ : x ≡ 1 (mod p)} (following [1]) . It is therefore easy
to project ontou by raising any element to the powerp − 1 (modulope); by Fermat the result is
congruent to 1 modulop, and this operation (call itθ) is clearly a homomorphism. We can thus give
an isomorphismη : U → Z/pe−1Z and we will haveψ as the composition ofη andθ.

Consider

η(x) =
(xpe−1 − 1)

pe
mod pe−1.

We want show that this is an isomorphism, but first we show that it is well-defined onU , which
requires thatpe | ape−1 − 1 whenevera ≡ 1 (mod p). Let ep(x) denote the highest power ofp
which dividesx (as ine2(x) earlier). More generally, Bach [1] asserted that for any integersa and
b both relatively prime top, if ep(a− b) ≥ 1 then for allk ≥ 1 then

ep(apk − bpk
) = ep(a− b) + k,

and what we need for well definition follows from settingb = 1, from which we naturally get
ep(a− b) ≥ 1 under the assumption thata ≡ 1 (mod p).

So it is well-defined. It is a homomorphism because

η(ab) =
(ab)pe−1 − 1

pe
=

(ape−1 − 1) + (bp
e−1 − 1) + (ape−1 − 1)(bp

e−1 − 1)
pe

But we know from above thatpe must divide each of(ape−1 − 1) and(bp
e−1 − 1), therefore the

product of these terms is divisible byp2e, and so even after evaluating the fraction this term will be
divisible bype and vanish modulope−1. Therefore we have

η(ab) ≡ (ape−1 − 1)
pe

+
(bp

e−1 − 1)
pe

= η(a) + η(b) (mod pe−1),

therefore this is indeed a homomorphism into the additive groupZ/pe−1Z.
To show that it is an isomorphism, note that if we takea ∈ U such thatep(a − 1) = 1,

then by the aboveep(ape−1 − 1pe−1
) = ep(ape−1 − 1) = e. Therefore when we takeη(a) =

(ape−1 − 1)/pe mod pe−1 we get an integer whichp does not divide. Thereforeη(a) is a unit
mod pe−1, and it follows that it generates all ofZ/pe−1Z. Since we have already shownη is a
homomorphism , we have thatη is surjective, which implies that it is an isomorphism.
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We note that as writtenη is not polynomially computable, since we observed earlier that expo-
nentiation must be modular in order to be efficient. However since the value of the numerator only
matters modulope · pe−1, we can take the exponentiation modp2e−1 and be okay.

Now we have shown that we can efficiently move between representations of elements in
(Z/peZ)∗ and in(Z/pZ)∗ · Z/pe−1Z. Since discrete log in the additive groupZ/pe−1Z is trivial,
assuming the ability to solve it in(Z/pZ)∗ immediately yields solutions in(Z/peZ)∗. Specifically,
suppose that we are giveny ≡ ga modulope. Rewritey = (y1, y2) andg = (g1, g2) in terms of the
group product above. It follows thaty1 ≡ ga1

1 mod p, and thaty2 = g2 · a2 mod pe−1. We can find
a2 just by dividing, anda1 using our assumed ability. Therefore recombinea = (a1, a2) using our
isomorphisms.

With this lemma in place, we proceed into our proof of the above proposition.

Proof of Proposition 4.5.We are faced with the problem of calculatinga such thatga = y mod N
for someg, y, andN given us; we have at our disposal the abilities to factor integers and solve
discrete logs modulop. So first, we factor

N = pe1
1 · · · p

er
r , eachpi prime.

Since the corresponding isomorphism

(Z/NZ)∗ = (Z/pe1
1 Z)∗ × · · · × (Z/per

r Z)∗

follows from this, we know that ify = ga as elements of(Z/NZ)∗, then the projections into
the r groups on the right must also hold; thus ifyi = y mod pei

i is the projection into theith
coordinate, and likewise forgi, we must haveyi = gai

i , whereai is the reduction ofa modulo
φi = φ(pei

i ) = (pi − 1)pei−1
i . (We could also in truth sayyi = ga

i , but it is important to realize that
the logarithm within theith coordinate only exists as an element ofZ/φiZ.)

It is easy to project and determine theyi andgi which correspond, and by the above lemma we
can use our ability to solve discrete logs modulo a prime to solve for theai.

We then have equations of the formy ≡ gai (mod pei
i ), and we must combine them into a

singlea such thaty ≡ ga (mod N).
We can then combine them back intoa using the Chinese Remainder Theorem such that for

eachi, a is congruent toai modulo the order ofg in (Z/pei
i Z)∗. Note that the Chinese Remainder

Theorem does not actually guarantee a solution in this case, because we do not have that these orders
are relatively prime; however since we know such ana exists we can use CRT methods to find it.

We must show how to find these orders, which we denoteordi(g). Trivially, since this divides
φ(pei

i ),
ordi(g) =

∏
q prime, q|φ(p

ei
i )

qeq(ordi(g)),

and Bach [1] shows that we can compute

eq(ordi(g)) = min{k : gφ(p
ei
i )/qk ≡ 1 (mod pei

i )}.
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Note that these last steps require the factorizations ofφ(pi), but we assume a factoring oracle as
part of the reduction.

