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ABSTRACT

We present a survey of the state of two problems in mathematics and computer science:
factoring integers and solving discrete logarithms. Included are applications in cryptography,
a discussion of algorithms which solve the problems and the connections between these algo-
rithms, and an analysis of the theoretical relationship between these problems and their cousins
among hard problems of number theory, including a new randomized reduction from factoring
to composite discrete log. In conclusion we consider several alternative models of complexity
and investigate the problems and their relationship in those models.
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1. Introduction

Problem 1.1 (Factoring) Given a positive composite integat, to find an integer;, with1 < z <
N, such thatr dividesN.

Problem 1.2 (Discrete Logarithm) Given a prime integep, a generatorg of (Z/pZ)*, and an
elementy € (Z/pZ)*, to find an integer such thaty® = y.

In the recent history of applied mathematics and computer science, the two problems above have
attracted substantial attention; in particular many have assumed that solving them is sufficiently
difficult to base security upon that difficulty. This paper will analyze these two relevant problems
and consider the relationships between them.

The first is the problem of finding the prime factorization of an intelyeiconsidered particu-
larly in the most difficult and relevant case whéYe= p - ¢ for large primes andq. The second is
the discrete logarithm problem (or just “discrete log”), to find, given an elemeha ring(Z/pZ)*
constructed by raising a generatoio a secret powet (that is,y = ¢* mod p), the logarithma.

Both problems are challenges of inversion. New problem instances are trivial to create easily, by
the easy tasks of multiplying integers or modular exponentiation respectively, but neither of these
tasks has yet admitted an efficient method of being reversed, and this property has led to the recent
interest in these problems.

From a pure mathematical perspective, neither problem is impossible to solve definitely in a
finite amount of time (and such problems certainly exist, e.g., the halting problem of computational
theory or Hilbert's 10th problem—finding integer solutions to diophantine equations). Both fac-
toring and solving a discrete logarithm can be accomplished with a finite search, througivthe
possible divisors and the— 1 possible exponents respectively.

However, in the real world, such solutions are unacceptably inefficient, as the number of algo-
rithmic steps required to carry them out is exponential in the size of the problem. We mean this
as follows: to write down the integé¥ in binary takedog, N bits, so we say that the size of
isn = logy N. To find a factor of N by the trivial method described already will taRé'/2 trial
divisions, or on the ordegi2™)!/2 = (1/2)" steps, which is exponential i the size of the problem.

The research | will consider in this thesis is on the efforts to improve upon these solutions. The
ultimate goal of such efforts would be to find a solution which runs in time polynomiallut as of
yet no such solutions have been discovered, and much of cryptography is based on the assumption
that no polynomial time solutions exist.
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1.1 Notation

Because we have a mixed audience of mathematicians and computer scientists, it will be worth a
few extra sentences about some notation conventions and some facts we will assume without proof.

e When in the context of algorithm input or output, the symbb(sim. 0%) represents a string
of k 1's (0's) over the alphabg, 1}. It does not indicate &-fold multiplication.

e \ertical bars| - | are generally abused herein, and will have one of the following meanings
determined by context. IX is a set, thedX| is the number of elements iK. If x is a bit
string, or some other object encoded as a string, thers the length of the string in bits;
specifically if N is an integer encoded as a bit string, théf] = [log, N']. If a is a real
number not in the context of string encoding, thepis the absolute value af (this is used
rarely).

e We also will be liberal about our use of the symbkel In the context of an algorithm, it
is an assignment operator. Thus the statemert z + 1 means “increment by 1” as

an instruction. IfS is a set, we writex £ S or sometimes just «— S to say thatr is
an element of5 chosen uniformly at random. l# is a distribution (that is, a sét and a
probability measurg : S — [0, 1] such thab | g 1u(s) = 1), thenz «— M means to choose
x out of S according toM so that the probability for any particulare S thatx = s is
u(s). When we wish to preseut explicitly, we will often do it by presenting a randomized
algorithm which chooses an element; the Setnd the measurg is then implicitly defined
by the random choices of the algorithm.

e For any integetN, Z/NZ (the integers moduldV) is the set of equivalence classes of the
integers under the equivalence relation~- b <= N | a —b. (Z/NZ)* is the group of
units of Z/NZ; equivalently, the group of elements Bf NZ with multiplicative inverses;
equivalently, the sefa € Z : gcd(a, N) = 1} modulo the above equivalence relation.

e 7(N) is the number of positive primgs< N. We knowrn(N) ~ N/log N for large N .

e ¢(N) is the Euler phi-function (or totient function), whose value is the number of integers
0 < a < N relatively prime toN, i.e.,¢(N) = |(Z/NZ)*|. Forp prime ¢(p) = p — 1,
for p, g relatively primeo(pq) = ¢(p)¢(q); and it is known thaty(N) > N/6loglog N for
sufficiently largelV.

1.2 Computational Complexity Theory

The broader goal of this paper is to consider (a small aspect of) the quiestiomuch “hardness”

exists in mathematics®ver the past decades we have built real-world systems, several of them

to be discussed later, which rely on the hardness of mathematical problems. Are these hardnesses
independent of one another, or are they simply different manifestations of a single overriding hard
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problem? If an efficient factoring algorithm were found tomorrow, how much of cryptography
would have to be thrown out? Only those cryptosystems which rely specifically on the intractability
of factoring, or others as well?

One goal of complexity theory is to think about ways to sort mathematical and computation
problems into classes of difficulty, and thus take steps towards understanding the nature of this
hardness. In order to provide a backdrop for the discussion of our two problems, we first present a
brief introduction to the basics of complexity theory.

Though some would strongly object in general, for our purposes the specific model of computa-
tion is not particularly important. To be perfectly specific, we would want to build up the theory of
computation and Turing machines to provide a very rigorous definition of “algorithm,” and to some
degree we will do so here in order to support specific results which are particularly relevant to the
main thread of this paper.

For our purposes, aalgorithmis any finite sequence of instructions, or operations, which may
take finite input and produce finite output. In different settings, we will both describe the operations
of a given algorithm explicitly, and implicitly consider such an algorithm. The complexity of a given
algorithm is the number of operations performed as a function of the length of the input expressed
as a string in some alphabet. For brevity of description, we often specify the input of an algorithm
as a member of some arbitrary set, with the implicit understanding that such input can be encoded
as a string over the binary alphabjgt 1}, and over this alphabet is its length considered. This
understanding is intuitively unproblematic for any countable input set we might want.

We also will sometimes express the output of an algorithm as an element of an arbitrary set,
and we do so with the implicit understanding that forcing algorithms to output a sindle,hi} is
sufficient to express all algorithms of finite output—to outpits, specify am-tuple of algorithms
each providing a bit of the output. For the initial stages of developing this theory, we will consider
such algorithms which output only single bits.

Definition 1.3 Alanguageis a set of strings over the alphabfgt, 1}.

As discussed, most any interesting collection of mathematical objects can be considered to be a
language.

Definition 1.4 A languageL is decidedby an algorithmA if A outputsl on inputz € L and A
outputs0 on inputx ¢ L.

Definition 1.5 An algorithmA is polynomially boundedif there exists a polynomial functigrix)
such that whem is run on inputz it outputs a value after no more thaif|z|) operations. Recall
that|z| denotes the length afin bits.

In this paper we apply the word “efficient” to algorithms with the same meaning as “polyno-
mially bounded.” We also use the word “feasible” to describe a problem for which there exists an
efficient algorithm solving it.

For the sake of example, and to facilitate discussion of several results and relevant applications
of the discrete log problem, we present a useful and efficient number theoretic algorithm for a
problem which at first glance can appear daunting.



4 CHAP. 1. INTRODUCTION

Proposition 1.6 There exists a polynomial-time algorithm to compute the modular exponentiation
a™ mod n, wherea, m,n € Z.

Proof . Consider the following algorithm:

MOoDEXP(a, m,n):
1. Write m in binary asm = ByBy_1 - - - B1By.
2. SetMy = m, and for eacti = 1,...,¢, let M; = M? | mod n.

3. Output ] M; (working modn).
:B;=1

The successive squaring requires- log,(m) multiplications, and the final multiplication of
the powers corresponding to the on bitsiefequires at most more multiplications. Therefore the
algorithm is clearly efficient, with operations bounded by a polynomiatih< |(a, m,n)]. [

Note that without working modula, there isno efficient algorithm for computing exponenti-
ation in general—just giving an algorithm to write do@h (which haslog 2" = n binary digits)
would require at least steps, which is not polynomially in the length of the input.

The collection of languages which are decided by efficient algorithms earns substantial attention
from theoretical computer scientists, and is given the n@me

Definition 1.7 A language isn P if it is decided by a polynomially bounded algorithm.

In addition toP, there is another common class of decidable languages often studied by com-
puter scientists, called/P. There are several equivalent ways of expressing membersiiPin
but the key feature is that"P contains languages decided bgn-deterministi@lgorithms. But
what is such a thing? So far we have only allowed algorithms to perform specified operations; now
we must also allow algorithms to make random choices. There are several ways to formulate this,
for our purposes we will give the algorithm access to an “oracle” which flips a fair ebthus has
a source of truly random bits which we assume to be entirely separatedfrom

To be able to think ofA’s operations in a functional sense, we dendte; ) as the output ofl
on inputz if the random oracle gives it the sequenaef coin tosses. We require that the algorithm
terminate after a finite number of steps regardless of the random choices, and we say that such an
algorithm A decides a language if for everyc L, there is some sequencsuch thatd(x;r) = 1
and for everyr ¢ L, for all » we haveA(x;r) = 0. The notationA(x) thus stands for a random
variable over the probability space of possibl®r “over the coin tosses of.”

Definition 1.8 A language isn NP if it is decided by a polynomially bounded nondeterministic
algorithm.

Though the above is standard, we give another equivalent characterization that will be more
helpful for our purposes, thatP is the class of languages which have concise, easily verifiable
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proofs of membership. That is to sdy € NP if there exists another languad€& < P and a
polynomialp such that

x € L <= there exists (z,w) € W with |w| < p(|z|)

The elementw is called the witness, or proof. Its conciseness is captured in the requirement
|lw| < p(|]z]), so that the length of the proof is bounded by a polynomial in the length of the thing
being proved, and the easy verification is captured in the conditioithatP.

Problem 1.9 DoesP = N'P?

This open problem remains one of the central questions of theoretical computer science. Of
course, the answer is widely believed to be no. The crux of the equation lies in the saA¢d@led
complete problems\/P problems to which all other problems.P reduce. Ifanyof these prob-
lems were shown to be iR, then? = NP would follow. We can thus identify\ P-completeness
as a single independent “hardness,” and the mid@rcomplete problems as non-independent man-
ifestations of it.

Returning to the problems at hand—as already stated there is no known polynomial time al-
gorithm for factoring integers, so we do not know whether the problem 18.irAlso, factoring
integers has neither been shown nor “disshown” to\lf8-complete. However, while it is not
really a language, it can be considered\a® problem, with the following characterization:

Proposition 1.10 If P = AP, then there exists a polynomial-time algorithm for factoring integers.

Proof . We begin with a lemma. | claim that the language
L = {(N,z) : N has a positive proper divisor less thah

isin N'P.
For now, suppose this lemma is true, and fhat N'P. ThenL € P, so letA be a polynomial-
time algorithm which decides it. We can find a factor™dfy doing a binary search usidg

F(N):
1. Initialize B, = 0, By = |V/N |
2. Repeat the following untiB;, = By:
Let X = [(BL + By)/2].
Letb = A(N, X).
e Ifb=1,setBy = X.
If b=0,setB;, = X — 1.
3. OutputBy.
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Since the search interval is cut in half on each iteration, we expect the total number of iterations
to be on the order dbg,(N'/2) = 1/21og,(NN), and so the total running time should be on the order
of logy(N) - T(A(N)), whereT is the running time ofA. But we know thafl’(A) is polynomial in
|IN| = O(logy(N)), thereforeF' is polynomial-time as well.

We must now only prove our claim that € A'P. The witness language is quite easy to find,
since the proof of the existence of a divisor is the divisor itself. Thus

W ={((N,z),y) : 1 <y < zandy dividesN }.

ClearlyW € P, since trial division, or even checking thatd(y, N) = y would be very efficient.
The size of the witness = ((V, z),y) is no more than twicé(N, x)|, so the proof is certainly
concise, and the definitions easily lead to the condiigi(N, z),y) € W] <= (N,z)€ L. =

We can produce an analogous result for our second problem, discrete logarithm, showing that
this problem shares the same realnPoés. NP complexity with factoring.

Proposition 1.11 If P = NP, then there exists a polynomial-time algorithm for evaluating discrete
logarithms overZ/pZ)* as defined in Problem 1.2.

Proof . As above, we begin by proving that a language we would like to use for binary searching is
in A'P. Let this language be

L = {(p, 9,1, ) : there exists a non-negative integex = such thay¥ = ¢g; mod p}.
We can give an easy language of proofs in the same way as above.

W ={((p,g,91,7),y) : 0 <y <zandg’ = g mod p}.

The fact thati € P follows immediately from the fact that modular exponentiation is efficient
(Proposition 1.6); the length of an elementifis less than twice the length of an element.gko
the proofs are concise; lastly the definitions give the equivaléfegy) € W < z € L.

Since L € NP, the hypothesi$® = NP would again yield a binary search algorithm over
all possible exponents in the ran@ge .., p — 1, and checking. at each stage would be efficient,
yielding an efficient solution of the discrete log problem. [

We have therefore succeeded in placing our two problems in the same general difficulty zone—
harder (so far as we know) than being’ but efficient in the case th@ = NP. Certainly no
equivalence between the two problems follows from this, but as in our binary search algorithms, we
have helpfully narrowed the bounds.

1.3 Modes of Complexity and Reductions

At times we perceive the complexity of an algorithm in different senses: worst-case complexity,
a question of how long we will have to wait to for our algorithm to halt no matter what input we
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give it; and average-case complexity, a question of how long we expect our algorithm to take on a
random input, taking into account a distribution over the possible inputs.

The complexity notion which figures into the distinction betwé@rmand NP is the former,
worst-case complexity. For example, the factoring problem is noP*ijquotes because it is not
a language) only because there egimtnearge producteq which are hard to factor. But consider
a random integer—with probability 1/2 we will have2 a factor ofz, and with probability2/3 x
has either 2 or 3 as a factor, etc. Therefore, inahieragecase over all composit®, factoring is
not hard.

Similarly, we will often consider reductions between problems. That is, we will make the state-
ment that a solution for problenX implies a solution to problenY’, or equivalently, problem
Y reducesto problemX. This statement also has several interpretations. One, analogous to the
“worst-case” complexity notion, is that if we have a polynomial-time algorithrahich always
solves problemX on any input, then we can construct an algoritBhwhich, given the ability to
call A on any input it chooses (we often s&yhas “oracle access t4”), can solve problenY” on
any input.

Just as average-case complexity is more relevant to the applications of factoring and discrete log,
for these problems and their cryptographic relatives we are often more interested in an “average-
case,” or gprobabilisticreduction. That is, we suppose that we have an algorithwhich solves
problemX with probabilitye—taken over some distribution of problem instances and the random-
ness ofA. Then we wish to construct an algorithBrwhich, given oracle access #, can solve
problemY” with probability §, whered is polynomially related ta.

We must therefore be more precise about how we want to consider the difficulty of factoring.
An important first step is to establish a distribution of problem instances. We will do this by defining
the distributionF;, of k-bit factoring instances for an to be the random output of the following
algorithmF on input1*.

F(1F):
e Select twok-bit primesp andq at random.
e OutputN =p-q.

Example. For example it = 3, then the onlyk-bit primes arés = 101, and7 = 1115. It follows
that F, has the three possible outputs5 = 25,5-7 = 7-5 = 35, and7 - 7 = 49, which occur
with probability 1/4, 1/2, and1/4 respectively. Naturally, for largér the size of the distribution
space is substantially larger. o

We now give an average-case version of the factoring problem:

Problem 1.12 (Factoring with probability €) Given a functiore = ¢(k), to give a probabilistic
polynomial-time algorithni such that for allk

Pr[A(X) is a factor of X] > ¢(k),
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where the probability is taken over all i Fi. and the coin tosses of.

We can construct a parallel definition for the discrete log problem, defining the following in-
stance generator. We &, = D(1¥) be the random output of the following algorithm on input
1,

D(1%):
e Select ak-bit primep at random.

e Select at random a generatpof (Z/pZ)*.
e Selectarandom € Z/(p — 1)Z, and calculate) = ¢g° mod p.

e Output(p, g,y).

The corresponding probabilistic problem can be formulated in terms of this distribution:

Problem 1.13 (Solving discrete logarithm with probability €) Given a functiorr = ¢(k), to give
a probabilistic polynomial-time algorithm such that for allk

Pr[gA®9Y) mod p = y] > e(k),

where the probability is taken over dlb, g, y) < Dy, and the coin tosses of.