This completes the reduction from composite discrete log to a combination of prime discrete
log and factoring. We note that this reduction, like the first Bach reduction of the previous section,
is worst-case, in that it assumes the availability of arbitrary factorizations in the final steps. It would
thus be more difficult to attempt a probabilistic version, since the factorization problem instances
are not necessarily coming from the same distribution as the composite modulus of the discrete log
problem.

4.3 Generalized Diffie-Hellman modN implies Factoring

The Generalized Diffie-Hellman problem, or GDH, was introduced in section 2.1.4 as an application
of the discrete log problem; in particular we can consider this problem over a composite moduloN .
It is clear that a solution of composite discrete log will imply a solution to GDH by the setup of the
protocol; we now show that a solution to GDH implies a solution to factoring whenN is a Blum
integer (N = p · q, wherep andq are primes congruent to 3 mod 4).

The result we show was first proven by Shmuely in 1985, and was strengthened by Biham,
Boneh, and Reingold in 1999 [2]. We state the GDH assumption precisely as follows:

Definition 4.7 LetN be any Blum integer which is a product ofn-bit primes andg any quadratic
residue in(Z/NZ)∗. Leta = (a1, . . . , ak) be any sequence of elements inZ/NZ. DefinefN,g,a(x),
such that for anyk-bit stringx = x1 · · ·xk,

fN,g,a(x) = g
∏

xi=1 ai mod N.

Definef̃ to be the restriction off to all k-bit strings except for1k (the string where allxi = 1.)

In the above definition, theai are the secret values selected by each party, and thef(x) values
are the messages sent among the parties in order to determine the secret key—x indicates which
parties’ keys are involved. The secret key itself is thereforef(1k). Therefore an adversary would
be able to see any of the values off̃ , and wishes to compute the valuef(1k).

Definition 4.8 A probabilistic polynomial-time algorithmA solves the GDH problemfor k =
k(n) users with probabilityε = ε(n) if for all sufficiently largen,

Pr[Af̃N,g,a(N, g) = f(1k)] > ε(n),

taken over the coin tosses ofA, the random selection ofN and g, and the random selection of
a1, . . . , ak. [NB: the superscript notation indicates oracle access tof̃—the ability to evaluate the
function on any input with a single instruction.]

Proposition 4.9 If there exists a polynomial time algorithm which solves the GDH problem with
non-negligible probability, then there exists an algorithm which factors with non-negligible proba-
bility.



4.3. GENERALIZED DIFFIE-HELLMAN MOD N IMPLIES FACTORING 49

Proof . So supposeA is an algorithm which solves the GDH problem. We propose the algorithmB
which operates as follows:

1. Choosev at random from(Z/NZ)∗. Then computeg = v2k
mod N .

Note that sinceN is a Blum integer, we knowφ(N) = (p− 1)(q− 1) = (4α+2)(4β+2) =
4(4αβ + 2α + 2β + 1). Therefore4 dividesφ(N), but no higher power of2 dividesφ(N),
since the term in parentheses is clearly odd. Therefore if` is the order ofg, we know that2k ·`
dividesφ(N), but sincek ≥ 2 it follows that ` is odd. Thusgcd(2, `) = 1, which implies
the existence of a multiplicative inverse of 2 modulo`, which we will denote1/2 [its value

is actually just(`+ 1)/2.] Thereforeg1/2 = g
`+1
2 is a square root ofg moduloN .

2. Selectr1, . . . , rk uniformly at random from the range1, . . . , N , and for eachi let ai be the
valueri + 1/2 mod `. Let a be the sequence(a1, . . . , ak). Note that sinceB does not know
`, it also doesn’t know the value of1/2, therefore it does not know theai.

3. Now run the algorithmA on input(N, g). Even thoughB does not know theai, wheneverA
requests the valuẽf(x) from its oracle, we show below thatB can respond with the correct
answer in polynomial time.

4. Provided thatA responds withf(1k) (that is, successfully breaks GDH in this situation), use
this to computeu = g(1/2)k

. As will be shown below, it follows thatu2 = v2 (mod N). If
u 6= ±v, we have a factor ofN . Otherwise fail.

We are left with three things to show:

i. For anyk-bit stringx 6= 1k,B can computẽfN,g,a(x) in polynomial time.

We make a subclaim: for alli = 1, . . . , k − 1, we haveg(1/2)i
= v2k−i

. (Recall that by
definition v = g2k

). We know thatg is a quadratic residue, and therefore any power ofg is
as well. Fori = 1, we know thatg(1/2) andv2k−1

are both quadratic residues which square
to g. Since squaring is an injective function (in fact, a permutation), on the quadratic residues
moduloN for N a Blum integer, it follows thatg(1/2) = v2k−1

. Induction oni proves our
subclaim.

It follows that fori < k, we can computeg(1/2)i
in polynomial time.

f(x) = g
∏

xi=1 ai = g
∏

xi=1(ri+1/2)
.

Consider now the expression
∏

qi=1(ri+y) as a polynomial iny. We can expand in polynomial

time into the expression
∑k−1

j=0 cjy
j for integer coefficientsc (we know the degree is at most

k − 1 becausex 6= 1k, therefore we have at mostk − 1 factors in the product.) Therefore we
can rewrite the above as

f(x) = g
∏

xi=1 ai = g
∏

xi=1(ri+1/2) = g
∑k−1

j=0 cj(1/2)j

= v
∑k−1

j=0 cj2
k−j

,

which we can compute in polynomial time.
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ii. Givenf(1k), u = g(1/2)k
can be computed in polynomial time.

We can show this similarly. We know that

f(1k) = g
∏k

i=1 ai = g
∏k

i=1(ri+1/2) = g(1/2)k · g
∑k−1

j=0 bj(1/2)j

= g(1/2)k · v
∑k−1

j=0 bj2
k−j

,

where here the coefficientsbj come from the expansion of(
∏k

i=1(ri + y)) − yk. Therefore,
since the power ofv which appears at the end of the above equation is computable in polynomial
time, if we knowf(1k) we can divide moduloN to findu efficiently.

iii. Defined as above,u2 ≡ v2 (mod N).

We know thatu2 = g(1/2)k−1
; above we showed thatg(1/2)i

= v2k−i
, so if we leti = (k − 1)

we see thatu2 = v2.

Consider now the probability thatB is successful in factoringN . It is clear that

Pr[B factorsN ] = Pr[(u 6= ±v) ∧A successfully computedf(1k)].

First we notice that sinceg = v2k
for k > 2, and theai were all chosen independent ofg, the values

of fN,g,a(x) are invariant ifv is replaced byv∗ such thatv2 = (v∗)2—that is,f only varies withv2

and not withv. It follows thatPr[(u 6= ±v)] = 1/2.
It follows that if A solves the GDH problem with probabilityε(n), thatB factors with proba-

bility ε(n)/2.



5. Alternative Computational Models

We have so far considered how these two problems relate in the most traditional setting of compu-
tation, “algorithms”, in the intuitive sense. In a way, we have often deviated from the most conser-
vative model of computation by adding the ability to choose random values at will. This allowance
is made in accordance with physical assumptions that sources of sufficiently “high-quality”—that
is, near to uniform—randomness can be found in the real-world. Our experience has convinced us
that these assumptions are reasonable, and in fact some ongoing research has suggested evidence
that, theoretically, randomness actually adds no power to algorithms—that the class of languages
solvable by probabilistic polynomial time Turing machines (calledBPP) equals the classP.

In this section we extend our notion of computability significantly farther, considering notions
of complexity which do not rest on overwhelmingly believable real-world assumptions. They are,
however, not entirely unreasonable, each for its own reasons, and they do pose interesting theoretical
questions which can be asked about the two problems at hand.

5.1 Generic Algorithms

Let us first consider a very limited model, a strict mathematical setting of computation in which
actual proofs of hardness can be established.

5.1.1 Generic Discrete Log Algorithms

We consider now a computational machine which has no access to any special information about the
encodings of the objects it manipulates, but can make oracle queries to a mathematical “black box”
to make the manipulations. Sometimes called the Generic Group Model, this vision of computation
was first analyzed for its implications on the discrete logarithm problem by Nechaev in 1994 [33],
and these results were extended by Victor Shoup in 1997 [46].

Consider an algorithm which works over an abelian groupG. Let S be a set of bit strings with
at least as many elements asG. We consider the strings ofS to be an encoding of the elements of
G, and we call any injective functionσ : G→ S anencoding functionof G onS.

A generic algorithmA for G onS is a probabilistic algorithm defined by the following proper-
ties:

51
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• A takes as input as list of encoding strings(σ(x1), . . . , σ(xk)) where eachxi ∈ G andσ is
an encoding function ofG onS.

• A has access to an oracle function which takes as input two indicesi andj out of the encoding
list, as well as a sign bit, and returnsσ(xi + xj) or σ(xi − xj) depending on the sign bit (+
here indicates the group operation). This value is then added to the list of encodings.

We denote the output ofA, which is a bit string, asA(σ;x1, . . . , xk) [although note thatA never
gets access to thexi, only their encodings.] This model captures the idea of an algorithm which
knows nothing about the group it is working in, only that it has certain elements with certain re-
lations among them. Not knowing the encoding function used to give the bit strings in its list, it
cannot introduce arbitrary group elements into the calculation at all—it can only perform the group
operation on elements it has already seen.

The key result is that in such a situation, no generic algorithm can recover an element from its
encoding. We present this theorem and proof from [46].

Proposition 5.1 (Shoup - Theorem 1)Letn be an integer withp its largest prime factor. LetS be
a set of binary strings with at leastn elements. IfA is a generic algorithm forZ/nZ on S that
makes at mostq queries to the group oracle, then

Pr[A(σ; 1, x) = x] = O(q2/p),

where the probability is taken over the coin tosses ofA, and all possible encoding functionsσ :
Z/nZ ↪→ S and allx ∈ Z/nZ chosen at random.

We note that here the algorithmA is given the encodings of the group identity element and of
another element and asked to produce that element. It follows that if we consider the mapσg : x 7→
gx mod p (in binary), thenσg is an encoding of the group(Z/pZ)∗ ∼= Z/(p− 1)Z onS = {0, 1}m
wherem = dlog2(p)e.

What the theorem tells is that for any algorithmC which solves the discrete log problem with-
out taking advantage of the encoding of group elements, there is some encodingσ for which the
probability of success isO(q2/p), whereq is the number of group operations performed. Therefore
if we want the probability of successP to be strictly greater than some constantc > 0, we must
haveq proportional to

√
p. SoC must have running timeO(

√
p).