1.4 Elliptic Curves

Elliptic curves appear in most of the sections of this paper in one form or another, both in the

creation of and in the attacks upon the cryptographic applications we demonstrate for factoring and
discrete log. Indeed, elliptic curves find interactions with both problems, and so here we present a

minimal development of the basics of elliptic curves. For a more thorough treatment, consider any
of the books by Silverman and Tate: [47], [48], [49].

We consider here only elliptic curves over finite fields, for example over the Fgléor p
prime. Such an elliptic curve is defined by two field elementswhich are used as coefficients in
the equation/® = 2 + ax + b, such that the discriminadt® + 27b% # 0. We denoté this curve
asE,, or when not ambiguous simply, and we define the set of points on the curve over a field
K by E(K). For reasons arising in the algebraic geometry used to construct these curves formally,
we define this set of points as a subset of the projective @ii& ) over the field, which consists
of equivalence classes of non-zero ordered trifleg, z) € K3, with two triples equivalent if one
is a constant multiple of another. The equivalence clags af, z) is denotedx : y : z). We then
define

E(K)={(z:y:2) € PXK):y’z = 23 + axz® + b2*}. (1.1)

The only point onE with z # 1 is the point at infinity,0 : 1 : 0), denoted by?), which satisfies
the elliptic curve equation for alt andb. The point© has an important role when we note that

1The notation is in accordance with Lenstra’s paper [25], and later (section 5.3.1), Maurer’s paper [27].
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E(K) has an abelian group structure, with additive identtyThis claim specifies the group law
completely wherx # 1, for the other elements we can consider the normal pictuie a a curve
in the x, y-plane and define the group law geometrically as follows: for two pdénd(@ on E,
draw the line connecting them and find the third point where this line nigets

Define— (P + Q) to be this point, and thefP + Q)
is the reflection in thes-axis of this third point. This
addition can be carried out efficiently (say, by a com-
puter), with the following algebraic manifestation. If
P=(x;:y :1)andQ = (z2 : y2 : 1), letm = -

(ya—y1)/(z2—mx1) if P # Q andm = (3x3+a) /2y, if o
P = Q. (mis the slope of the line between the points); /P,Q(

letn = y1 = mz1. We then defineg® + @ as the point

R = (23 : y3 : 1) with 23 = m? — 2; — x5 and U

y3 = —(mxs + n). This can be seen geometrically in \
Figure 1.1.

We will also need to consider elliptic curves over
Z/NZ instead ofF,, even though we do not have a
field. We can construct an analogous donfaftZ /N Z)
as the set of orbit of

Figure 1.1: Adding pointsP + @ = R.

{(z,y,2) € (Z/NZ)? : x,y,  generate the unit ideal &/NZ}

under the action ofZ/NZ)* by u(x,y,z) — (ux,uy,uz). As before, we denote the orbit of
(x,y,2) by (x : y : z). We can then defin&, ,(Z/NZ) exactly as in equation (1.1) by replacifg

with Z /N'Z. The group structure will hold provided that the discrimin@ita® + 2752) is relatively

prime toV; only in that case to we actually call = E, ; anelliptic curve We leave until section

3.3 a more thorough discussion of addition of points on such a curve, since the fabt ihaiot

prime raises complications which Hendrik Lenstra [25] demonstrated can be exploited ta¥actor
Furthermore, in section 5.3.1, we show how Ueli Maurer [27] used Lenstra’s technique to bound the
complexity of factoring in a specific complexity model.



2. Applications: Cryptography

As already discussed, these problems are only interesting from a real-world perspective. Solving
them mathematically is not difficult in the strongest sense, since algorithms exist to do just that. Our
interest is in measuring the degree of difficulty of implementing such solutions, and for the security
of the cryptographic applications presented in this section we rely on the assumption that this degree
is very high.

There are two standard ways to present cryptography: the first is to demonstrate independent
secure protocols, and the second is to establish definitions of secure cryptographic primitives and
then work towards creating specific objects which satisfy the definitions. Both methods make broad
reliance at times on the assumptions that factoring and/or discrete log are difficult.

2.1 Cryptographic Protocols

We begin with public-key encryption. Though the idea of public-key cryptography is relatively re-
cent, the idea of encryption has been around for centuries, and is the canonical task of cryptography,
though not the only one.

Definition 2.1 A public-key encryption schemeconsists of three algorithms:

1. arandomized key generation algoriti@en(1*) which takes as input the numbeencoded
in unary as ak-bit string of all 1s, and produces a pair of key&<, which is made public,
and S K which is kept secret;

2. a randomized encryption algorithiiinc which, given the public kel K and a message:
produces a ciphertext

3. a deterministic decryption algorithiec which, given the secret ke and a ciphertext
returns the original message.

Attached to the scheme is a message splatewhich may be allowed to vary according to the
public keyPK. To be a correct encryption scheme, we require etgx (Encpg (m)) = m for
all m € M and for all pairs(PK, SK) which can be generated by the key generation algorithm.

We can think of the key generation algorithm, which takeslthargument (called thsecurity
paramete), as analogous to the instance generators discussed in the preceding chapter for hard

10
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problems. To feel secure in these encryption schemes, we want to make them unbreakable for the
averageinstance (or key), and not just for some particularly difficult keys. Therefore the following
definitions can serve for our model of security.

Definition 2.2 (Breaking an encryption scheme with probabilitys) Given a functiorz(k), a prob-
abilistic polynomial-time algorithn# with single-bit output breaks a public-key encryption scheme
(Gen, Enc, Dec) with probabilitye if for any k£, and any two messages,, m; € M

PT[A(PK, EHCPK(TTL())) = 1] - PI‘[A(PK, EnCpK(ml)) = 1] > E(k)

the probability taken over allPK, SK) « Gen(1*) and the coin tosses of.

Intuitively, the definition connects breaking the scheme to the godlistinguishingbetween
two different messages. We can think of the goalldds to outpu® or 1 indicating that it thinks it
sees an encryption afy or m, respectively (although the definition is stronger, and actually allows
A to attempt to guess any Boolean functiomaf andm,).

Note that whileA must be able to distinguish over a random choice of the key, it may select the
messages which will be distinguished ahead of time—this models the fact that an adversary may
have external information about the distribution on the message space, and may even know that the
secret message is one of only two possible values.

Definition 2.3 (Negligible function) A functiond : Z — [0, 1] is negligiblef, for any polynomial
p(z), there exists & such that fork > ko, 6(k) < 1/p(k). Thatis,d goes to 0 faster thap(x) !
for any polynomiap.

The most common candidatesék) = 27, which is clearly negligible.

Definition 2.4 (Security) A public key cryptosystemsecureif there does not exist a probabilistic
polynomial-time algorithm which breaks it with probabilityk), for £ a non-negligible function.

The definition of security as negligible indistinguishability is actually very strong compared to
other possible definitions; in general cryptography tends toward such conservative positions. For
the purposes of relating the protocols to factoring and discrete log, we will be satisfied with weaker
and more intuitive properties, such as

e An encryption scheme imsecureif exists an efficient algorithmA which, givenPK and
Encpg (m), can recovern with high probability over alin, PK.

e An encryption scheme imsecureif there exists an efficient algorithmrd which givenPK,
can recovelS K with high probability over all pair¢ PK, SK).



12 CHAP. 2. APPLICATIONS: CRYPTOGRAPHY

2.1.1 RSA encryption

The RSA method, generally the most well-known and commonly used public-key cryptosystem,
was developed in 1976-77 by Rivest, Shamir, and Adelman at MIT’s Laboratory for Computer
Science. It was first seen in print in 1978 [43], but not until after Rivest and MIT worked out a deal
with the National Security Agency to allow the new method to be presented. Whether or not this
suggests that the NSA had previously discovered the technique, it has been recently declassified that
the British cryptographer Clifford Cocks had discovered a similar method as early as 1973 [7], but
the finding was classified by the UK Communications-Electronics Security Group.

The scheme of Rivest, Shamir, and Adelman is as follows. Key pairs are generateddmnthe
algorithm:

Gen(1%):
1. Select randonk-bit prime number® andq, and letN = p - q.
2. Select at random < ¢(N) so thatged(e, p(N)) = 1.
3. Solveed =1 (mod ¢(N)) for d.
4. OutputPK = (N,e); SK = (N, d).

The space of possible messages for a given publi¢ key) is all integersn € (Z/NZ)*, and the
encryption operates as follows:

Enc(ye)(m): Outputm® mod N.

Decryption for RSA is the same operation as encryption, using the secret key as the exponent instead
of the public one.

Dec(y,q)(c): Outputc? mod N.

Proof of correctnessWe first prove that the key generation algorithm is correct. It follows from
elementary number theory that: = 1 has a solution modula if and only if a € (Z/nZ)*.
Therefored can always be found givenwith ged(e, ¢(N)) = 1.

As for correct decryption, we rely on Fermat’s Little Theorem, although Fermat certainly never
could have imagined his work would find its way into implementations of secrecy. Fermat's The-
orem asserts that for any < N, a®™) = 1 mod N. For RSA, we haviecsx (Encp(m)) =
(m®)4 = me. But we know by construction thatl = k - ¢(N) + 1 for an integerk, therefore
me =m - (mPN)k =, (]

Since the only operation of the encryption and decryption functions is modular exponentiation,
we know that these functions are polynomial time by Proposition 1.6.

We also note that the RSA encryption algorithm given here is deterministic—this actually leads
to problems (such as the ability to recognize when the same message is sent twice) which make so-
called “Plain RSA" insecure under our indistinguishability criterion, for an algorithm given access
to PK can easily generate his own encryptionsgfandmy, compare them to the ciphertext input,
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and know which message he is seeing. Nevertheless, this is the canonical theoretic version of the
RSA method, and incorporating random padding into the message is a painless and common way
of overcoming the determinism problem.

Examining the algorithm, we see that the public key consists of a random numaed the
composite modulusV = pq, which is distributed according t6;. Since, if we already know,
the knowledge op andq would allow an adversary to simulate the operation of(tee algorithm,
clearly the secret keg K is no more secret thgmandq themselves. This gives us the following
result.

Proposition 2.5 If there is an efficient algorithm for factoring integers with high probability, then
an efficient algorithm exists to recover RSA keys with high probability. Therefore in this event, RSA
is insecure. ]

In fact finer arguments can be made: RSA is insecurg ) can be computed fromV with
high probability overN «— Fy,, or if eth roots can be extracted oVt /NZ)*. But fundamentally,
the structure of RSA keys links its security to the factoring assumption, since these other goals
reduce to factoring.

Our proposition tells us that breaking RSAns moredifficult than factoring, but we do not
have the desirable converse statement that RSA is imtaegsierto break than factoring, the sort
of claim that the marketers of any cryptosystem would love to make.

Even without this claim, however, the RSA method is the most prevalent public-key cryptog-
raphy system in commercial use today. Early uses of the method were rare after MIT patented the
technique in 1983 and granted the only license to the RSA Security company. At that point acquiring
licenses to use the algorithms were extremely expensive. However RSA released the algorithms into
the public domain in September 2000, just a few weeks before their patent would expire. Now RSA
is used for many applications, including the common privacy software package PGP (Pretty Good
Privacy), the Internet Secure Socket Layer protocol (SSL), and the Secure Electronic Transactions
(SET) protocol used by major credit card companies.

Since RSA is no more difficult that factoring integers, if that problem were found to be tractable
the damage to existing cryptosystems would be substantial.

2.1.2 Rabin ¢ mod N) Encryption

As we saw above, RSA is broken if factoring is lost as a hard problem, but we cannot yet prove
that nothing less than factoring will cause its collapse. Just a few years after RSA was published,
Michael Rabin, also at MIT, proposed a new method [40], similar to RSA, but whihable
to make this claim. He showed that not only does breaking his scheme reduce to factoring, but
vice-versa.

The structure of the key generation and encryption functions is strongly reminiscent of what we
have just seen, but by using a fixed encryption exponeat2, Rabin’s scheme not only decreases
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the computational workload of the actual encrypting machines, but allows the expanded theoretical
knowledge surrounding quadratic residues in finite fields to bring the desired provable results.

The tradeoff is a more complex decryption routine, for we know already thatgid¢e, ¢(pq))
will never be 1, there is no decryption exponemivhich will undo the squaring operation as is
possible in RSA. However, sufficient mathematical work has been done on the topic of quadratic
residuosity to deal with this problem.

Definition 2.6 The quadratic residue symb@}) has value+1 if a is a square in(Z/pZ)*, and
value—1if a is a non-square ifZ /pZ)*. If a = 0 mod p, we say(%) = 0. We extend the definition

to (%) for n composite by the formul plpg__pk) = (p%) (p%) e (ﬁ)

Elementary number theory gives us the following facts:

-0

This second fact gives us the following result which will become most helpful when we wish to
decrypt, that is, to take square roots mgd

ii. <a) =" mod p (2.1)
p

Proposition 2.7 Let p be a prime such thap = 3 mod 4. Then there is an efficient algorithm

which, given(%) = +1, generates: such thatz? = y mod p.

Proof . Letz = y®+1)/4 mod p. Thena? = y®P+1)/2 = 1+-1)/2 — 4. () = y. Since modular

exponentiation is efficient, this algorithm is efficient. n

Of interest however, is that there is no efficient deterministic algorithm known to generate a
square root ofy modulop = 1 mod 4, although there is an efficient randomized one. Because of
this, and because we require an unambiguous way of distinguishing between the 4 square roots of
an guadratic residue mad, the typical implementation of Rabin’s encryption is the Blum variant,
where the primep andq satisfyp = ¢ = 3 mod 4. (IntegersN = pq composed of such primes are
called Blum integers.)

Definition 2.8 TheRabin public-key encryption schemeis composed of the following 3 algo-
rithms:

Gen(1%):
1. Selectk-bit prime numberp andq with p = ¢ = 3 mod 4.
2. ComputeN =p - q.
3. OutputPK = N; SK = (p,q).
Like RSA, the message space for a given publid\kéyall integersm € (Z/NZ)*.

Ency(m): Outputm? mod N.
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To decrypt, use the secret factors &fto find roots modulg, ¢, which we know can be done
efficiently, then combine those roots into a root modMloising the Chinese Remainder Theorem.

Dec, q)(c):
1. Find z,, such thatrg = cmod p.
2. Find z, such thatrg = cmod q.

3. Use Chinese Remainder Thm. to find an integeuch thatr = z, mod p and
T = x4 mod gq.

Here we run into the problem of ensuring thadc o Enc is in fact the identity map, which is
the problem of making sure that when using the Chinese Remainder Theorem to consthect
Dec algorithm chooses the samewhich was actually encrypted. The fact thats ¢ = 3 mod 4
ensures that this is possible through the following observation.

Lemma 2.9 If N = pg andp = ¢ = 3 mod 4, any quadratic residug € (Z/NZ)* has a unique
square rootz with the properties thafs;) = +1, andz < N/2 when lifted into{0, ..., N — 1}.

Proof . By (2.1-ii), we can determine that wher= 3 mod 4, we have(‘?l) = (-1)-D/2 = _1,
therefore—1 is not a square modula By (2.1-i), it follows that for any:, exactly one ot: and—a

is a quadratic residue moduto Therefore when we find the square rootg;ahod IV, and we first
find the two roots:;, us = —uy of y modp and the two roots;, v, = —wv7 of y modgq, exactly one

of u; andus is a square, and exactly onewf, v5 is a square. Without loss of generality, let us say
the squares are; andv, .

By the definition of the quadratic residue symbgf) = +1 if and only if (2) = (%) # 0.
Therefore if we label the 4 square roots wimod N by z;;, each corresponding to the inte-
ger computed by the Chinese Remainder Theorem on the(paiv;), we know thatz;; and
2o have quadratic residue symbell mod N, but 12 and zo; do not. We also know that
(%) = G)(E) = (=1)(=1) = +1. It follows that since one of the;; must be—a11, it
must be the one with the same quadratic residue symbol. Thus we musthave—x,,. It fol-
lows that ofz1; andzss, the two square roots gfwith (%) = +1, only one is less thatrv/2 (under

the canonical lift into{0, ..., N — 1}). This proves the lemma. [

It follows that the encryption scheme can be made unambiguous by requiring messages
satisfy (%) = +1 andm < N/2. Both properties can be efficiently tested for a giverand N
(the first by using quadratic reciprocity). When decrypting, our algorithm will actually find all 4
roots, then return the only root with these properties, and will therefore always recover the original
message.

The security of Rabin’s scheme rests on the inability of an adversary to calculate square roots
modulo N without knowing the factorization oW .

Proposition 2.10 Breaking Rabin’s scheme and factoring are of equivalent difficult, in the sense
that each reduces to the other. More specifically, if an algorithraxists which decrypts Rabin
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ciphertexts with probability, an algorithm A’ exists which solves the factoring problem (Prob.
1.12) with probability= /2.

Proof . One direction is trivial : if we can factaV, then given the public key we can determine the
secret key, and clearly the scheme is broken by possession of the secret key.
For the second direction, we employ some randomness in our constructidn of

A'(N):
1. Selectu # +1 at random from(Z/NZ)*.
2. Calculatey = 22 mod N.

3. Calculatev = A(N, y).
4. Outputged(u — v, N).

Suppose thatl was successful in decrypting the ciphertgxthat is to say it returned an element
whose square ig(a possible message for whiglis the ciphertext). Then we hau@ = v? mod N,

or (u—v)(u+v) =0 mod N. If we haveu # v, it follows thatV divides this product but neither
of the factors. Thereforged(u — v, N') will be a proper factor ofV. Consider the probability that
u = v given thatu? = v? in the above algorithm. Since is randomly selected, it will be
uniformly distributed over the 4 square roots:6f modulo N no matter whichv is returned by
A. ThereforePr[u # +v| = 1/2. So if A is successful with probability, A" is successful with
probabilitye /2. m

2.1.3 Diffie-Hellman Key Exchange

Though we present it after RSA and Rabin’s schemes, the method of Diffie and Hellman is actu-
ally considered the first example of public-key cryptography. Their landmark paper in 1976 “New
Directions in Cryptography” [14] was the first to propose that a secure cryptosystem might allow
some parameters to be made public.

The goal of the Diffie-Hellman protocol is not directly encryption, although it can be extended
to support encryption. Its purpose is to perforrseeure key exchanga protocol by which two
parties can agree upon a secret key over an insecure channel. The key can then be used as the secret
key in a symmetric-key encryption scheme, but is more often used for the purpose of authentication.
Itis also the least complicated and most prevalent example of assuming the difficulty of the discrete
log problem for security.

The protocol operates as follows: Let the two parties be Alice and Bob. They agree, in the open,
upon a primep and a generatay of (Z/pZ)*. Alice chooses a randome (Z/pZ)* and computes
k4 = g% mod p. Bob similarly chooses € (Z/pZ)* and computesp = g” mod p. They then
send these values to one another over an insecure channel. Alice, upon reggivicgmputes
K 4 = k%; Bob similarly computed(z = «Y. It follows that

Ka= (k)" =(g")"=9" Kp=(rka)’=(g")"=g",
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so the two parties have indeed agreed on the same key.

To say that an adversary, observing this exchange, is unable to figure out the key, reduces to
what is called the Diffie-Hellman Computation problem, which states that no efficient adversary is
able to computg/® in (Z/pZ)* given g® andg® (as well asg andp). In fact, usually a stronger
problem is assumed, which states that not only can an adversary not determine the key, but he cannot
even identify it if it is shown to him. This problem, the Diffie-Hellman Decision problem, states
that no efficient algorithm can distinguish between a triple of the fayfg®, ¢**) and one of the
form (g2, ¢°, ¢¢) for a randonr.

While the assumption that these problems are difficult is not exactly the same as assuming that
the discrete log problem is difficult, it is clear that if a polynomial-time algorithm for taking dis-
crete logs were to be discovered, both of the Diffie-Hellman problems would immediately become
feasible, and therefore (though we do not define security in this case):

Proposition 2.11 If there exists a polynomial time algorithm to solve the discrete log problem, then
the Diffie-Hellman key exchange is not secure. [

2.1.4 Generalized Diffie-Hellman

The above protocol deals with 2 parties agreeing on a key, but we could easily conceive of extending
it to work for k£ > 2 parties. In this protocol, we have the part@s. .., P, and eachP; selects at
random an element; from (Z/pZ)* (or whatever group with generatgrhas been agreed upon),

and computes; = g¢. They initially pass around thesg, and can iteratively compute messages

of the form (I, ;) where[ is apropersubset of{1, ..., k}, andx; = gUlier) and they also

pass around these messages. After enough passingPeadhbe able to compute the secret key

K =kg= g(HéC:l ai)

If we want the key to be secure, we wish for the following problem to be infeasible, which we
call the Generalized Diffie-Hellman Problem. Like above, it can be considered computationally or
decisionally; the computational version is to find, givea generator of a fixed grou@, and for
some setS, the value ofK = ¢(Ilics%) given access ta; = ¢{Ili=r2)) for any proper subset
ICS.

Clearly the security of this scheme has the same dependence on the hardness of discrete log that
the 2-party version did, but it will turn out that it also has an unexpected relationship to factoring,
which we will show in Section 4.3.

2.1.5 ElGamal Encryption

We can also harness the hardness of discrete log directly for encryption using the EIGamal public
key cryptosystem [15], given by the following three algorithms:

Gen:
e Select a random primeand a generatay of (Z/pZ)*.
e Select a random elemeate (Z/pZ)*, and computg) = ¢* mod p.
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e OutputPK = (p,g,vy); SK = a.

The dependence on discrete log complexity is clear from the keys; if discrete logs were efficiently
computable, the secret key could be immediately deduced from the public key. To encrypt a message
m € Z/pZ with this public key cryptosystem, proceed as follows:

Encpg(m):
e Selectarandorh e (Z/pZ)*.
e Outputc = (g® mod p,m - y® mod p).

The message is therefore padded in a sensg by ¢°, and the random stringjis sent along to
help in the decryption, although it must be sent in the hidden fgrivecause clearly alone would
be enough to extraet from y andm - y* mod p. To decrypt using the secret key,

Decgk (¢ = (h, 2):
e Computeh® (note that this ig?*), and compute the inverga®)~!.
e Outputz - (R®)~1,

Itis clear thatz - (h%)—1 = m - g® - g=% = m, so the decryption is valid.

This cryptosystem has been of substantial importance since the National Institute of Standards
and Technology released the Digital Signature Standard [16], which is based on EIGamal.

2.1.6 Elliptic Curve Cryptography

A method similar to EIGamal can be performed over elliptic curves, and such a technique is accepted
as a variant of the standard Digital Signature Algorithm [20].

Our key generator now selects a prigand two elements andb of Z /pZ such that(4a® +
27b?%) is not divisible byp. It follows thatE, ;, given byy? = 23 + ax + b is an elliptic curve, and
we can consider the séf, ,(F,) of ordered pairgx,y) € (Z/pZ) x (Z/pZ) which satisfy this
equation. We saw in chapter 1 that this set of points has a natural group structure with operations
that can be efficiently computed. Therefore we can easily conceive of creating instances of the
discrete log problem over this group of points.

Our generator is some poift € E(F,,) with high order, and this is made public as in EIGamal.
Each user of the system creates a secret key which is an integemputes the poinP, = a - P
and makes this public. (The group operation on elliptic curves is written additively, but this is the
equivalent tog® in EIGamal.) To send the message we encoden as some poinf/ in E(F,),
then choose a randoin< p and send the paik - P,k - P, + M).

Decryption is analogous to the previous section: on receipt of the(paiZ), we use our
knowledge of the secret keyto compute

Z—a-H=k-Py+M-—a-k-P=k-(a-P)+M—a-k-P =M.
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The problem assumed to be difficult for the security of this cryptosystem is specifically that of
computing fromP andP; = a - P, the powera. In general, this is currently thought to be more
difficult than the discrete log problem in group modploln part, this is because our current level
of knowledge about elliptic curves does not give us the same power to exploit the representation of
group elements that we have when those representations are integers. Therefore the best algorithms
available are the so-called “generic” ones, and these algorithms have established lower bounds on
their complexity, which present later (see section 5.1.1).

2.2 Cryptographic Primitives

Theoretical cryptographers often consider the perspective of rigorous definitions rather than indi-
vidual protocols like those listed above. By demonstrating various provable constructions, we can
build such secure objects ase-way functionspseudo-random generato(gtroduced by Blum

and Micali in 1982, published in 1984 [3]) apdeudo-random functior{gitroduced by Goldreich,
Goldwasser, and Micali in 1984, published 1986 [18])

These primitives, particularly the last two—pseudo-random generators and functions— imply
naturally the existence of secure encryption schemes. Given any finite messageknow that if
we choose a randomof the same bit length, the bitwise exclusive> m completely conceals:
from an information-theoretic perspective (a technique known as the one-time pad). The difficulty
in using this fact for encryption is that in order to decrypiust be a secret known by both parties,
and having a key the same length as your message is very restrictive. What these pseudo-random
primitives allow is the creation of a lot of near-random bits from a small number of truly random
ones. Pseudo-random generators are a way of creating a long sequence of near-random bits from a
short secret “seed” which is the shared key; pseudo-random functions allow shared randomness of
arbitrary size as well, where the shared key is parameters into some family of functions which are
indistinguishable from a random function.

To avoid being either incomplete or unnecessarily lengthy, we avoid presenting these notions
in full. For a complete presentation of cryptography building up these definitions, consider Oded
Goldreich’s book [17].

While the one-time pad is not a number-theoretic cipher on its own, the constructions of the
pseudo-random objects which generate these pads are often based on assumptions of number-
theoretic difficulty. Along this line, Naor, Reingold, and Rosen [32] demonstrated an efficient
pseudo-random function secure under the difficulty of the Generalized Diffie-Hellman problem
(therefore assuming the difficulty of taking discrete logarithms), and Dedic, Reyzin, and Vadhan
[12] constructed a pseudo-random generator based on the difficulty of factoring.



3. The Relationship Between the
Problems | — Algorithms

3.1 Background Mathematics

3.1.1 Smoothness

We begin by defining a class of integers which are easy to factor. These integers will appear repeat-
edly in the methods that follow, as searching for them by one or another means has proven valuable
towards factoring more difficult integers, and also towards solving discrete logarithms.

Definition 3.1 An integerxz is B-smoothif all prime numbers dividing: are less than or equal to
B. An integerz is B-powersmoothif all prime powers dividinge are less than or equal t&.

Since we intend to search for these values, it will serve us to present some analysis of their
frequency. We define the de Bruijn functigriz, B) as the number oB-smooth positive integers
less than or equal to. Following Wagstaff [50], fort € [0, 1] andz > 2 define

p(x,t) = Pr |[the largest prime factor a¥ is less than!],
0<N<z

the probability taken over all positiv < z. It follows thatp(x,t) = ¢ (z, z!)/z. Define F(t) =
lim,_,~ p(z,t), the Dickman function, after the mathematician who gave, in 1930, the following
heuristic argument that this limit exists for &ll

Considers in the interval) < s < 1. For anyz, the number of integers whose largest prime
factor lies between® andz*+? for smallds is x - F'(s) ds. By the prime number theorem, the
number of primes betweerf andz*% is (see [50] p. 55)

(@) — () ~ z*+ (Inz)z®ds  2° x® ds‘

In x3 " lnzt s

For each of these primes the number ofi such thapn < x andn has no prime factor greater
thanyp is the same as the numberof< z!=* (sincep < z°), whose greatest prime factor is less
thanz® = (z!17)*/(1=%), But the number of such is ' ~*F(s/(1 — s)). Therefore, heuristically
we have

z- F'(s)ds = “'ssds 27 F(s/(1 — ).

20
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Thez terms all cancel, and then by integrating we get Dickman'’s functional equation

F(t) = /OSF<1is)dsS'

Typically when searching for smooth numbers we will wakd be very near zero, so we con-
siderp(u) = F(1/u). Itis not hard to derive the functional equatipfiu) = —p(u — 1)/u from
the above functional equation fét. Dickman’s heuristic argument shows tht.) defined by this
equation and the conditign(u) = 1 for u < 1 (necessarily ath < x arex!-smooth ift > 1) is the
limit lim, oo ¢ (2, 2'/%) /. This theorem was proved rigorously by Ramaswami in 1949 [41].

Playing with the definition op leads to the resufi(u) < p(u — 1)/u for all w > 1, and it has
been shown that(u) is closely modeled by~ for sufficiently largeu. Thusw(a:,xl/“) ~u,
and even if we allow: to vary withz, it has been shown that as longias: (1—¢) log x/(log log x),
the approximation is valid. To approximatéx, B), as we will often want to do, we note that if we
letw = (logz)/(log B), we haveln B = Inz/u, soB = z'/*. Thereforey)(x, B) ~ zu~", with
u = (logz)/(log B).

3.1.2 Subexponential Complexity

Though we know of no polynomial time algorithms to solve factoring and discrete log, it would not
be correct to say that all known algorithms hawponentiarunning times. Several of the modern
methods we present do better than exponential. Although we present for the sake of historical
continuity the exponential algorithms first (the ones Cohen [8] sorts under “Factoring in the Dark
Ages”), here we introduce some standard notation which will facilitate the eventual analysis of the
more modern algorithms.

Definition 3.2 For any0 < « < 1, define the function
Lg[a; ] = exp(c(log z)® (log log z)'~9).

This L function lets us identify running times along the continuum from polynomial to ex-
ponential. For example, an algorithm with running tithe [0; | is O((log N)¢), and therefore
polynomial time. An algorithm with running timéy[1; ¢| is O(N¢), so exponential. If an algo-
rithm has running time. [, ¢] for some0 < a < 1, as we will show for several factoring and
discrete log methods here, it is callsgbexponential

Because it occurs quite often in multiple roles, we abbreviate one of these such functions simply
by L(z), with the definition

L(z) = Ly[1/2;1] = exp((log z)"/?(log log z)'/?).

3.2 Standard Techniques Applied to Both Problems

3.2.1 Pollard’sp — 1 method

Ouir first algorithm for factoring hopes to find a facgoof NV by taking advantage of the (possible)
smoothness g — 1. The algorithm dates to 1974, and was discovered by John M. Pollard [36],
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a number theorist and cryptographer working for British Telecom (and more recently the 1999
recipient of the RSA Award in Mathematics given by RSA Data Security, Inc. for his contributions

to cryptography).

Proposition 3.3 (Pollard) If N has a prime divisop such thatp — 1 is B-powersmooth, where
B is bounded by a polynomial in = log N, thenp can be found efficiently with arbitrarily high
probability.

Proof . The proof of this is Pollard’s algorithm, which operates as follows:

POLLARD(N):
1. Let@ =1lem(1,2,..., B), whereB is the smoothness bound.

2. Select at random an integerc (Z/NZ)*. (Do this by selecting out oZ/NZ
and checking thecd(z, N). If ged > 1, we have a factor.)

3. Computed = ged(z? — 1, N). If 1 < d < N, outputd. Else fail.

We assert that the algorithm is correct. Fay i 1 is B-powersmooth, then all its factors divide
Q. Thereforep — 1 | Q. It follows from Fermat that:? = 1 mod p, thereforep | 29 — 1. So if
d = ged(z9 — 1, N), thenp | d.

The algorithm will only fail ifd = N. However in this event®? = 1 mod N, which indicates
the boundB, and therefor&), was too large, and we can try again with a lovizer

Consider the running time of the algorithm. The main operations are comptargl raising
x to the power@, and the second dominates the running time. So to analyze this algorithm we
need to consider how largg is. We can give the following alternate definitio: = [ [, 5 p°(p)
over all primesp < B, wheree(p) = max{e : p° < B}. SoQ is the product of all the largest
possible powers of primes less th&n It follows thatlog Q = ZP<B e(p) log p. Since we could
redefinee(p) = max{e : elogp < log B}, it follows thate(p) logp < log B. Thereforelog @ <
> plog B=m(B)log B = O(B).

So PoLLARD performsO(B) modular multiplications, for a total complexity 6f(Blog V). m

Note that there is an alternate presentation of the algorithm (for example, in [29]) which puts
the weaker requirement gn— 1 that it be B-smooth instead oB-powersmooth. In this version
Q is constructed the same way over BJ|,_ ; p°®), but nowe(p) = max{e : p° < N}. There
is a corresponding tradeoff in complexity, for ndwg @ = n(B) - log N = O(Blog N/log B)
multiplications are required instead of ory( B).

Example. We use Pollard' — 1 method to factotN = 9557780739229. It appears daunting,
but we might hope that there is a factemwith smoothp — 1—we will try first B = 20, very
optimistically.

o We compute) = lem(1, ..., 20) = 232792560.

e We choose at random= 3, and computg) = 2% mod N = 5068864611225
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e We computezed(y — 1, N), which is unfortunately 1.

We have therefore failed, but perhaps we were too optimistic. So we can try again with aBarger
sayB = 30.

e We compute = lem(1,...,30) = 2329089562800.
e We choose at random= 5, and computg) = ¢ mod N = 2792592641549

e We computezed(y—1, V), which is fortunately = 12601. We note thap—1 = 23-32.52.7
is quite smooth.

We see that there is a significant tradeoff between the power of using a larger smoothnesB bound
in order to be able to factor more integers, and the size of the values we must operate with:

Adapting Pollard p — 1 to Discrete Log

We have just witnessed how the presence of a faeteith p — 1 smooth enables this factor to be
efficiently found. We can see an immediate connection to discrete log over a prime mpgdamhas
demonstrate a way to compute discrete logs easily in the casethais smooth.

The algorithm is due to Pohlig and Hellman [35], who without specifically discussing smooth-
ness present an algorithm for solving discrete logarithms over a cyclic group ofrogieen the
factorization ofn. This clearly applies, since the smoothness ef1 = |(Z/pZ)*| implies that the
factorization can be quickly found.

In general, since we wish to compute an exponemthich exists modulg — 1, if we have
a factorizationp — 1 = ¢7* - - - ¢5*, we can compute modulo eachy;* and then use the Chinese
Remainder Theorem to reconstruct the full exponert Z/pZ. The smoothness thus comes into
play in the computation of discrete log modufo, which can be done by brute force search if the
modulus is small.