Proof of Proposition.The following Lemma will be needed:

Lemma 5.2 If f(X1, . . . , Xk) is a non-zero polynomial with coefficients inZ/ptZ, with total de-
greed, then the probability thatf(x1, . . . , xk) = 0 for a randomk-tuple(x1, . . . , xk) ∈ (Z/ptZ)k

is at mostd/p.

Proof of lemma.We consider two cases,t = 1 andt > 1.
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t = 1: Prove by induction onk. Supposek = 1. Then since over a fieldf can have onlyd roots, the
probability that a random element ofZ/pZ is a root is at mostd/p. If k > 1, f(X1, . . . , Xk)
can be re-written as a polynomial inX1 with polynomial coefficients inZ/pZ[X2, . . . , Xk].
Let f1(X2, . . . , Xk) be the coefficient of this polynomial corresponding to some termXd1

1

which yields the total degreed. By induction, it follows that sincef1 is a(k−1)-variable poly-
nomial with total degreed− d1, f1 = 0 with probability at most(d− d1)/p, or equivalently,
thatf1 has at mostpk−1(d−d1)/p roots. If(y2, . . . , yk) is such a root, thenf(X1, y2, . . . , yk)
might be either zero everywhere; if not, or if(y2, . . . , yk) is not a root then the one-variable
polynomialf(X1, y2, . . . , yk) has at mostd1 roots. Therefore the total number of roots off
is

p · (pk−1(d− d1)/p) + d1 · (pk−1) = d · pk−1.

It follows that the probability that a randomk-tuple is a root off is (d · pk−1)/pk = d/p.

t > 1: Divide the equationf = 0 by the highest power ofp which occurs, and then reduce modulo
p. The result is a polynomial of no higher degree overZ/ptZ with t = 1. Since randomly
choosing elements modulopt yields random reductions modulop, apply the above result for
t = 1, and the lemma holds.

At each stage,A’s oracle interactions give it the encodingσ(xi) of somexi ∈ Z/NZ. Since
Z/NZ ∼= Z/ptZ × Z/sZ, we can equivalently think of each uniquexi as representing a unique
ordered pair(x′i, x

′′
i ) over this group product.

We assume thatA knows the orderN of the group and even its prime factorization. So ifA is
able to recoverx, then it must be able to recoverx′, the reduction ofx modulopt.

If we therefore assume thatA restricts its interest to the modpt components of the group el-
ements, at each stageA can maintain a listF1, . . . , Fk of linear polynomials with coefficients in
Z/ptZ such thatxi = Fi(1, x)—these polynomials can be derived recursively from previous queries
and its original inputsσ(1) andσ(x).

Though we write it as a function of two variables, since the first is always1, each polynomial is
really in a single variableX. Initially F1(X) = 1 andF2(X) = X.

I claim that the only wayA can get any information at all about the group is if it gets two
encodings which are the same,σ(xi) = σ(xj), butFi 6= Fj , which givesA a linear relationship
on 1 andx. For suppose for alli, j such thatFi 6= Fj we haveσ(xi) 6= σ(xj). ThenA has
learned the encodings of distinct elements; sinceσ is a random encoding function, theseσ(xi) are
independently random strings inS, and it follows thatA learns nothing from them.

Clearly there is no way to findx without finding such a relation (for otherwiseA will never get
any non-random information), and therefore we can bound the probability thatA will recoverx by
the probability thatA can findi andj with Fi 6= Fj butσ(xi) = σ(xj).

But if it can do this, then consider the polynomialG = Fi − Fj , which is a polynomial in
Z/ptZ[X] of total degree no more than 1. SinceFi 6= Fj we haveG 6= 0, so by the previous lemma
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we know that the probability thatG(x) = 0 is at most1/p for a randomx ∈ Z/ptZ. But since
σ(xi) = Fi(x) andσ(xj) = Fj(x), if we do haveσ(xi) = σ(xj) thenx is a root ofG.

Since there areq queries, there areq2 possible pairsi, j. It therefore follows that the probability
A can find any pairi, j with the properties described, given the encoding of a randomx, is at most
q2/p.

5.1.2 Generic Algorithms and Factoring

This being a paper about the relationship between discrete logs and factoring, we would like at
this point to be able to present the equivalent proof that no efficient generic algorithm can solve the
factoring problem. However this sort of problem takes place more in a ring than a group, and several
issues on generic ring algorithms remain open. One relevant result by Boneh and Lipton [5] showed
that in a “generic field model,” an algorithmis able to determine an element from its encoding given
the order of the field, but it is unknown how this result changes when field becomes a ring and the
order remains concealed (as it naturally must for factoring).

The closest we appear to be on this issue is a very recent paper by Damgård and Koprowski [11]
which showed that root extraction, equivalent to RSA decryption, is provably hard for a generic
algorithm which does not know the order of the group but does know bounds on the order as well
as the distribution within those bounds.

Lacking the bidirectional implication between RSA decryption and factoring, this result is not
quite germane, but it does suggest that provable generic bounds might not be discovered for the
factoring problem.