This characterization is intuitive if we say— 1 must beB-powersmooth for a low bound; we
can reduce to the less restrictifesmooth property with the algorithm in its entirety:

POHLIG-HELLMAN (p, g, y):
1. Compute the factorization @f — 1 = ¢{* - - - ¢5*, eachg; prime and each; > 1.
2. Foreach =1,...,s, computes; = a mod ¢;* as follows:
(@) Seth = ¢(®»—1)/4 Note that the order df is ¢;.
(b) Initializey =1,1_1 = 0.
(c) Foreachj =0,...,¢; — 1:
i Sety — yglii i,z (y/y) P V/A "
ii. Computel; such thati = z (e.g., by brute force).
(d) Seta; =l +ligi + -+ 1,145 "
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3. Combine thes; into a using Chinese Remainder Theorem.

The algorithm is sufficiently complex to warrant some justification. First, since as indicated the
order of the generatdr in theith step isg;; so if we assume thai— 1 is B-smooth, we require no
more thanO(B) operations to compute logarithms to the badwgy brute force. Now, consider the

jth iteration of the inner loop. At this point we haye= glo+hai+-+li-1d]"" Recall that we are
searching for the-ary representation af; = lp+11¢; +- - -+lei_1qfi‘1., wherey = ¢®. Therefore

Jj+1

y/v) P/

g —lo—liqg1—1j— 1q )n/qJJrl

1

Jj+1 -1

n/q; )gq foetle, 14

—1=j

(
(
— ( n/qL )a lo—ligi——1j— 1qJ
(g
(9

n/qz)l jtetle;—105"
= pl.pat) = pli,

It follows that setting/; equal to the discrete log afto the base is exactly what we should do
to generate: completely. As mentioned, each inner loop tak¥d3) operations, and the number
of such loops i) _ e;, or the total number of prime factors pf— 1 counting multiplicity, which is
naturally less thatog,(p — 1) < log, p Therefore ifp — 1 is B-smooth, we can evaluate discrete
logs modulap in O(B log p) time.

The two above algorithms thus show the first practical correlation between the two problems: a
certain smoothness condition which leads to polynomial time solutions to each. We note that this
fact is not particularly useful for the applications of Chapter 2, for there we assume that the problems
are hard over a particular distribution of instances, and the instances are engineered to avoid things
like smoothness, usually by selecting primpesuch thatp = 2¢ + 1 for another prime;. Such ap
is known as a Sophie Germain prime after the pioneering female number theoretician of the turn of
the 19th century, ang — 1 is clearly not at all smooth.

3.2.2 Pollard’s rho Method

We arrive at a second method which demonstrates commonalities between the two problems. The
specifics of the rho method, although it is specialized and (for factoring) only provides efficient
access temallfactors, apply to solving both factoring and discrete log.

Both applications of the technique are due to Pollard and were published in the 1970s not long
after hisp — 1 method. Because they operate by simulating a random walk over the finite field, he
called them “Monte Carlo” methods, which refers to the class of randomized algorithms to which
rho belongs. The method for factoring appeared in 1975 [37] and the method for discrete log in
1978 [38].
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The rho Method : Factoring.

To find a factonp of N, we make use of the recursive sequence defineg)by 2, z,, = f(zn—1) =
r2_, +1mod N. Without knowingp, we can imagine this sequence reduced moguince this
reduction preserves multiplication and addition it is clear that the reduced sequgtige. . . also
satisfies the recursive relatian, = z2_, + 1 mod p. Therefore we have an infinite sequence of
elements drawn from a finite set, so eventually= z;, and the sequence must begin to cycle.

To avoid the necessity of storing the entire sequence in order to find a collision, we make use of
the following lemma:

Lemma 3.4 (Floyd’s cycle-finding method)If x, .. ., z, is a recursive sequence definedipy—=
f(x,—1) over afinite set, then there is somesuch thatz,,, = xa,,.

Proof of lemma.We know that the sequence must eventually collide and begin repeating’ Let
be the least integer such that there exists: )\ andz) = xz,. Then the sequence is periodic
with periodp = X — \. It follows that if m is any multiple ofp andm > X, we will have
T = Tam = Tm4kp- [From [29]: Lettingm = p(1 + |A/p]) provides the smallest such.] =

Therefore, we only need consider p&its, x2;), which can be easily (and with minimal storage
space) derived from the previous p&ir;_1, z2;—2), and look for collisions. And when we do
find a pairz;, z; such that the reductions, z; collide, it meanse; = x; mod p, or equivalently
p | ged(z; — x5, N). Therefore, unless this gcd ¥ itself, a collision will mean we have found a
factor of V.

The algorithm thus takes the following form:

RHO(N):
1. Initialize z = y = 2.
2. Fori=1,2,3,..., do the following:

o Updater < f(z),y < f(f(y)).
e Computed = ged(z — y, N). If 1 < d < N, outputd.
e If d = N, algorithm fails.

Consider the running time of this algorithm on inpvit While we cannot prove a certain order
of complexity, we can model(z) as simulating a random walk. With this heuristic assumption, we
can invoke the “birthday problerh’and thus we expect the period of a random walk over a finite set
of sizes to be/7s/8 = O(4/s), and the number of terms occurring before the periodicity begins
(the “tail”) to also bey/7s/8. (The name rho originates in this “tail"/“loop” shape of a sequence,
nicely represented by the charactey Therefore (from the note at the end of the proof of Floyd’s
method in Lemma 3.4 above), we expect (again, heuristically) the first duplicate to be found after
O(y/p) = O(n'/*) iterations. So compared to trial division, which requie¥s:'/2) computations,
we have made significant progress—but we are nowhere near efficient.

That is, the combinatorial fact that we need only abg865 (uniformly random) people in a room to expect two of
them to share a birthday.
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The rho method : Discrete Log

Interestingly enough, the same approach can be used to solve the discrete log problem. This is not
particularly surprising, since the critical fact above we used was the finite siZ¢# and thus
finding a collision in a sequence over it. For factoriNg the groupZ/pZ is somewhat indirectly
attached; for discrete logs over a prin&/pZ is part of the essence of the problem—thus the rho
algorithm should intuitively fit well there as well.

In order to actually get access into the exponent, the system is slightly more complex than for
factoring. We partitior¥ /pZ into three sets$, Ss, Ss by defining

S; ={x € Z/pZ : =i mod 3 for z the canonical lift ofz into {0,...,p — 1}}.

The actual partition is not as important as that membership be easy to check and that the partitions
be of roughly equal size. We recall that our goal is, gigen, andy = g%, to recovera. Using
these, we define our recursive functiondy= 1, and

Y+ Tpo1, iFx,_q1 €S
Ty = f(Tn_1) =4 22_4, if £,_1 € Sy
g-Tp-1, fx,_1€853
Therefore we can think of this iterative function as operating “behind-the-scenes” as follows: each
z; is of the formg®iy%, where the sequencés;}, {3;} are induced by the functiofi to satisfy
ag = By = 0 and the recursive relations

Qp_1, if x,—1 €51 Bn—1+1, ifx,_1€85
Qp = 20471—1; if Tn—1 € SQ ’ /Bn = 2/671—17 if Tn—1 € SQ (31)
an—1+1, ifz,_1 €853 Bn-1, if x,—1 € S3

We use the same general method as we did for factoring above to find a matching, pait:s,, .
It follows thatg®iy® = g@2iyP2i thusg®i—®2 = yP2i—Fi = galB2i=Bi) |t follows that

a = (a; —az)/(Be — Bi) (modp—1). (3.2)

Therefore, provided thady; # 3; (mod p — 1) (which occurs negligibly often), we can solve for
a. Itis clear that we can efficiently compute, zo; for eachi, maintaining thex and3 sequences
as we go according to (3.1), and when we eventually do finé= z-;, computea according to
(3.2)—it being so clear, we omit the actual algorithm.

As above, if we conjecture that this function behaves as a random walk, then we expect to find
the first: such thatz; = z9; somewhere around = 2,/7p/8), so our algorithm runs in time
O(y/p). Just as the rho method did for factoring, it has reduced the complexity of a naive discrete
log search algorithm by a power of2.

And so we see for the second time that the same idea for an algorithm contributes to solving both
of our problems; the idea behind rho being to take a random walk around a finite space and take
advantage of the collision which must result in order to get the answer. We note without further
investigation that this method is, in general, the best available algorithm to solve the discrete log
problem on elliptic curves mentioned in Section 2.1.6.



3.3. THE ELLIPTIC CURVE METHOD 27

3.3 The Elliptic Curve Method

A derivative of the Pollargh — 1 method, the Elliptic Curve Method (or ECM) was discovered by
H.W. Lenstra [25] and published in 1987, thirteen years after Pollard'sl method. It remains

one of the fastest general purpose factoring methods (that is, applicable to arbitrary integers and not
just those of a special form), particularly for finding factors with size alioeft — 10%0. It is less
effective than some of the sieving methods presented later for finding larger factors, but is often
used within those algorithms when intermediate values of medium size need to be factored.

In a sense, it is the odd-ball of the factoring methods presented here, since currently there is no
known way to adapt this method for solving discrete logs as well. However in some sense it is the
natural bridge between the preceding “exponential” methods (since it follows so directly from the
p — 1 method) and the class of subexponential ones to follow, of which it counts itself a member.

Even though the ECM does not have a discrete log variant, elliptic curves still do play a role in
the lives of both of these problems, though ironically in different directions—from what we know
at this point, elliptic curves make factoring easier and discrete log harder!

Recall that the aim of Pollards — 1 method was to find prime factogsof NV such thap — 1
is smooth. However, in the average case it is very improbable that spchith exist, and as
mentioned it is feasible to specifically constrd¢twhich do not have any such factors. Lenstra’'s
ECM method allows us to factay if there is a prime factop such that there is some smoathear
p, Not necessarily = p — 1. Here the density of smooth numbers comes into play, but under certain
heuristic assumptions the likelihood of finding suchsas high enough to make ECM viable.

The algorithm is based on the observation that for any elliptic cyfve 23 + az + b, which
we denoteF, ;, or simply E, if N factors ag{* - - - p;*, then

E(Z/NZ) = E(Z/p'Z) x E(Z/py’Z) x --- x E(Z/pZ;})

Therefore, if the order of one of the groups on the right is smooth, for example sugp@&&;' Z)|
is B-powersmooth, then (mirroring Pollardis— 1) by taking a large multiple of a poinP &
E(Z/NZ), saym = lem{1,..., B}, we must get thatthe: - P = O = (0 : 1 : 0), whereP is
the projection ofP into E(Z/p{'Z). In that case it follows that: - P = (0 : 1 : 0) mod p, and
so it must be that the third coordinatesaf- P must be divisible by. Equivalently, we attempt to
computem - P using the algebraic addition formulas introduced in section 1.4, and if we ever find
thatz; — o is not invertible modulaV, we will have a factor ofV.

To implement this method, the curves typically used are of the g&ass= 2® + azz? + 2°
for a randoma, mainly for the reasons that there is only a single parameter and there is always a
convenient poinf0 : 1 : 1) on the curve. Letting® equal this point, we choose a smoothness bound
B and computen = lem{2, ..., B} as in Pollard’s method. Then we compute: y : z) = m - P
on the curveE,(Z/NZ). Note that this computation will always be possible as a projective point—
the failure may occur when we try to rewrite this valug@gz : y/z : 1) moduloN, in the event
thatz is not a unit modulaV. If we find gcd(z, N) > 1, output this factor ofV.

It is clear that if £,(Z/pZ) is B-powersmooth, then the method will succeed with very high
probability. The only source of failure is that - P might be equal td0 : 1 : 0), which is certainly
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congruent to® modulop, but does not lead to a factor. This will only happer¥if(Z/qZ) is
B-powersmooth for alf | NV, and therefore simply suggests that @iwas too large. See [25] for
a full description.

The following well-known result is a theorem of Hasse which is extremely relevant to the search
for smooth values of/, (Z/pZ): For any elliptic curvers, if n = |E(Z/pZ)|, thenp +1 — 2,/p <
n < p+ 1+ 2,/p. Deuring showed in 1941 that for amyin that range (called the Hasse interval),
there exists an elliptic curv& such that{ E(Z/pZ)| = n, and moreover gave a formula for the
number of curves which have that order [13].

Since we will only be able to analyze the algorithm assuming the choicanofomcurves,
fixingb = 1andP = (1 : 0 : 1) does not really work, although it is very often done in practice.
A better way is to choose a randamand then a random poif® = (z¢ : yp : 1), and then let
b = y¢ — 2} — axo. That way we have a truly random cur# , and a random point on it. This
will give us a roughly random value foE(Z/pZ)| in the Hasse interval.

We must now make a conjectural leap. By the results from the introduction to this chapter, we
have some knowledge about the probability that a random integer les® thidinbe B-smooth;
in order to apply that formula here we must assume that the distribution of smooth integers in the
Hasse interval matches the overall distribution.

Once we assume this conjecture, the probability that this group ordessimooth (and will
thus lead to a factor aWV) is u=* for u = log p/ log B by earlier analysis. Therefore we expect to
have to tryu" curves to be successful. As in the analysis of Pollapd’s 1 method, the number
of group operations necessary to compuite P on any one curve is roughly(B) - log B = B.
We therefore want to choose a bouBdo minimize the total work required, given lyu". Recall
the definitionL(z) = exp((log z)/?(loglog z)'/?) from earlier, and define = log B/ log L(p).
ThusB = L(p)%, andlog B = a(log p)*/?(log log p)'/2. Therefore

u = (logp)/(log B) = (1/a)(logp)'/*(loglog p)~/*.
and
logu = log(1/a) 4+ (1/2)loglog p — (1/2)logloglogp ~ (1/2)loglog p,

since the other terms are relatively small. It follows that
u" = exp(ulogu) = exp((1/2a)(log p)'/*(loglog p)'/?) = L(p)"/**.

It follows that to minimize our total worlBu" = L(p)®L(p)'/?¢, itis enough to minimize+1/2a.
Differentiation yields the optimal choice of = 1/v/2, so the optimalB is L(p)'/V2, and the
minimum total work iSL(p)\/i.

We note one very interesting aspect of this complexity, which is that it depends on the size of
the prime factop to be found, not orV itself.
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3.4 Sieving Methods for Factoring

We assume for this chapter th&t, the integer to be factored, is odd, greater than 1, and is not a
prime power. Our goal in general is to use the following fact:

Proposition 3.5 Givenz € (Z/NZ)* with 22 = 1, andz # +1, a nontrivial factor of N can be
found.

Proof . The existence of such a square root of 1 moddildollows from the Chinese remainder
theorem. Given such an, with 22 — 1 = 0, it follows that N divides (z — 1)(z + 1), but since
x # +1, N does not divide either factor. Therefore we can simply evalgatér — 1, N') and will
have a factor ofV. [

In general, consider the subgrofip : »? = 1} of (Z/NZ)*. We can consider this as a vector
space over the 2-element fidig, and its dimension, by the Chinese remainder theorem, is equal to
the number of prime factors @¥. Therefore listing the generators of this subgroup is equivalent to
fully factoring V.

We now describe a general sieving process:

Step 1 : Choose a factor basd.et P be a finite index set, and choose a collection of elements
{ap}pep ranging over this set, with eae), € (Z/NZ)*. Let Z” denote the set of integer vectors
(vp)pep ranging overP; and letf : Z” — (Z/NZ)* be the group homomorphism mapping
(vp)pep — HpeP .

Step 2 : Collect relations.We can think of each vectar= (v,) in ker(f) as arelationamong
theay,, inthat[[ . p oy’ = 1. In this step we search for such relations until we have at |€4sif
them, and we then hope that the collection we have found is sufficient to gekergfte.

Step 3 : Search for dependencies among the relatiohet V' be the collection of relations.

For eachv € V, reduce it modulo 2 coordinate-wise anddet F1’ be the resulting vector. Since

we ensuredV| > |P|, the resulting vectors cannot be linearly independent os, so we wish

to explicitly find the dependencies among them using linear algebra. The matrix is of course, very
large and sparse, but traditional Gaussian elimination is usually employed with some optimizations.

We have the convenience of being able to omit coefficients working Byeand therefore
can write down any relation as a subgetC V such that) _.v = 0. It follows that each
coefficient ofr = ZUeR” is even, and therefore/2 € 7' . Also, sincer is a linear combination
within V, r € ker(f). We can therefore consider the element f(r/2) € (Z/NZ)*. We have
2?2 = f(r) = 1.

It may be, of course that = +1, and we have found only a trivial factorization. It is thus our
hope that we will have generated enough relations and found enough dependencies between them
to completely factorV.

3.4.1 The Rational Sieve

In this algorithm we select a bour8l, and choose our factor base to be all primes uitleBo we
haveP = {p < B : pis prime}, and choosey, = p mod N for eachp € P. We note now that our
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original desire was to have eaohj a unit of Z/N'Z, and the selection method just given does not
guarantee this. However, if we ever do getegn¢ (Z/NZ)*, we have found a nontrivial factor of
N, so we do not worry about this possibility.

We then search for integebssuch that botld and NV + b are B-smooth. Having these, we will
have the factorizations of botrand NV + b in terms of the,. Sinceb = N +b mod NN, we can use
these factorizations to generate a veetar Z” in the kernel of our functiorf : ZF — (Z/NZ)*,
thus each suchyields a relation for step 2 above.

Example. Let's use the Rational Sieve to factor the numbee 1517. We'll set B = 35, which
thus givesP = {2,3,5,7,11,13,17,19, 23, 29, 31} and since we havB < N, thea,, are the same
as the elements d?; conveniently (through coaxing @¥) each of the, is in fact a unit!

By inspection, we find somiesuch thab and N + b are35-smooth:

e b=2:N+b=1519=7%-31.
This gives the kernel vectdr1,0,0,2,0,0,0,0,0,1).

e b=3;N+b=1520=2*.5-19.
This gives the kernel vectdd, —1,1,0,0,0,0,1,0,0,0).

e etc.
We need to find some collection of more than 11 such vectors to guarantee dependencies, and we

can do this using = 2, 3,4, 13,19, 22,30, 31, 33, 51, 56, 58; these respectively give the following
matrix of kernel vectors

-1 0 0 2 0 0 0 0 0 1 1 00000O0O0TO0T1
4 -11 0 0 0 1 0 0 O 0110001000
-2 2 0 0 0 2 0 0 0 O 000O0O0OO0OO0OO0O0O
12 1 0 0 -1 0 0 0 O 10100100O0O0O0
9 1.0 0 O O -10 0 O 110000100 O0
-1 4 0 0 -1 0 1 0 0 O mg}:i 21000101000
-1 -1-11 0 1 0 0 0 O 1111010000
2 2 0 0 0 0 00 0 -1 000O0O0OO0OO0OO0O0T1
1 -1 2 0 -1 0 0 0 0 1 1100100001
5 -1 0 2 0 0 0 0 0 O 1'100000O0O0O0
-3 0 0 -1 2 1 0 0 0 O 100101000O0O0
-12 2 1 0 0 0 0-1 0 1001000O01O0

We needn’t search too hard for dependencies, seeing that the third vector is itself 0. Therefore we
considerf(vs3) = 272-32.132 = 1, and we have = f(v3/2) = 778. We havezed(z—1, N) = 37,
and have found a factor df. o

Several other methods of extracting these relations are used in practice today.
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3.4.2 The Continued Fraction Method

We have long known how to approximate accurately a given real number with rational numbers by
constructing continued fractions. Morrison and Brillhart [31] developed a factoring algorithm based
on this ability.

Recall that to evaluate a continued fractiog, a1, as, . ..] (Wherea; € Z anda; > 0 fori > 0)
one proceeds as follows: Initially sét { = 1; Q-1 = 0; Py = ap; Qo = 1; and then
proceed through the continued fraction, iteratively computing

Py =apPy_1+ Pr_2; Q= apQr—1+ Qi—2.

It can then he shown that i, a1, . ..] represents the real numbgr
Py ’ 1
= —Y| < =3 (3-3)
Qk Q3

Since tha)); are a strictly increasing sequence of integers, this result guarantees us arbitrarily close
rational approximations of low height for any real number.

Returning to the problem of factoring, suppose we are givVeo factor. Consider approximat-
ing v/N using continued fractions. Since we assulés not a perfect square, we have a continued
fraction of an irrational number, which will not terminate but will eventually repeat. Using a variant
of the typical algorithm to compute the continued fraction teengom /N which does not rely
on knowingy/N to extreme precision, we can maintain a third sequence of intégjensch that for
all 7,

P? —N-Q?=(-1)'R;; VR <2VN.

But from this we haveP? = (—1)'R; (mod N)—a quadratic relation. The term on the right being
bounded by2v/N, we might hope to factor it over a small factor base of primes, and then use the
same linear algebra mod 2 to find dependencies, each of which provides a congrtiencg’

(or equivalently in the language of the above descriptiogi !)? = 1) which provides a chance to
factor N.

3.4.3 The Quadratic Sieve

A cousin of the continued fraction method, the quadratic sieve also searches for reldtieng
for ¢ small and factorable over a factor base. However it is more efficient in that it attempts to factor
thesey using quadratic polynomials, instead of trial division.

Define f(x) = 22 — N, and lets = [v/N]. Consider now the sequengés), f(s + 1), f(s +
2),..., and suppose that we could completely factor each of these. If a prioihedes f(z), we
know thatp|z? — N, and therefore unlegsdivides N, N = z? is a quadratic residue modufo
Therefore if we select a factor base be theSef all the primes such that each < B and each
such that(ﬂi) = +1 (such thatV is a quadratic residue modujg), and if we can findk > |S]
valuesf(x) which areB-smooth, it follows that we can factor these values amongth&hen the
linear algebra techniques mod@avill again give quadratic relations which might factr.
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We would like to be able to factof(s + i) using a sieve — that is, to be able to identify which
p will divide it without trial division. So how can we know jf | f(s +)? Sincef(z) = 2> — N,
this happens if and only ifs +4)? = N (mod p). But all positive solutions ta? = N (mod p) lie
in one of two arithmetic sequencés; + kp}i>o0, {2 + kp}r>0, Wherer; andr; are the principal
square roots ofV mod p (that is, the ones i{0,1,...,p — 1}), which we know exist because
() = +1.

g These principal roots can be found efficiently (sipde prime), and therefore we can predeter-
mine all thei for which f(s + ) will be divisible by p. We thus proceed through our factor base,
dividing out eactp; from the f(s + ¢) which it divides. Trial division is therefore avoided—we
know a priori which divisions will be successful.

If we perform the sieve overin some range < i < b, (for a > s) we expect that number of
divisions required for each primeis therefore abouf2/p)(b — a), since 2 out of every numbers
are square roots oV modulop. So if we sieve out all primes less thd? it will take us (b —
a)->.,<p(2/p), and this sum i®)(log log B), substantially less than tifé( 5/ log B) required for
trial division in the continued fraction method.

Wagstaff [50] notes that this process can be made more efficient by storing the logarithms of
f(a+17) in an array instead of the values themselves. Then divisigniscomes the more efficient
subtraction byog p. At the end, we search the array for small values (not quite zero because of some
other optimizations— not actually wasting our time sieving small primes but instead sieving higher
powers of them). When we do see a value below whatever threshold we decide upon (and this can be
updated dynamically depending on our success), we can recongtau¢ti) and actually factor it,
using our knowledge of the square rootsdmodp to assist. If we do factor it completely over our
factor base, we have a relation, and we repeat and proceed as above tdfadtbrdependencies
among these relations modulo 2.

Consider the running time of the algorithm outlined above. Following Wagstaff [50], we es-
timate the size of the polynomial valug$s + i) from which we would like to findB-smooth
numbers. Ifi < M < /N, we have

fls+i)=(s+i)?—N=5s>+2si+i* — N ~ 2si + i’ ~ 2si < 2MV/'N.

We recall that in the continued fraction method we hoped to fnd< 2v/N which were smooth;
for the quadratic sieve we are searching for numiérsmes larger.

By the analysis of section 3.1.1, if assume that flie + i) are roughly the size of/ N, then
the probability thatf (s + i) is B-smooth is approximately—*, whereu = (logv/N)/(log B) =
log N/21og B. We would like to choose a value fd@ which minimizes the total work required to
find these smootlf(s + 7). We noted earlier that the time on average it takes test esatoughly
loglog B. Since the probability thatleads to aB-smooth value is.—“, we expect to have to try
u"(K + 1) differenti to succeed. Lek = |S| be the size of our factor base, and since we choose
this base to be all primgs < B with (%) = +1, K =~ m(B)/2 = O(B/log B). Therefore if we
let (as in Crandall and Pomerance [9])B) be the expected amount of work using bound

T(B) =u"(K 4+ 1)loglog B, — logT(B) = ulogu+ log B —loglog B + logloglog B,
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and we will assume that a3 gets large enough this is dominated ¢B) = ulogu + log B. It
follows that we can minimize the work by find a zero of

—log N 1
S'(B) = og 5 (loglog N — loglog B —log2 + 1) + 3 (from [9]).

2B(log B)

This leads to the optimal choice @ of exp(3(log N)'/%(loglog N)'/2) = L(N)¥/2, and the
running time is abouB? = L(N) = exp((log N)'/?(loglog N)'/?).

We note that the analysis and the eventual result here are both very similar to the ECM method
described earlier, however we reiterate the distinction that ECM’s complexity is in termsanfl
here we are interms d¥. In practice, the quadratic sieve is useful for factoring much larger integers
than the ECM, especially those formed of 2 prime factors of similar size, although the latter method
may get quite lucky at factoring large integers with medium sized prime factors.

3.4.4 The Number Field Sieve and Factoring

Though the number field sieve is most commonly presented as a natural sequel to the quadratic sieve,
we can conceive of it perhaps more accurately as a generalization of the rational sieve introduced
at the beginning of this section. In the quadratic sieve, we seek maddalengruences of the form

22 = @, whereQ is something we can easily factor over our factor base. In the rational sieve we
sought relations of the form = @, wherep was a small prime, thus already factored over the factor
base, as wa€§). We can generalize to seeking relations of the most general form QQ, where

both P and( are easily factored over the factor base. It is clear that this will be enough to generate
relations and dependencies to fachr

The number field sieve is due to Pollard who first proposed the idea in 1988, much later than his
earlier exponential offerings of the— 1 and rho methods. For an account of the development, see
[21] and the other papers in the same volume edited by Lenstra and Lenstra.

In the number field sieve, we attempt to find such relationships by leaving theZ world
(temporarily) and moving into an extension figtd= Q(«). In order to keep ourselves grounded in
integers, and specifically to be able to write relations moddjave will need a ring homomorphism
h: Ox — Z/NZ on the ring of integers oK. Then by working with irreducible algebraic integers
[ such that we can easily factb(/3) over the integers, we will be able to convert relations dver
involving integers expressed as a product of sféhto useful relations modul& which we can
use to factor.

To construct’ = Q(«), we need a monic irreducible polynomial

F(X) =X+ X 4 o1 X + ¢

with integer coefficients, and we latbe a complex root of . We then hav&(«), and we will also
make use o¥.|«], a subring of the rin@ i of algebraic integers. To define our homomorphism, we
would like to know a root- of f moduloN (that is anr such thatf(r) = 0 (mod N)), and then

if we defineh(«) = r, we will indeed induce a homomorphism, and so for gny Zf;ol bjad in
Z[a], we haveh(8) = 9" br7 (mod N).
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Typically, to select such a polynomial, we select a degheand then let be an integer near
N4 (but below it). We then writeV in baser, N = 3% ¢;r%. Itfollows thatf(X) = 3% ¢; X
hasr as a root moduldV. [This makes the polynomial easy to find in cases whéris of a special
form s¢+t for smalls and|¢|, in which case this algorithm can be optimized and is called the Special
Number Field Sieve.] We can assume tlféX) is irreducible, for if notN = f(r) = g(r)h(r)
gives a nontrivial factor.

Reminding us of our goal, it follows that (as a simple example) if we candiaddb such that
a — br = 22 is a square modul®’ anda — ba = 72 is a square IO, then if we lety = h(vy) it
follows that
v> = h(7)> =h(y?) = h(a —ba) =a—br =2° (mod N)

and we have a chance of factoring

In general, we choose a factor base of “small” algebraic integers of thedprrb;«, and our
search for relations is a search g&tsS of pairsa, b such that the generalized above example holds,
thatis so thaf [, ;)cs(a — ba) is a square irZ[a] and]], ;)cs(a — br) is a square moduldy.
Such examples will occur as moduldinear dependencies, if we can find enougl pairs such
thata — ba anda — br can be written as a product of elements in our factor base.

To do this, we extend the notion of smoothnesgXtg, and we say that an algebraic integer
~ is B-smooth if its rational normV () is B-smooth. Wagstaff [50] demonstrates how to easily

compute the norm of an algebraic intege# ba. He notes that ifvy, ..., a4 are thed complex
roots of f, they are the conjugates af and thusa — bay, . ..,a — bay are conjugates af — ba.
Therefore

d
N(a —ba) = Hz =1%a — boy) = de(a/b — ;) = b f(a/b).

=1
It follows that if we defineF'(x, y) = y®f(2/y), which is the homogeneous polynomial

2t eg 1z ly + o 4 cy® oy,

thenN(a — ba)) = F(a,b). It follows that we can sieve this polynomial in order to find pairs
such thats — ba: has a smooth norm.

Since we have seen sieving already in some detail, we will not go any deeper into the specifics
of how the algorithm proceeds. The literature on the number field sieve is extensive, and the process
has many unexpected complications, none of which would offer particular insight upon elaboration
into the relationship between factoring and discrete log. For reference into these specific issues,
consider [21] and the relevant chapters of [50], [9], or [8].

The one unmentioned issue which will highlight the relationship is the complexity of the number
field sieve. Our analysis parallels Crandall and Pomerance’s in [9]. As in the quadratic sieve, our
main concern is in the probability that the numbers we want to be smooth are smooth. We saw
above that the smoothness boud= L, ;[ V] leads to the optimal situation, and this can actually
be proven under the heuristic assumption that the values we test for smoothness are random. In the
quadratic sieve these were the valy¢s+ i); here they are the valudd(a, b) from above and also
G(a,b) = a — br = h(a — ba). Thus we wish to find smooth valué¥ a, b)G(a, b).



3.5. SIEVING FOR DISCRETE LOGARITHMS 35

Now assume that the ropts no larger thariV'/< (d is the degree of), and that the coefficients
of f are equally bounded by'/¢, and that we are searching farb-pairs in the rangéu|, |b| < M.
It follows that

|F(a,b)G(a,b)] < 2(d+ 1)M** . N2/,

If we call this quantity.X, then by Pomerance’s theorem under our heuristic assumptions, we
would expect to require testing; /»[X| V2+o(1) a, b-pairs to succeed. We can see exactly that num-

ber of pairs if we make our bount! such that\/? = Ll/Q[X]\/ﬁ“(l). Then substituting into the
above definition ofX and taking the log of both sides,

2 1
log X =log2+log(d+1)+ glogN—i- (d+ 1)\/2 log X loglog X.

The first two terms on the right are dwarfed by the last, so we ignore them. Now letAstebo
and assume that — oo as well. This leaves us with

2 1
InX = dlogN+d\/2logXloglogX,

and taking the derivative with respectdaives

!/

dX'(1+ loglog X)
4X\/ Liog X loglog X

-2 1
<= ﬁlogN—i- \/QIOgXloglogX+

which givesX’ = 0 for d = (2log N)'/2((1/2)log X loglog X)~'/4. Substituting back in gives
gloglogX ~ %loglogN, or

log X ~ (64/9)"/3(1log N)?/3(loglog N)/3.
The running time of the algorithm is then
Ly o[X]V2+°0 = Ly ge; N,

with ¢ = (64/9)Y/3 + o(1).

3.5 Sieving for Discrete Logarithms

It turns out that both the general concept of sieving and some of the specific variants just seen for
factoring apply well to solving the discrete log problem as well.
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3.5.1 The Index Calculus Method

The basic construction of a sieve which we saw on page 29 can be adapted easily to find discrete
logarithms instead of factors. The resulting algorithm is calledridex-calculusnethod, which

dates to ideas in the work of Kraitchik in the 1920s and in current form is due to multiple individuals
including Cunningham and Adleman.

The form is as follows. We present it over the grq@#y'pZ)*, but note that it could be used
generally to solve logarithms over any cyclic group. The high-level goal of the algorithm is to build
up knowledge about the logarithms of some elements of the group which generate a significant
portion of the group, and use these logarithms to solve easily for the logarithm we don’t know.

Step 1 : Choose a factor badeet S = {p1,...,ps} be a subset ofZ/pZ)*, which we choose
in hopes that it will be enough to generate al(&f/pZ)*.

Step 2 : Collect relations among the logarithms of ptheTo do this, we create a random element
whose logarithm we know, and hope it is generatedSbySpecifically, choosé € (Z/pZ)* at
random, and compuig’. Attempt to writeg® as a product of elements of the factor base:

s
gb:Hp;‘iia €q ZO
i=1

If this was successful, then we have a linear relation on the logarithmsy _ e; log,, p;. Since this

is taking place in the exponents, it is a congruence moguol, or generally in the order of the
cyclic group being used. If we were unsuccessful, we try again for abn&ince we are trying to
solve for each of théog, p;, we will be working ins unknowns; therefore we should repeat until
we have a collection of more tharelations (say + k) of the above form.

Step 3 : Solve for théog, p;. We do this as hinted above by solving the linear system of
equations modulp — 1 given by the relations collected in step 2. We hope thatthek relations
will not be dependent, and therefore we can get a unique answetr.

Step 4 : Use the known logarithms to solve- ¢g*. To do so, seledi at random from{Z /pZ)*.
Then calculatg - g°, and hope that it is generated by elements efhose logarithms we know. If
it is not, then repeat with a differeht if it is we can writey - ¢° = [L; p;*, which implies the linear
congruence

a+b= Z(alZ log,pi) (modp—1).
7

Knowing all these elements exceptwe can solve for. and we have the logarithm.