The usefulness of the generic model lies in two areas. First, it allows us to recognize that certain
algorithms are in a sense “optimal” for their class, so to speak. For example, Pollard’s rho algorithm
for discrete log is generic, as is the Pohlig-Hellman algorithm. However the index calculus method
is not, since it specifically uses the fact that group elements are encoded as integers. The fact that
the rho algorithm hasO(p1/2) running time, which we know from Shoup is the lower bound, tells
us in one sense that trying to improve on rho is not a good use of our time.

The second use of the model is in motivating the search for contexts in which it has deeper
meaning. More specifically, it leads us to find groups where we know of no way to exploit the
representation of elements, and therefore the best algorithms we have to solve discrete log in these
groups must necessarily be generic. This reason leads us to use discrete log over elliptic curves
for digital signature schemes, because at present the best algorithms for taking these logarithms are
generic, and therefore the complexity bounds apply.

5.2 Quantum Computers

The existence of a quantum computer in any practical sense is only theoretical—those built to date
have been capable of processing inputs of only a small number of bits. However even at such small
scales the proof-of-concept is worth taking note of, particularly for cryptographers, whose very
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existence—embodied in the security of the protocols presented in section 2—is threatened by main
result we present here: that quantum computers are capable of efficiently solving both factoring
and the discrete logarithm. We present a brief introduction to quantum computing for the purposes
of discussing Shor groundbreaking result; for a good and more complete introduction to quantum
computing refer to the text by Michael Nielsen and Issac Chuang [34].

5.2.1 The Fundamentals

While we think of a normal computer being a collection of bits, each of which is in one of two
possible states, either1 or 0. In a quantum computer the fundamental unit of information is not so
restricted. Known as aqubit, it is a quantity which also has a state, but there are infinitely many
possible states. The standard notation for a state in a quantum computer, called Dirac notation, is
|·〉. So while a qubit can be in the standard states|0〉 and|1〉, more generally we allow it to be in
any state which is a linear combination of these basis states:

|s〉 = α|0〉+ β|1〉, α, β ∈ C, such that|α|2 + |β|2 = 1

This mixed state, orsuperposition, only holds until the qubit is observed (sometimes “measured”),
at which point it is forced into the physical world where it can only have value 0 or 1. If the qubit is
in state|s〉 as above, then when observed it will have the value 0 with probability|α|2 and the value
1 with probability|β|2.

In one sense, quantum computing gives us comparable power to a computer with infinite pre-
cision, since each individual quantum bit is capable of holding any of an infinite number of values.
However, just as infinite precision is memory is infeasible, so is measuring a qubit beyond 1 bit of
precision.

We can consider a quantum computer as a state machine withn qubits, and represent the entire
state of the machine as a superposition of the2n basis states. For example ifn = 3, the basis states
are|000〉, |001〉, |010〉, |011〉, etc., and the state of the machine is a complex linear combination of
these values,

∑
i αi|Si〉 such that

∑
|αi|2 = 1. Observing this machine is just like as with one bit:

eachSi will be the observed state with probability|αi|2.
Just as a quantum computer is in all of its states simultaneously (with some probability per

state), the transitions between states all occur simultaneously, each path of computation having a
certain complexprobability amplitude. Under this view, if a superposition is thought of as a vector
in the complex vector spaceV of possible superpositions, a transition from one configuration to
another can be viewed as an linear transformationA : V → V , which operates on somefinite
subsetof the bits of the configuration from one distribution to another. To ensure that the sum of the
state-probabilities remains 1, it turns out that the only requirement is thatA−1 = ĀT , i.e., thatA be
a unitary matrix (see [45] or [34]).

A useful such transformation is theFourier transform matrixAq which sends state|a〉, for each
a with 0 ≤ a < q to the distribution

q−1∑
b=0

e2πiab/q

√
q
· |b〉.
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Thus the probability of transitioning from state|a〉 to state|b〉 is e2πiab/q/q1/2. We will use this
matrix often in the proof of the main theorem, Shor [45] shows howAq can be constructed in
polynomial time forq even of exponential size providedq is smooth.

In addition to these transform matrices, we have all the standard tools of classical algorithms,
for it can be shown that iff is a classically computable function, thenf can be computed by a
quantum computer as well, provided it can be reversed (or that the argument remains on the tape).
Thus we can transition from a superposition

∑
α · |a〉 to

∑
α · |a, f(a)〉.

5.2.2 The Impact

While there is substantial mathematics going on in the proof and analysis, the overall intuitive
effect of quantum computation on problems such as factoring and discrete log is quite logical—
these problems are difficult only in that the number of tests to be performed is huge, but each of the
tests is quite easy; in a situation where all the tests could be done at once, it should be efficient.

We thus arrive at the main relevant result of quantum computing:

Proposition 5.3 (Shor) The problems of factoring and discrete logarithm are solvable in polyno-
mial time on a quantum computer.

Proof (for factoring).We have seen already that a factor ofN can be found if we can determine the
orderm of an elementx moduloN , such thatxm ≡ 1 (mod N). We demonstrate now how to do
this in polynomial time using a quantum computer.

First, find a numberq in the range2N2 < q < 4N2 which is smooth in the sense that for
some fixedc, no prime factor ofq is greater than(logN)c; this bound will assure us that working
with q and specifically the construction of the transform matrixAq mentioned above will always be
possible in polynomial time.

Now, we place our quantum computer in the uniform superposition over states representing each
elementa moduloq. This state is written

1
q1/2

q−1∑
a=0

|a〉,

and for readability we do not write the complete state of the machine, which would actually be
|N,x, q, a〉, since all but the last entry will remain constant throughout the operation of the machine.

We now calculatexa (mod N). This occurs in whatever state we find the machine, so the
resulting superposition is

1
q1/2

q−1∑
a=0

|a, xa (mod N)〉.

We now apply the Fourier transformAq to the first part of our state; recall that this mapsa→ b
with probability amplitude 1

q1/2 exp(2πiab/q) for eachb ∈ Z/qZ. Therefore our machine is placed
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in the superposition

1
q

q−1∑
a=0

exp(2πiab/q)|b, xa (mod N)〉.

At this point we observe the machine, seeing the values ofb and ofxa (mod N). Consider the
probability that we end in a particular state|b, xk (mod N)〉. To be in this state at the end, we
clearly must have been in some state|a, xa (mod N)〉 before the transformationAq, wherexa ≡
xk (mod N). For each such state, we know the probability of moving froma to b, and therefore
counting over all such ways to reach the state, the probability of ending in|b, xk (mod N)〉 is

P =

∣∣∣∣∣1q ∑
a:xa≡xk

exp(2πiab/q)

∣∣∣∣∣
2

.

Since we are searching form such thatxm ≡ 1, we can equivalently think of this sum as over
all a satisfyinga ≡ k (mod m). Therefore writea = tm+ k and we can rewrite

P =

∣∣∣∣∣∣1q
b(q−k−1)/rc∑

t=0

exp(2πi(tm+ k)b/q)

∣∣∣∣∣∣
2

Theexp(2πikb/q) terms do not involvet and therefore can be factored out; since they have magni-
tude 1 they can be ignored as well. Also, since theexp(2πix) function is periodic with unit period,
it follows that we can replacemb with any residue modq, so let us fixmb as the residue which lies
in the interval(−q/2, q/2].

We now show that this probabilityP is large ifmb is small, for the probability amplitudes will
then be aligned in the same direction. If we havemb small with respect toq then using the change
of variablesu = t/q, we can approximateP by∣∣∣∣∣

∫ 1
q
b(q−k−1)/mc

0
exp(2πimbu) du

∣∣∣∣∣
2

.

If −m/2 ≤ mb ≤ m/2, then it turns out this integral is bounded below by4/π2m2. Thus the
probability of observing a given state|b, xk (mod N)〉 is thus at least4/π2m2 > 1/3m2 as long as
−m/2 ≤ mb ≤ m/2, or equivalently if there exists somed such that−m/2 ≤ mb − dq ≤ m/2,
or by rearranging the terms and dividing bymq:

|b/q − d/m| ≤ 1/2q.

Recall that we knowb andq after observing the machine, but are searching form andd. How-
ever, sinceq ≥ 2n2, there is only one suchd/m at most which satisfies this inequality with denom-
inatorm < N . Thus if we roundb/q to the nearest fraction with denominator less thanN (say,
using continued fractions), we can find this fractiond/m. If a qualifying fraction in lowest terms
can be found (that is,m < N andgcd(d,m) = 1, we will have found the orderm.
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Consider the number of states|b, xk (mod N)〉 which will give us such a fraction. We know
that there areφ(m) possible numeratorsd, which will give a fraction in lowest terms, and each of
these corresponds to a particularb so thatd/m is close tob/q in the above inequality. So there are
φ(m) possibilities forb; for xk there arem possibilities, since the order ofx is m. This gives us
m · φ(m) states each of which allow us to computem if observed. Since we have seen that the
probability of each of these states is at least1/3m2, the probability of observing a successful state
is at leastm · φ(m)/3m2 = φ(m)/3m.

We have a theorem which assertsφ(n) ≥ n/6 log log n, which bounds our probability of success
to Θ(1/ log logm), so we expect success of factoring to be extremely likely after onlyO(log logm)
repetitions.

Proof (for discrete log).The proof is quite detailed for the general case of discrete log, and the
details are less important for our purposes here than the existence itself, so we present a sketch here.
Recall that our purpose is to finda such thatga = y mod p, giveng, y, p.

Givenp, find a smoothq in the intervalp ≤ q ≤ 2p. Shor demonstrates how to do this. Now
chooseb andc uniformly at random fromZ/p− 1Z and computegby−c mod p. The machine is
then in the superposition

1
p− 1

p−2∑
a=0

p−2∑
b=0

|b, c, gbx−c mod p〉.

Apply the Fourier transformAq which independently manipulates the first two positions of the state,
sendingb 7→ d, c 7→ e for eachc ande in Z/qZ with amplitude1/q exp(2πi(bd + ce)/q), leaving
the machine in the superposition

1
(p− 1)q

p−2∑
b,c=0

q−1∑
d,e=0

exp(
2πi
q

(bd+ ce))|d, e, gbx−c mod p〉.

In the “easy case” wherep − 1 is smooth, then we can letq = p − 1, and Shor shows that the
probability of observing a particular state|d, e, y〉 with y ≡ gk mod p is∣∣∣∣∣ 1

(p− 1)2

p−2∑
c=0

exp(
2πi
p− 1

(kd+ c(e+ ad)))

∣∣∣∣∣
2

.