Example. Letp = 307, andg = 5, which is a generator ofZ/307Z)*. Suppose we are given
y = 214, and we will use the index-calculus method to finduch thaty = ¢g* (mod 307).

We will begin by choosing our factor base to be the first few prime numisess{2, 3,5, 7,11, 13}.
Let!, denote the logarithm qf to the base;, which we initially do not know (except = 1).

1. Now we choose some randoimsayb = 30. We havegb = 54 = 233, so we have the
relation30 = ls + 3l3 (mod 306). Similarly,
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2.b=55—-¢"=120=23-3.-5—55=3ly + I3+ I5.
3.0=39 - ¢*"=128=27 - 39="7-1.

4. b=118 - ¢* =175 =527 — 118 = 2l5 + 7.

5.b=156 —¢"=182=2-7-13 — 156 = Iy + 7 + l13.

6. b=1259 — g" =198 =2-32 11 — 259 = Iy + 23 + I11.

and while we don’t have any more tharelations, we might feel pretty good about them, and in fact
we can do some manual linear algebra to solve this system: frony(3)39/7 (mod 306) = 93;
from (1): I3 = 81; from (2): I5 = 1; from (4): I7 = 116; from (6): I1; = 4; from (5): [13 = 253.

With these in hand, we try to actually take the logyofSo choose at random= 155 (it took
me 3 guesses to find one that would work), and we hfvey = 176 = 2% - 11. It follows that,
modulo 306,155 + a = 4ls + 131 = 4(93) + 4 = 70, soa = 221. o

3.5.2 The Number Field Sieve and Discrete Log

The above index calculus discrete method closely parallels the quadratic sieve method for factoring;
similarly the modification of the factoring sieve to use number fields also has a discrete log corollary.
Here there is no particular name, and the method retains the title of number field sieve. The principal
work in this area was presented by Daniel Gordon in 1993 [19] and improved by Schirokauer in 1999
[44].

The algorithm proceeds very much like its factoring predecessor. Given a prame a gener-
ator g which are the parameters of our problem, we choose an irreducible monic polyngmjal
overZ with a known rootr € Z such thatf(r) = 0 (mod p). We also require that not divide the
discriminant off.

Now let « be a complex root of, defineK = Q(«a) and letOy be the ring of integers it .
Since will be looking to “factor” ink, we invoke the following theorem ([19] Prop. 1)

Proposition 3.6 If ¢ is a prime number not dividing the indé®x : Z[a]] = |Ok/Z]c]|, and if
f(z) factors modulos as the product of distinct, irreducible monic polynomigls) = [] g:(x)“
(mod s), then the idealq) factors as(q) = []s;* for distinct prime ideals; = (s, g;(«)), which
have normN (s;) = sf, whered; is the degree of;.

It follows from this that the idegl = (p, « — r) divides(p), sincex — r divides f (x) modulop.
Since it has degree IN (p) = |Ok /p| = p, and in factOx /p = F,. We say that a “good” prime
ideal is one whose norm does not divide the in@8x : Z[a]], and there exist efficient ways of
determining if(p) is a good prime ideal.

We will want our factor base to consist of such good prime ideals of low norm, and Gordon
gives us a way of finding ideals which will factor over this factor base.



38 CHAP. 3. THE RELATIONSHIP BETWEEN THE PROBLEMS I - ALGORITHMS

Proposition 3.7 ([19] - Prop. 2) If ¢ and d are integers withged(c,d) = 1 and N(c + da) is
relatively prime to the indejO : Z[a]], then the idealc+ d«) in O can be written as a product
of good prime ideals of degree 1.

Therefore, to take discrete logarithms o¥y, we build a factor base with two parts. One part
By, consists of integer primes less than our smoothness bBuaahd a second parBy consists
of good prime ideals of degree 1 and with norm less tBan

We then sieve over pairs of integdrs d) such that botfx + dr and(c + da) can be written as
a products of terms in our factor basBs and Bx respectively. To do the latter we actually sieve
to find N (¢ + da), for suppose that

c+dr= H p;t and |N(c+da)| = H pf;.
pi€Bo pi€Bo

Then by the above proposition for eachvith e, > 0 we can find a unique ideal; containingp;
and dividingc + da. Definee;, = e for this ideal and O for all other ideals of norp. Then the
above becomes
c+dr= pr”” and (c+da) = H plp””
pi€Bo pi€BK
We are know well poised to search for dependencies by solving a linear system of the exponent
vectorse; ande, once we have slightly more tham,| + | Bx| pairsc, d with the above property.
Such a dependency will be a sebf pairse, d such that

H (¢ + da)*“?) = 4, waunit and H (¢ + dr)*“? is B-smooth
(c,d)es (c,d)es

With enough such sets, we can find some urfioa S; U --- U S; such that the units cancel
out and we havﬂ(c7d)65(c+da)e(c’d) = 1, and of course the corresponding product of(ihe dr)
will still be B-smooth. Recalling the homomorphism: Ox — Z/pZ which sendsy — r, we
have

H (¢ + dr)eted) = H hic+da)*>d =1 (mod p).
(e,d)eS (e,d)eS
Since we know how to factar+ dr over By (this was how we selected thed pairs), we have some
relation
H p*P =1 (mod p).
pEBo
Therefore, taking the discrete log both sides with respect to the gengrator

Z s(p)log,p=0 (mod p—1).
seEB

Therefore with sufficiently many sefs we can solve a linear system modugle- 1 and deter-
mine all thelog, p for p < B. Steps 3 and 4 of the above index calculus method can then be applied
to findlog, y.
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The running time for this version of the number field sieve parallels that of the factoring al-
gorithm; Gordon [19] shows that optimal values for the bouhdnd the size of the root. are
L,[1/3; ] for some values of, and then derives the optimal running timelgfi1 /3, 3%/3]. We note
that since the algorithm Gordon proposes relies on the elliptic curve method to find smooth integers
nearp, this running time is based on the same heuristics Lenstra assumed that the distribution of
B-smooth integers in the Hasse interval aropns the same as the general distributiofp, B).

3.6 Conclusions

The topic of this paper was originally motivated by the observations just seen in the preceding
chapter that the same ideas can be applied to solve two seemingly disjoint problems in number
theory, and that when programmed as algorithms, the running times are the same. This remains
remarkable, given that no concrete mathematical reason to expect this occurrence has yet been
proved.

We have seen in Chapter 2 the importance that the difficulty of these problems plays in modern
systems, and as suggested in Chapter 1 one of the reasons to consider the relationships of these
problems is out of concern that our security assumptions may not be sufficiently diversified among
independent hard problems.

Practically, from the algorithmic point of view, the evidence presented in this chapter leads us
to conjecture that the hardnesses of factoring and discrete log are not independent, and that if in one
year’s time an even faster factoring method were discovered, running in say. €5, c|, not
long from that date would thé,[1/5, c] discrete log algorithm be unveiled.

These observations of comparable running time, based purely on the subset of yet-discovered
algorithms, should not be confused with the claim that factoring and discrete log have been proven
to have equivalent complexity, though this confusion is not uncommon in the world of practiced
cryptography. (Or, in the related form “If factoring were tractable, all number-theoretic cryptogra-
phy would be lost” is a common misconception.) Let it remain clear that this statement has not been
proven.



4. The Relationship Between the
Problems Il — Theoretical

Having now seen evidence of a historical and empirical nature that the efficiency of these two
problems is closely correlated, we turn to the mathematics behind the problems in search of a
rigorous connection.

We will show, in turn, the three reductions figured below. In the diagram, an arronXremY
indicates that problenX reduces to probleri, which is in general to say that it is possible to solve
X given the ability to solvg”, or that 'Y implies X”. As mentioned in the opening chapter, this
can take several different specific meanings depending on context, and we leave the discussion of
that issue to each individual section. The branching atkow- (Y, Z) is possibly non-standard,
and we wish for it to mean that the probleXhis solvable if bothY” andZ are solvable.

Discrete Log mod N

Discrete Log mod p°

Generalized Diffie-Hellman ¢——=— Factoring

The two light arrows indicate trivial reductions between these problems, and are included only to
make our graph complete; we will not specifically prove them here. For a more complete picture of
reductions between number theoretic problems other than factoring and discrete log (and specifically
easier than them), see Heather Woll's 1987 paper [51].

4.1 Composite Discrete Log implies Factoring

Problem 4.1 (Composite Discrete Log)Given an integetV, not necessarily prime, an element
of (Z/NZ)*, and an elemeny € (Z/NZ)* such thaty = g for someu, to find the integen.

40
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Parallel to the discussion of section 1.3, we can also frame this problem probabilistically, by
defining an instance generator and the notiogrsblving the problem according to those instances.

D (1%):
e GenerateV « Fp.
e Choosey with high order in(Z/NZ)*.
e Choose: at random from(Z/¢(N)Z)*, and computg = g* mod N.
e Output(N,g,y).

Some care must be taken over the meaning of “high order” as applied to elem¢éAg\aL )*.
Given justN «— F;, we do not know how to find such@a So we assume that during the operation
of D¢ we have access to the intermediate values used in the selectdfroin 7, specifically the
prime factorg andq of NV and the factorizations gf — 1 andg — 1. It is easy to find generators
g1 of (Z/pZ)* andg, of (Z/qZ)* these intermediate values, and the Chinese Remainder Theorem
gives us an elememtin (Z/NZ)* which is of maximal ordefcm(p — 1, ¢ — 1). So we take this as
our meaning of “high order”. See [29] section 4.6 for details.

Problem 4.2 (Solving Composite DL with probability ) Given a functiore(k), to construct a
probabilistic polynomial-time algorithml such that for any intege,

Prig"™9%) mod N = y] > e(k),
taken over al( NV, g, y) « D (1%).

Although | name it “Composite Discrete Log,” we do not require in the definition Mdie
composite. Therefore, considering that wheis prime, every element fZ/pZ)* is a generator,
and therefore every € (Z/pZ)* is some power of, this problem is trivially no easier in the worst
case than the discrete log problem using a prime modulus which we defined in Problem 1.2 and
have been discussing all along.

However, we can establish our first theoretical connection to factoring, which is slightly less
expected, that factoring can be accomplished by taking discrete logs. This result was shown by
Eric Bach [1] in 1984, extending earlier work of Gary Miller from 1976 [30]. The proof below,
which is a worst case reduction, is expanded from that in Bach’s paper. We follow it with our own
randomized reduction, using an adaptation of Bach’s method.

Proposition 4.3 (Bach, Miller, et al.) If there exists a polynomial-time algoritheh to solve the
Composite Discrete Log problem on all inputs, then a polynomial-time algorithm exists which solves
the Factoring problem with arbitrarily high probability.

Proof of Proposition.We assume thaW is odd and not a prime power. These conditions can be
efficiently tested and, if they fail to hold, lead immediately to a factalNof
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Consider the structure ¢%/NZ)*. If N has prime factorizatiop{' - - - p¢, then
(Z/NZ)* = (Z/pT'Z)" x --- x (Z/pSZ)".

This group has ordef(N) = ¢ - - - ¢, eachy; = ¢(p;’) = pfi’l(pi —1), however itis not cyclic,
and there is no element of orde¢(NV). However, if we raise any € (Z/NZ)* to a powere such
that eachy; | e, it follows thata® = 1 mod p;* for eachi, and therefore® = 1 mod N. So each
element of Z/NZ)* has order dividing. = lem(¢y, . . ., ¢s).

We prove our result in two stages. First we show that given the ability to find the order of
elements inNZ/NZ)*, we can factotN. Then we demonstrate how to compute orders by taking
discrete logs moav.

Our first goal is to factorV by determining the order of an element. We've established that
zl = 1 for all z, but as mentioned earlier, sindeis composite we know there are square roots of
1 other thant1. Therefore consider the subgro&pof (Z/NZ)*:

K ={z € (Z/NZ)* : z"/?> = +1 (mod N)}.

We can show thaf{ # (Z/NZ)* as follows. First, define the symbe}(k) for £ € Z to be
the exponent oR in the prime factorization ok, or equivalently the highest power of 2 which
dividesk. Now sort thep; using this symbol, such thab(¢1) > ea(¢;) for all 7. It follows that
ea(¢1) = ea(L). Since each groupZ/p;'Z)* is cyclic, choose generators, ..., gs. Then let
a € (Z/NZ)* have coordinate§y, g3, . . ., g2). It follows that

oL/? — ( L/2 1L/2

g gk, g = (g

is not+1, sinceg has ordews;, of which L/2 cannot be a multiple sinc&(L/2) = ea(¢1) — 1.
Thereforen ¢ K. SinceK is thereby a proper subgroup it follows that at least half of the elements
of (Z/NZ)* are outside ofx.

Now suppose that € (Z/NZ)* butz ¢ K, and that we have some such thatz™ =
1. Consider the sequenad®, 2™/, z™/4 ... ™/2"™ | claim that for somek, we must have
2™/?" = 1, butz™/2""" # +1. Suppose the actual order ofin (Z/NZ)* is r. It follows that
L = ¢ - r for an integerey. Furthermore, since ¢ K, we knowz™/2 £ 1, thereforec, must
be odd. Also;n = ¢ -, and we can pull out all the 2s into getm = 2¢2(9) . ¢; - r for ¢; odd.
Therefore if we maké = e (c), we seer™?" = 717 = 1, and consider™/2""" . Observe now
that for any oddi, whenever.> = 1 (mod N), then we must have = +1 (mod p{*) for eachi,
and since both:1 are their owndth power,z? = 2z (mod p{*), and s0z? = z (mod N) as well.
It follows thatz/2 = z%7/2 = ¢7/2 (sincecy is odd andz"/? is a square root of 1). Likewise
gm/2 = ger/2 = 2r/2 Therefore

g™/2 = g L/2 Z +1.

1,..,1)

This proves the claimt

ISince this claim holds only becaudgis composite, the sequence can also be used to check primality; the resulting
method is known as the Miller-Rabin primality test. See [30].
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It follows thatz™/2"" is a non-trivial square root of 1, therefore we can factbby taking
ged(z™/2""" £1, N) as in Proposition 3.5.

We are only left with demonstrating that an “exponérntf an element can be found with an
oracle for composite discrete log. We note that it is not enough to ask for the discrete logarithm of
to the base:, sincem = 0 is a valid exponent which will not lead to a usable sequence in the above
method, 0 having a not-well-defined number of 2s dividing it.

But suppose that is a prime such thatcd(p, ¢(N)) = 1. If so, there would exist an integer
solutionq to the congruenceq = 1 mod ¢(N). Then by Fermatz?? = x mod N, and so we
could ask for the discrete log afto the base?, get a valid answey, and then taken = pg — 1 as
our exponent of.

Of course, we do not even know(N), so we cannot specifically test this condition pn
however algorithmically we can test by asking fog,, « for p and seeing if they we get back
satisfiest?? = z. Since¢(NN) < N, we can guarantee that there must be a prinwehich is
relatively prime top(/N') among the firstog IV + 1 primes. Therefore we can complete a search for
ap such thatog,, x exists in polynomial time.

Since we knowr ¢ K with probability > 1/2 for a random selection af, it follows that our
algorithm, if repeated times, will fail to provide a factor with probabilit< 1/2¢. Therefore we
have an arbitrarily high probability of success. [

We repeat the observation that this proof as given by Bach [1] is a worst-case reduction, not
probabilistic, first because we alloW to be any integer with any prime factorization, and also
because we assume the ability to take arbitrary discrete logs to any base maduttowever
we can extend it without too much trouble into a probabilistic reduction in terms of our instance
generatorsF andDC.

Proposition 4.4 If A is a probabilistic polynomial time algorithm which solves the Composite Dis-
crete Log problem (4.2) with non-negligible probabilitythen there exists a probabilistic polyno-
mial algorithm B which solves the Factoring problem (1.12) with non-negligible probability.

Note that the two problems referred to above draw the composite intdgémsm the same
distribution 7.

Proof . We condense our proof of proposition 4.3, with some modifications, into an algorithm.
B(N):
1. Selectr < (Z/NZ)*.

2. LetH = N? — 2NV/N + N, and select < {2,..., H}.
3. Lety = 2" mod N
4. Use A to computes = A(N,y, x)

2Terminology is Bach’s [1]: aexponenbf « is anyy such that:¥ = 1.
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5. If zrs—1 £ 1, fail.
6. Letm =rs — 1.

7. Compute the sequeneg”, z”/2, ... (all mod N) until impossible, or until for
somet, z™/2" £ £1 while z™/2" = 1.

8. If such at was found, output = ged(z™/2""" — 1, N).

As in the above proof, we know that if ¢ K, once we havee™ = 1 we are home free,
and guaranteed to get a non-trivial factor¥f We asserted that for a randame (Z/NZ)*,
Prlz ¢ K] < 1/2, so we are left with the probability that will lead us to a validn. We know
that this happens it"™® = x; therefore ifA successfully finds = log,. x, and we know that this
exists whenevegcd(r, ¢(N)) is 1. Since the instance generaf®t always creates instances where
the exponent: is relatively prime top(N), if ged(r, ¢(N)) is not 1, we presentl with invalid
input—note the fact thatt solves CDL with probability: does not imply any behavior on invalid
input, all we know is thatd is correct with probability: given a random input according T (that
is, an input whereV, thegeneratorand theexponentvere chosen at random). It is clear that since
are showingB solves factoring with probability, then N will already be random according 1B.

We now limit the consideration to relatively prime top(N). Let N = p - ¢, since it came
from F. In this case, it follows that is relatively prime tap(p) and tog(q). Thusr has an inverse
sp € (Z/pZ)*, and so every element € (Z/pZ)* is of the formz” for some uniquer, namely
x = y*. Likewise in(Z/qZ)*. Therefore in these two groups,ifis random in(Z/NZ)* andr is
relatively prime top and tog, =" is random in each grou{¥./pZ)* and(Z/qZ)*, and therefore in
their product(Z/NZ)*. It follows that the generator of our problem instance is random whenever
ged(r, ¢(IN)) = 1. Since for the input tod to be valid we require our generator to have high order
modulo N, we must now consider the probability that a randgmill have high order.

First, note that ifr is a generator modulp, andr is relatively prime tap(p) = p — 1, thenz” is
also a generator. It follows that there ar@(p)) generators modulp [out of ¢(p) total elements in
(Z/pZ)*]. Letord,(x) denote the order of modulop. So iford,(z) = p—1 andord,(z) = ¢—1,
then

ordy(x") = lem(ordy(xy), ordy(zy)) = lem(p — 1,4 — 1),

in which case our generatgmwill have high order as defined iR Since our algorithm generates
x mod p andz mod ¢ independently at random, it follows that the probability of this success is

?(o(p)) ¢(¢(q))
op)  ¢lg)

Also, we know for anys relatively prime top(V), there is a unique relatively prime tog (V)
such thats is the solution tas = 1 mod ¢(N). Equivalently, taking inverses it¥/¢(N)Z)* is a
permutation. Therefore if we have a randerwhich is relatively prime tap(N), then we have a
random exponent € (Z/¢(N)Z)* in our instance of CDL.

4.1)

So while, as Bach argues correctly, we do know that there exists<aog N + 1 that must
be relatively prime tas(/N), we must go about selecting such aat random in order to invoke



4.2. FACTORING AND PRIME DL IMPLY COMPOSITE DL 45

what we know aboutd’s probability of success, thus step 2 above looks as it does. We note that
sinceN = pq andp andq are roughly the same size (eaklbits), we can approximaté(N) =
(p—1)(g—1)=N—-p—q+1~ N —2v/N +1. Our boundH in step 2 of the algorithm is thus
designed to approximate closelo(N).

Based on this assumptio/ is near a multiple ofp(N), so that ifr is drawn at random
from {2,..., H}and ged(r, (N)) = 1, thenr mod ¢(N) should be uniformly distributed in
(Z/p(N)Z)*. Also under this assumption the probability thas relatively prime top(N) is

P(¢(N))
oY) “2)

In summary,B factors successfully in the event that the random choicesaafix form a valid
random problem instance iR“, conditions which hold with independent probabilities given in
(4.2) and (4.1) respectivelgndin the event thatl is successful on the instance, which occurs with
probability > . Therefore

br{B(R) duides] > P 6060) 9(6(@)

o(N)  o(p)  9(q)

9
6 - loglog ¢(NV) - loglog ¢(p) - loglog ¢(q)’
which is non-negligible it is non-negligible. This completes our proof. [

4.2 Factoring and Prime DL imply Composite DL

We have seen that we can factor integers efficiently given an algorithm to solve discrete log modulo
N efficiently. The converse of this statement is currently not known to be true, but if we are given
the ability both to factor and to take discrete logs modulo a prime, then discrete log m¥dulo
becomes feasible.

Proposition 4.5 Suppose that efficient algorithms exist to solve both factorization and discrete log
modulo a primep. It follows that there exists an efficient algorithm to solve discrete log modulo any
N.

We preface this proof with an important lemma.

Lemma 4.6 For any primep, if given the ability to efficiently solve discrete log modulait is
possible to efficiently solve discrete log modpfias well for anye.

Proof of LemmaThe converse of the lemma is trivial, for it is clear that if discrete logs mogulo
are computable, then so are discrete logs mogulBor the direction which interests us, observe
that the structure of the groups involved is

(Z/p°Z)" = (Z/pZ)" x (Z/p*~'Z),
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where the group operation of the last term is addition, not multiplication. The isomorphism from
left to right is given byz +— (7 (z), ¢ (x)); the projectionr is reduction modul@, which can clearly
be evaluated efficiently, while the projectignis slightly more complicated, and we construct it as
follows.

We can, by considering a quotient, consider the structu(@gfZ)* as

(Z/p°2)" = (Z/pZ)" x U,

whereU is the subgroudz € (Z/p°Z)* : © = 1 (mod p)} (following [1]) . It is therefore easy
to project ontou by raising any element to the power— 1 (modulop®); by Fermat the result is
congruent to 1 modulp, and this operation (call &) is clearly a homomorphism. We can thus give
an isomorphismy : U — Z/p°~'Z and we will havey as the composition of and®.
Consider -
n(z) = u mod p
p
We want show that this is an isomorphism, but first we show that it is well-defindd, amhich
requires thap® | «? ' — 1 whenevera = 1 (mod p). Let ep(z) denote the highest power pf
which dividesz (as inez(x) earlier). More generally, Bach [1] asserted that for any integensd

b both relatively prime tg, if e, (a — b) > 1 then for allk > 1 then

e—1

k k

ep(a? — ) =ep(a—0b) +k,

and what we need for well definition follows from settihg= 1, from which we naturally get
ep(a — b) > 1 under the assumption that= 1 (mod p).
So it is well-defined. It is a homomorphism because

e—1 e—1 e—1

sy @ 1@ ) ) (@

pe pe

- —1)

But we know from above that® must divide each ofa? ™' — 1) and (*~' — 1), therefore the
product of these terms is divisible py¢, and so even after evaluating the fraction this term will be
divisible byp¢ and vanish modulp®~!. Therefore we have

(a?

e—1 e—1

_1)

—1)+(bp

n(ab) =
(ab) p ps

=n(a) +n(b) (mod p*),
therefore this is indeed a homomorphism into the additive giu ' Z.

To show that it is an isomorphism, note that if we take= U such thate,(a — 1) = 1,
then by the above,(a? — 17°") = e,(a” ' — 1) = e. Therefore when we takg(a) =
(aP"" — 1)/p¢ mod p=~! we get an integer which does not divide. Thereforg(a) is a unit
mod p°~!, and it follows that it generates all &/p°~'Z. Since we have already showpnis a
homomorphism , we have thatis surjective, which implies that it is an isomorphism.
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We note that as written is not polynomially computable, since we observed earlier that expo-
nentiation must be modular in order to be efficient. However since the value of the numerator only
matters modulg® - p*~!, we can take the exponentiation mgd—! and be okay.

Now we have shown that we can efficiently move between representations of elements in
(Z/p°Z)* and in(Z/pZ)* - Z/p*~17Z. Since discrete log in the additive grodgp®—1Z is trivial,
assuming the ability to solve it ifZ/pZ)* immediately yields solutions ifZ/p¢Z)*. Specifically,
suppose that we are given= g* modulop®. Rewritey = (y1,y2) andg = (g1, g2) in terms of the
group product above. It follows thgt = ¢ mod p, and thatjs = g2 - as mod p¢~*. We can find
ay just by dividing, andz; using our assumed ability. Therefore recomhine (a4, a2) using our
isomorphisms. [

With this lemma in place, we proceed into our proof of the above proposition.

Proof of Proposition 4.5We are faced with the problem of calculatiaguch thayy® = y mod N
for someg, y, and N given us; we have at our disposal the abilities to factor integers and solve
discrete logs modulp. So first, we factor

N =p{*---pr, eachp; prime.
Since the corresponding isomorphism
(Z/NZ)* = (Z/p'Z)" x - % (Z/pr2)"

follows from this, we know that ify = ¢* as elements ofZ/NZ)*, then the projections into
the r groups on the right must also hold; thusyif = y mod p{* is the projection into theth
coordinate, and likewise faog;, we must have;, = ¢}, whereq; is the reduction of: modulo
¢i = o) = (pi — 1)pfi’1. (We could also in truth say; = ¢g¢, but it is important to realize that
the logarithm within théth coordinate only exists as an elemen#gf;Z.)

It is easy to project and determine tiagandg; which correspond, and by the above lemma we
can use our ability to solve discrete logs modulo a prime to solve fai,;the

We then have equations of the fogn= ¢* (mod p;*), and we must combine them into a
singlea such thaty = ¢g® (mod N).

We can then combine them back intausing the Chinese Remainder Theorem such that for
eachi, a is congruent ta;; modulo the order of in (Z/p;*Z)*. Note that the Chinese Remainder
Theorem does not actually guarantee a solution in this case, because we do not have that these orders
are relatively prime; however since we know suclhuaxists we can use CRT methods to find it.

We must show how to find these orders, which we denedg(g). Trivially, since this divides

o(p5*),
ord;(g) = H gealordi(9))
q prime, q|¢(p;*)

and Bach [1] shows that we can compute

eq(ordi(g)) = min{k : g¢(pji)/qk =1 (mod pJ*)}.
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Note that these last steps require the factorizations(pf), but we assume a factoring oracle as
part of the reduction. L]

This completes the reduction from composite discrete log to a combination of prime discrete
log and factoring. We note that this reduction, like the first Bach reduction of the previous section,
is worst-case, in that it assumes the availability of arbitrary factorizations in the final steps. It would
thus be more difficult to attempt a probabilistic version, since the factorization problem instances
are not necessarily coming from the same distribution as the composite modulus of the discrete log
problem.

4.3 Generalized Diffie-Hellman modN implies Factoring

The Generalized Diffie-Hellman problem, or GDH, was introduced in section 2.1.4 as an application
of the discrete log problem; in particular we can consider this problem over a composite mMadulo
It is clear that a solution of composite discrete log will imply a solution to GDH by the setup of the
protocol; we now show that a solution to GDH implies a solution to factoring wkida a Blum
integer (V = p - ¢, wherep andq are primes congruent to 3 mod 4).

The result we show was first proven by Shmuely in 1985, and was strengthened by Biham,
Boneh, and Reingold in 1999 [2]. We state the GDH assumption precisely as follows:

Definition 4.7 Let N be any Blum integer which is a product@fbit primes andy any quadratic
residue in(Z/NZ)*. Leta = (a1, ..., a;) be any sequence of element&inVZ. Definefy a(x),
such that for anyk-bit stringz = =1 - - - 2,

fNgalz) = gHIz‘Zlai mod N.
Definef to be the restriction of to all k-bit strings except fot” (the string where all:; = 1.)

In the above definition, the; are the secret values selected by each party, and(thevalues
are the messages sent among the parties in order to determine the secretikdicates which
parties’ keys are involved. The secret key itself is thereft{€). Therefore an adversary would
be able to see any of the valuesfgfand wishes to compute the valfiel*).

Definition 4.8 A probabilistic polynomial-time algorithmd solves the GDH problemfor & =
k(n) users with probability: = ¢(n) if for all sufficiently largen,

Pr[A/vaa(N, g) = f(1%)] > e(n),

taken over the coin tosses df the random selection oV and g, gnd the random selection of
ai,...,ar. [NB: the superscript notation indicates oracle accesgtethe ability to evaluate the
function on any input with a single instruction.]

Proposition 4.9 If there exists a polynomial time algorithm which solves the GDH problem with
non-negligible probability, then there exists an algorithm which factors with non-negligible proba-
bility.
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Proof . So supposel is an algorithm which solves the GDH problem. We propose the algorhm
which operates as follows:

1. Choosev at random from(Z/NZ)*. Then computg = v?* mod N.

Note that sincéV is a Blum integer, we know(N) = (p—1)(¢—1) = (4da+2)(45+2) =
4(4af 4 2a + 23 + 1). Thereforet divides¢(N), but no higher power of divides¢(N),
since the term in parentheses is clearly odd. Therefdrisithe order of;, we know tha® - ¢
divides¢(N), but sincek > 2 it follows that/ is odd. Thusged(2,¢) = 1, which implies
the existence of a multiplicative inverse of 2 moddéjavhich we will denotel /2 [its value

is actually just(¢ + 1)/2.] Thereforeg'/2 = ¢+ is a square root of moduloN.

2. Selectry, ..., r; uniformly at random from the range ..., N, and for each let a; be the
valuer; + 1/2 mod /. Leta be the sequendey, . . ., ai). Note that since3 does not know
¢, it also doesn’t know the value af/2, therefore it does not know the.

3. Now run the algorithmA on input(X, g). Even thoughB does not know the;, wheneverA
requests the valug(x) from its oracle, we show below th#&t can respond with the correct
answer in polynomial time.

4. Provided thatA responds withf (1¥) (that is, successfully breaks GDH in this situation), use
this to computes = g(1/2)* . As will be shown below, it follows that? = v? (mod N). If
u # +v, we have a factor aV. Otherwise fail.

We are left with three things to show:
i. For anyk-bit stringz # 1%, B can comput&N,g,a(x) in polynomial time.

We make a subclaim: for afl = 1,....k — 1, we haveg1/2)" = 427", (Recall that by
definitionv = gzk). We know thaty is a quadratic residue, and therefore any powey &

as well. Fori = 1, we know thaty(1/2) andv2"~" are both quadratic residues which square

to g. Since squaring is an injective function (in fact, a permutation), on the quadratic residues
modulo N for N a Blum integer, it follows thay(1/2) = 42°~". Induction oni proves our
subclaim.

It follows that fori < k, we can computg(1/2)" in polynomial time.

f(.']j) — gHzi:I Qi — gHzlzl(r1+1/2)

Consider now the expressiﬂqizl(ri +y) as a polynomial iy. We can expand in polynomial
time into the expressio[?;é cjy’ for integer coefficients (we know the degree is at most
k — 1 because: # 1%, therefore we have at mokt— 1 factors in the product.) Therefore we
can rewrite the above as

f(l‘) = gHJ)i=1 a; — gH:rl=1(7"r‘r1/2) — f;& C‘j(l/z)j —v I;;Ol Cj2k7j

9

which we can compute in polynomial time.
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ii. Given f(1%), u = g(1/2)" can be computed in polynomial time.

We can show this similarly. We know that

F(1F) = gllimiai — I (it1/2) — g(/2% | (S00;(1/2)7 _ j(1/2)F 52575 6,24

9

where here the coefficients come from the expansion (Qf[f:l(n + 1)) — y*. Therefore,
since the power of which appears at the end of the above equation is computable in polynomial
time, if we know f(1*) we can divide moduldV to find u efficiently.

Defined as above;? = v? (mod N).

We know thatu? = ¢(1/2)"~"; above we showed thagt!/2)" = v2" " so if we leti = (k — 1)
we see that® = v2.

Consider now the probability thd is successful in factoringy. It is clear that

Pr[B factorsN] = Pr[(u # +v) A A successfully computef(1¥)].

First we notice that since = v2" for k > 2, and thes; were all chosen independentgfthe values
of fn.4.a(z) are invariant ifv is replaced by* such that? = (v*)2—that is, f only varies withv?
and not withv. It follows thatPr[(u # +v)] = 1/2.

It follows that if A solves the GDH problem with probabilig(n), that B factors with proba-

bility e(n) /2. .



5. Alternative Computational Models

We have so far considered how these two problems relate in the most traditional setting of compu-
tation, “algorithms”, in the intuitive sense. In a way, we have often deviated from the most conser-
vative model of computation by adding the ability to choose random values at will. This allowance
is made in accordance with physical assumptions that sources of sufficiently “high-quality”—that
is, near to uniform—randomness can be found in the real-world. Our experience has convinced us
that these assumptions are reasonable, and in fact some ongoing research has suggested evidence
that, theoretically, randomness actually adds no power to algorithms—that the class of languages
solvable by probabilistic polynomial time Turing machines (califelP) equals the clasp.

In this section we extend our notion of computability significantly farther, considering notions
of complexity which do not rest on overwhelmingly believable real-world assumptions. They are,
however, not entirely unreasonable, each for its own reasons, and they do pose interesting theoretical
questions which can be asked about the two problems at hand.

5.1 Generic Algorithms

Let us first consider a very limited model, a strict mathematical setting of computation in which
actual proofs of hardness can be established.

5.1.1 Generic Discrete Log Algorithms

We consider now a computational machine which has no access to any special information about the
encodings of the objects it manipulates, but can make oracle queries to a mathematical “black box”
to make the manipulations. Sometimes called the Generic Group Model, this vision of computation
was first analyzed for its implications on the discrete logarithm problem by Nechaev in 1994 [33],
and these results were extended by Victor Shoup in 1997 [46].