If e + ad 6=≡ 0 mod p− 1, it then follows that this is a sum over a full set of roots of unity, thus
has probability 0. Ife + ad ≡ 0 then the sum is over the same root of unity(p − 1) times, leading
to a probability of1/(p − 1)2. Since there are(p − 1) values ofd and(p − 1) non-zero values of
y, it follows that there are(p− 1)2 suchd, e pairs. Thus this calculation willalwaysproduce a pair
d, e such thate ≡ −ad (mod p − 1). So as long asgcd(d, p − 1) = 1, we have the exponenta.
Since all possibleds occur with equal probability, our chance of this occurrence isφ(p−1)/(p−1),
and as in the above proof we can get a very high probability of success by repeating our quantum
experimentO(logc p) times.

For full analysis of the general case whenp− 1 is not assumed smooth, see [45].
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The significance of these results for us is that they have once again grouped factoring and dis-
crete log into the same complexity class, sometimes calledBQP, of problems solvable by prob-
abilistic polynomial-time algorithms on a quantum computer. As already mentioned, the practi-
cality of these results has not yet been seen—in fact it is just one of several new computational
paradigms which seek to harness the massive computation power of natural phenomena, among the
most researched is DNA-based computers [4], which are believed capable of solvingNP-complete
problems in polynomial time.

5.3 Oracle Complexity

We now turn to a seemingly all-powerful model of computation, in which algorithms have access
to an infinite font of knowledge. We imagine this source of knowledge as an “oracle” capable of
instantly answering any yes/no question, and we consider the number of questions necessary to
solve a particular problem.

In some settings, particularly cryptographic ones, this model bears some resemblance to reality
despite its fantastic nature—we can use the oracle model to answer questions such as “if an adver-
sary gains access to the low-order bits of myp andq, can they recover the fullp andq efficiently?”
We consider both the restriction of our oracle to actual bits of the secret, and the operation of the
oracle on arbitrary yes/no questions; the latter is naturally a more theoretical mode of analysis, but
it does provide an alternative way of considering how much security is contained in a certain kind
of secret.

5.3.1 Oracle Complexity of Factoring

Here we present two results on the oracle complexity of factoring. The first was shown by Rivest
and Shamir in 1985. As two thirds of the team which created the RSA cryptosystem (shown in
Chap. 2 to depend on the inability to recoverp andq fromN = pq), they were naturally concerned
with the security ofp andq even in the event that some kind of “side information” was leaked to an
adversary.

For introduction, we show the trivial method of factoring integers using an all-powerful oracle.

Proposition 5.4 A composite integerN can be factored in polynomial time usingn/2 oracle ques-
tions, wheren = dlog2Ne.

Proof . For i = 1, . . . , n/2, ask the oracle “what is theith bit of the smallest prime factor ofN?”,
and let the result beβi. Then output the binary numberβn/2 · · ·β2β1.

We know that ifp is the smallest prime factor,p ≤
√
N , so the binary representation ofp

requires no more thanlog2

√
N = n/2 bits. Thereforen/2 questions will always suffice.

Rivest and Shamir [42] improved on this result as follows.

Proposition 5.5 A composite integerN = pq can be factored in polynomial time usingk = n/3
oracle questions.
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Proof . Ask for the topk bits of the smallest factorp. We can then writep = p12m + p0, where
m = n/6; p1 ≤ 2k is known andp0 ≤ 2m is not known. We can represent the other factorq
similarly asq = q12m + q0; while both quantities are initially unknown, we can computeq1 as the
k highest bits ofN/(p12m).

Therefore we have

N = (p12m + p0)(q12m + q0) = p1q122m + (p12m)q0 + (q12m)p0 + p0q0.

To isolate our unknowns, we abbreviateX = N − p1q122m, A = p12m, B = q12m, and our
equation becomes

X = Ap0 +Bq0 + p0q0.

At this point we can try to approximateX as best as possible by a linear combination ofA and
B, the remaining termp0q0 (which is relatively small) is our approximation error. We therefore
have a 2-dimensional integer programming problem of minimizingX − Ap0 − Bq0 subject to
the constraints0 ≤ p0, q0 ≤ 2m. H.W. Lenstra proved [24] that this problem can be solved in
polynomial time, the details of which we omit because it is quite involved.

The Rivest/Shamir result shows that knowledge of the high-order bits of one factor ofN leads
in polynomial time to the entire factorization, and indeed the same proof applies when considering
knowledge of the low-order bits. In this sense, the question of oracle complexity is relevant, for
we can conceive of an adversary who, with some direct access to the computer hardware or some
temporary storage might be able to piece together parts of the actual values used in computation.
However, if we generalize back into the world of an oracle capable of providing bits which answer
anyquestion, not simply bits which at one point physically existed, Maurer showed that the number
of questions can be made less thanεn for arbitrarily smallε, although a small probability of failure
is introduced.

The result depends on manipulating the parameters of the elliptic curve factoring method de-
scribed in Section 3.3.

Proposition 5.6 (Maurer) For anyε > 0, a sufficiently large integerN (withn = log2N bits) can
be factored in polynomial time using at mostε · n oracle questions. The probability of error is at
mostN−ε/2 under plausible conjectures relating to the elliptic curve factoring algorithm.

Proof . We assume for this section thatN is not divisible by2 or 3, and thatN is not a prime power;
in these cases a factor can be easily found.

Now, with ε given, choose an arbitrary positiveδ < ε and letc = 1/(ε − δ), W = nc.
Now let h =

∏
qe(q) for all prime q ≤ W , wheree(q) is the greatest integere such thatre ≤

N1/2 + 2N1/4 + 1. We note that this is an upper bound on the number of elements on an elliptic
curve overFp for any prime factorp of N , based on Hasse’s result that the order of a curve overFp

is bounded above byp+ 2
√
p+ 1.

LetF represent the finite field with23n elements, and chooses andt uniformly at random from
F . Choose a natural enumeration of the elements ofF asα1, . . . , α23n , and a natural representa-
tion of the elements ofF as triples ofn-bit integers(a, x, y); let (ak, xk, yk) be the triple which
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corresponds to the elements · αk + t; define

bk = y2
k − x3

k − akxk mod N.

For motivation, we note that(xk, yk) is then a point on the moduloN elliptic curvey2 = x3 +
akx+ bk.

We then ask the oracle the followingbε · nc questions. Fori = 1, . . . , bε · nc:

• If there exists an integerk with |k| < ε · n such that the following two conditions hold under
the above definitions:

1. For p the smallest prime factor ofN , 4a3
k + 27b2k 6≡ 0 (mod p), and the order of the

elliptic curveE : y2 = x3 + akx+ bk overFp isW -smooth.

2. For some prime factorq > p of N , 4a3
k + 27b2k 6≡ 0 (mod q), and the order of the

elliptic curvey2 = x3 + akx+ bk overFq is not divisible by the largest prime factor of
the order of the point(xk, yk) onE overFp.

then output theith bit of the smallest suchk; otherwise output 0.

If the oracle returns 0, then we have failed. If not, we have a valuek. We can compute
ak, bk, xk, yk as defined above, and then proceed as in the ECM for factoring described in Sec-
tion 3.3. Consider the curvey2 = x3 + akx+ bk moduloN . We know that the pointP = (xk, yk)
is on it, so try to compute the pointh · P . The conditions onk guarantee for us the fact that
h · P ≡ O (mod p), but for some other factorq of N we haveh · P 6≡ O (mod q). It follows
that we thus will have found a factor ofN , since whenh · P is written as(α : β : γ) in projective
coordinates,γ is a multiple ofp but not ofN . Refer to Section 3.3 for the details.

Consider the running time of our algorithm. The formal addition of points on an elliptic curve
in the ECM isO(n2), and (using the same trick as seen in the modular exponentiation algorithm of
Proposition 1.6) we can computeh · P with approximately2 log h additions. This is polynomial in
n since

log h =
∑

e(r) log r ≤ w logw = O(nc log nc).

The probability of success requires extending Lenstra’s conjecture about the distribution of
smooth integers in the Hasse interval, and a complete derivation of Maurer’s claim can be found
in [27].

Practically, Maurer’s result is not particularly damning for cryptographers, since while the oracle
necessary for Rivest and Shamir seems potentially real, this oracle is unlikely to ever find a real-
world manifestation. Maurer is only able to ask so few questions because the oracle is being asked
to search through a huge directory of possible elliptic curves and find one which will work.

5.3.2 Oracle Complexity of Discrete Log

Rivest and Shamir suggest the additional problem of considering the oracle complexity of the dis-
crete logarithm, although they do not address it at all, nor does the current literature contain much
on this point.
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I conjecture that discrete log will behave differently than factoring under this complexity model
because discrete log is significantly more malleable than factoring. That is, given one problem
instance (sayy = ga mod p) we can easy construct related problem instances (sayg2a mod p = y2)
without breaking the problem.

Because of this observation, it seems to be possible to take an algorithmA which solves dis-
crete logs based on partial information about the exponent and build an algorithm which solves
full discrete logs using this subroutine. In order to structure the proof, we do not actually haveA
make queries to an oracle; rather we allow ourselves to simulate the role of the oracle and, knowing
the questions thatA will ask (in this case, for the low order bits of the exponenta), provide those
answers ourselves in the form of an additional input to the algorithm.

Conjecture 5.7 Suppose that there exists an algorithmA, which on inputspe, g, y, b, wherey =
ga mod pe, outputsa in polynomial time provided thatb is thek = k(n) lowest bits ofa for some
functionk(n) < n, wheren = log2 p is the size of the modulus. It follows that there exists a
polynomial time algorithm which on inputspe, g, y of the same form outputsa.

We would like to convert our inputpe, g, y into a new inputp′e
′
, g′, y′ = g′a

′
, where in some way

a can be recovered froma′ and we know thek lowest bits ofa′. From this, we can use our subroutine
A to find a′, and then recovera. Naively we could generatea′ = 2k · a by lettingy′ = y2k

, and
then we would know that the lowestk bits ofa′ are0. Unfortunately this does not succeed, sincea′

only exists modφ(pe), and therefore multiplying by2k will cause some “wrap-around” and thek
low order bits will be scrambled.

To correct for this we might try lettingp′ = p ande′ = 2e. This gives us more space to work
with in the exponent, and it’s likely that multiplying by2k will not cause wraparound. However we
are left with findingg′ which has high order modulop2e, and doing this successfully implies the
ability to multiply bya, which we cannot do.

So we leave the question open.
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