Consider an algorithm which works over an abelian grGug_et S be a set of bit strings with
at least as many elements@s We consider the strings ¢f to be an encoding of the elements of
G, and we call any injective functiom : G — S anencoding functiof G on S.

A generic algorithmA for G on S is a probabilistic algorithm defined by the following proper-
ties:

51
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e A takes as input as list of encoding strin@gz1),...,o(zx)) where eachr; € G ando is
an encoding function ofr on S.

e A has access to an oracle function which takes as input two indésesj out of the encoding
list, as well as a sign bit, and returasz; + x;) or o(z; — x;) depending on the sign bit{(
here indicates the group operation). This value is then added to the list of encodings.

We denote the output of, which is a bit string, asi(o; z1, ..., zx) [although note thatl never
gets access to the;, only their encodings.] This model captures the idea of an algorithm which
knows nothing about the group it is working in, only that it has certain elements with certain re-
lations among them. Not knowing the encoding function used to give the bit strings in its list, it
cannot introduce arbitrary group elements into the calculation at all—it can only perform the group
operation on elements it has already seen.

The key result is that in such a situation, no generic algorithm can recover an element from its
encoding. We present this theorem and proof from [46].

Proposition 5.1 (Shoup - Theorem 1)Letn be an integer withp its largest prime factor. Lef be
a set of binary strings with at least elements. IfA is a generic algorithm fofZ/nZ on S that
makes at most queries to the group oracle, then

Pr[A(o;1,2) = 2] = 0(92/19)7

where the probability is taken over the coin tossesipfind all possible encoding functioms:
Z/nZ — S and allz € Z/nZ chosen at random.

We note that here the algorithrh is given the encodings of the group identity element and of
another element and asked to produce that element. It follows that if we consider tlag map-

g* mod p (in binary), therv, is an encoding of the groWiZ /pZ)* = Z/(p — 1)ZonS = {0,1}™
wherem = [logy(p)].

What the theorem tells is that for any algorittitnwhich solves the discrete log problem with-
out taking advantage of the encoding of group elements, there is some enedidinghich the
probability of success i©(q?/p), whereg is the number of group operations performed. Therefore
if we want the probability of succeds to be strictly greater than some constant 0, we must
haveq proportional to,/p. SoC must have running timé&(,/p).

Proof of Proposition.The following Lemma will be needed:
Lemma5.2 If f(Xi,...,X}) is a non-zero polynomial with coefficientsZyp'Z, with total de-
greed, then the probability thaf (z1, ..., z;) = 0 for a randomk-tuple (x4, ..., z) € (Z/p'Z)*

is at mostd/p.

Proof of lemmaWe consider two cases= 1 and¢ > 1.
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t = 1: Prove by induction olk. Supposé: = 1. Then since over a field can have onlyl roots, the
probability that a random element Bf/pZ is a root is at most/p. If & > 1, f(X1,..., Xk)
can be re-written as a polynomial Xi; with polynomial coefficients itZ /pZ[Xa, . . ., Xi].
Let fi1(Xo,..., X)) be the coefficient of this polynomial corresponding to some
which yields the total degret By induction, it follows that sinc¢; is a(k—1)-variable poly-
nomial with total degre€ — d;, f1 = 0 with probability at mos{d — d;)/p, or equivalently,
that f; has at mosp*~'(d—d;)/proots. If (yo, . .., yx) is such aroot, thefi( X1, yo, . . ., yx)

might be either zero everywhere; if not, or(fs, . .., yx) is not a root then the one-variable
polynomial f (X1, ys, ..., yx) has at mostl; roots. Therefore the total number of rootsfof
is

p-(PFd —di)/p) +di- (PN =d - pF

It follows that the probability that a randokatuple is a root off is (d - p*~1)/p* = d/p.

t > 1: Divide the equatiory = 0 by the highest power gf which occurs, and then reduce modulo
p. The result is a polynomial of no higher degree o¥ep'Z with t = 1. Since randomly
choosing elements modujé yields random reductions moduto apply the above result for
t = 1, and the lemma holds.

At each stageA’s oracle interactions give it the encodingz;) of somex; € Z/NZ. Since
Z/NZ = Z/p'Z x Z/sZ, we can equivalently think of each unique as representing a unique
ordered paifz}, z/) over this group product.

We assume that knows the ordeV of the group and even its prime factorization. Salifs
able to recover, then it must be able to recovef, the reduction of: modulop®.

If we therefore assume that restricts its interest to the mqgd components of the group el-
ements, at each stagecan maintain a listy, ..., F; of linear polynomials with coefficients in
Z/p'Z suchthatr; = F;(1, z)—these polynomials can be derived recursively from previous queries
and its original inputs (1) ando ().

Though we write it as a function of two variables, since the first is altagach polynomial is
really in a single variableX. Initially F;(X) =1 andF»(X) = X.

| claim that the only wayA can get any information at all about the group is if it gets two
encodings which are the sameg(z;) = o(x;), but F; # F}, which givesA a linear relationship
on1l andz. For suppose for all, j such thatF; # F; we haveo(z;) # o(x;). ThenA has
learned the encodings of distinct elements; simée a random encoding function, thesér;) are
independently random strings ) and it follows that4 learns nothing from them.

Clearly there is no way to find without finding such a relation (for otherwisewill never get
any non-random information), and therefore we can bound the probabilitydthét recoverx by
the probability thatd can find: and;j with F; # F; buto(z;) = o(x; ).

But if it can do this, then consider the polynomi@l = F; — F};, which is a polynomial in
Z/p'Z[X] of total degree no more than 1. SinEe+# F; we haveG # 0, so by the previous lemma
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we know that the probability tha®(z) = 0 is at mostl/p for a randome € Z/p'Z. But since
o(z;) = Fi(z) ando(z;) = Fj(z), if we do haver (z;) = o(z;) thenz is a root ofG.

Since there areg queries, there arg possible pairs, j. It therefore follows that the probability
A can find any pait, j with the properties described, given the encoding of a randgisiat most

a*/p. n

5.1.2 Generic Algorithms and Factoring

This being a paper about the relationship between discrete logs and factoring, we would like at
this point to be able to present the equivalent proof that no efficient generic algorithm can solve the
factoring problem. However this sort of problem takes place more in a ring than a group, and several
issues on generic ring algorithms remain open. One relevant result by Boneh and Lipton [5] showed
that in a “generic field model,” an algorithimable to determine an element from its encoding given
the order of the field, but it is unknown how this result changes when field becomes a ring and the
order remains concealed (as it naturally must for factoring).

The closest we appear to be on this issue is a very recent paper byalhangl Koprowski [11]
which showed that root extraction, equivalent to RSA decryption, is provably hard for a generic
algorithm which does not know the order of the group but does know bounds on the order as well
as the distribution within those bounds.

Lacking the bidirectional implication between RSA decryption and factoring, this result is not
quite germane, but it does suggest that provable generic bounds might not be discovered for the
factoring problem.

The usefulness of the generic model lies in two areas. First, it allows us to recognize that certain
algorithms are in a sense “optimal” for their class, so to speak. For example, Pollard’s rho algorithm
for discrete log is generic, as is the Pohlig-Hellman algorithm. However the index calculus method
is not, since it specifically uses the fact that group elements are encoded as integers. The fact that
the rho algorithm ha®(p'/?) running time, which we know from Shoup is the lower bound, tells
us in one sense that trying to improve on rho is not a good use of our time.

The second use of the model is in motivating the search for contexts in which it has deeper
meaning. More specifically, it leads us to find groups where we know of no way to exploit the
representation of elements, and therefore the best algorithms we have to solve discrete log in these
groups must necessarily be generic. This reason leads us to use discrete log over elliptic curves
for digital signature schemes, because at present the best algorithms for taking these logarithms are
generic, and therefore the complexity bounds apply.

5.2 Quantum Computers

The existence of a quantum computer in any practical sense is only theoretical—those built to date
have been capable of processing inputs of only a small number of bits. However even at such small
scales the proof-of-concept is worth taking note of, particularly for cryptographers, whose very
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existence—embodied in the security of the protocols presented in section 2—is threatened by main
result we present here: that quantum computers are capable of efficiently solving both factoring
and the discrete logarithm. We present a brief introduction to quantum computing for the purposes
of discussing Shor groundbreaking result; for a good and more complete introduction to quantum
computing refer to the text by Michael Nielsen and Issac Chuang [34].

5.2.1 The Fundamentals

While we think of a normal computer being a collection of bits, each of which is in one of two
possible states, eithéror 0. In a quantum computer the fundamental unit of information is not so
restricted. Known as gubit, it is a quantity which also has a state, but there are infinitely many
possible states. The standard notation for a state in a quantum computer, called Dirac notation, is
|-). So while a qubit can be in the standard statesand|1), more generally we allow it to be in

any state which is a linear combination of these basis states:

|s) = al0) + B|1), @,B € C,suchthatal” + |8]* =1

This mixed state, osuperpositiononly holds until the qubit is observed (sometimes “measured”),
at which point it is forced into the physical world where it can only have value O or 1. If the qubit is
in state|s) as above, then when observed it will have the value 0 with probahiljfyand the value

1 with probability|3|2.

In one sense, quantum computing gives us comparable power to a computer with infinite pre-
cision, since each individual quantum bit is capable of holding any of an infinite number of values.
However, just as infinite precision is memory is infeasible, so is measuring a qubit beyond 1 bit of
precision.

We can consider a quantum computer as a state machineywitbits, and represent the entire
state of the machine as a superposition of2héasis states. For exampleiif= 3, the basis states
are|000), |001), [010), |011), etc., and the state of the machine is a complex linear combination of
these valuesy; «;|S;) such thaf)" |o;|? = 1. Observing this machine is just like as with one bit:
eachs; will be the observed state with probabiliy;|>.

Just as a quantum computer is in all of its states simultaneously (with some probability per
state), the transitions between states all occur simultaneously, each path of computation having a
certain complexrobability amplitude Under this view, if a superposition is thought of as a vector
in the complex vector spadé of possible superpositions, a transition from one configuration to
another can be viewed as an linear transformatlon V' — V', which operates on sonfaite
subsebf the bits of the configuration from one distribution to another. To ensure that the sum of the
state-probabilities remains 1, it turns out that the only requirement isithai= A7, i.e., thatA be
a unitary matrix (see [45] or [34]).

A useful such transformation is tii@urier transform matrix4, which sends statg), for each
a with 0 < a < ¢ to the distribution

=1 omiab/q

> 7 - [6).

b=0
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Thus the probability of transitioning from stali€) to state|b) is e>®/4/¢'/2, We will use this
matrix often in the proof of the main theorem, Shor [45] shows héycan be constructed in
polynomial time forg even of exponential size provideds smooth.

In addition to these transform matrices, we have all the standard tools of classical algorithms,
for it can be shown that iff is a classically computable function, th¢gnhcan be computed by a
guantum computer as well, provided it can be reversed (or that the argument remains on the tape).
Thus we can transition from a superpositipha - |a) to >« - |a, f(a)).

5.2.2 The Impact

While there is substantial mathematics going on in the proof and analysis, the overall intuitive

effect of quantum computation on problems such as factoring and discrete log is quite logical—

these problems are difficult only in that the number of tests to be performed is huge, but each of the

tests is quite easy; in a situation where all the tests could be done at once, it should be efficient.
We thus arrive at the main relevant result of guantum computing:

Proposition 5.3 (Shor) The problems of factoring and discrete logarithm are solvable in polyno-
mial time on a quantum computer.

Proof (for factoring).We have seen already that a factordftan be found if we can determine the
orderm of an element: modulo N, such that:™ = 1 (mod N). We demonstrate now how to do
this in polynomial time using a quantum computer.

First, find a numbey in the range2N? < ¢ < 4N? which is smooth in the sense that for
some fixed:, no prime factor of; is greater tharlog IV)¢; this bound will assure us that working
with ¢ and specifically the construction of the transform mattjxmentioned above will always be
possible in polynomial time.

Now, we place our quantum computer in the uniform superposition over states representing each
elementa modulog. This state is written

and for readability we do not write the complete state of the machine, which would actually be
|N, z, q,a), since all but the last entry will remain constant throughout the operation of the machine.
We now calculater® (mod ). This occurs in whatever state we find the machine, so the
resulting superposition is
1 4
pvE] Z la, z* (mod N)).

a=0

We now apply the Fourier transford, to the first part of our state; recall that this maps- b
with probability amplitudeql% exp(2miab/q) for eachb € Z/qZ. Therefore our machine is placed
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in the superposition
q—1

; Zexp(Zm’ab/q)\b, z® (mod N)).

a=0
At this point we observe the machine, seeing the valudsafd ofz* (mod N). Consider the
probability that we end in a particular statez* (mod N)). To be in this state at the end, we
clearly must have been in some statexr® (mod N)) before the transformatiod,, wherez® =
z¥ (mod N). For each such state, we know the probability of moving feoto b, and therefore
counting over all such ways to reach the state, the probability of endiibgafi (mod N)) is

2
1

P=|- Z exp(2miab/q)

a:xt=xk

Since we are searching fot such thatz™ = 1, we can equivalently think of this sum as over
all a satisfyinga = k£ (mod m). Therefore writex = tm + k and we can rewrite

L(g—k—1)/r] 2

> exp(2mi(tm + k)b/q)
t=0

ol
q
Theexp(27ikb/q) terms do not involve and therefore can be factored out; since they have magni-
tude 1 they can be ignored as well. Also, sincedkg(27iz) function is periodic with unit period,
it follows that we can replace:b with any residue mod, so let us fixmb as the residue which lies
in the interval(—q/2, ¢/2].

We now show that this probabilit® is large ifmb is small, for the probability amplitudes will
then be aligned in the same direction. If we have small with respect tg then using the change
of variablesu = t/q, we can approximat® by

L (q—k—1)/m] - 2
/ exp(2mimbu) du
0

If —m/2 < mb < m/2, then it turns out this integral is bounded below 4j?>m?. Thus the
probability of observing a given stalle * (mod NN)) is thus at least/7%m? > 1/3m? as long as
—m/2 < mb < m/2, or equivalently if there exists somesuch that-m/2 < mb — dqg < m/2,
or by rearranging the terms and dividing hyy:

b/q —d/m| <1/2q.

Recall that we knovws andq after observing the machine, but are searchingriandd. How-
ever, since; > 2n?, there is only one suctl/m at most which satisfies this inequality with denom-
inatorm < N. Thus if we roundh/q to the nearest fraction with denominator less théarfsay,
using continued fractions), we can find this fractidfmn. If a qualifying fraction in lowest terms
can be found (that isp < N andged(d, m) = 1, we will have found the order.
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Consider the number of statéds z* (mod N)) which will give us such a fraction. We know
that there are(m) possible numeratorg, which will give a fraction in lowest terms, and each of
these corresponds to a particutaso thatd/m is close tob/q in the above inequality. So there are
#(m) possibilities forb; for 2* there arem possibilities, since the order afis m. This gives us
m - ¢(m) states each of which allow us to computeif observed. Since we have seen that the
probability of each of these states is at leb&im?, the probability of observing a successful state
is at leastm - ¢(m)/3m? = ¢(m)/3m.

We have a theorem which assefts) > n/6 log log n, which bounds our probability of success
to ©(1/ loglog m), so we expect success of factoring to be extremely likely after Oflyg log m)
repetitions. [

Proof (for discrete log).The proof is quite detailed for the general case of discrete log, and the
details are less important for our purposes here than the existence itself, so we present a sketch here.
Recall that our purpose is to findsuch thay* = y mod p, giveng, y, p.

Givenp, find a smoothy in the intervalp < ¢ < 2p. Shor demonstrates how to do this. Now
chooseb andc uniformly at random fron# /p — 1Z and compute;®y—¢ mod p. The machine is

then in the superposition
p—2 p—2

Zzwcgw mod p).

aObO

Apply the Fourier transform, which independently manipulates the first two positions of the state,
sendingb — d, ¢ — e for eachc ande in Z/qZ with amplitudel/q exp(27i(bd + ce)/q), leaving
the machine in the superposition

p—2 q—1

Z Z exp bd+ce))|d e, g’z mod p).

b c=0d,e

In the “easy case” where — 1 is smooth, then we can lget= p — 1, and Shor shows that the
probability of observing a particular staté e, ) with y = g¥ mod p is

2
o172 Zexp kd+ cle+ad)))

If e +ad #= 0 mod p — 1, it then follows that this is a sum over a full set of roots of unity, thus
has probability 0. le + ad = 0 then the sum is over the same root of uriity— 1) times, leading
to a probability of1/(p — 1)2. Since there arép — 1) values ofd and(p — 1) non-zero values of
y, it follows that there arép — 1)? suchd, e pairs. Thus this calculation willwaysproduce a pair
d,e such that = —ad (mod p — 1). So as long agcd(d,p — 1) = 1, we have the exponent
Since all possiblés occur with equal probability, our chance of this occurrenegjis-1)/(p—1),
and as in the above proof we can get a very high probability of success by repeating our quantum
experiment (log® p) times.
For full analysis of the general case whenr 1 is not assumed smooth, see [45]. n
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The significance of these results for us is that they have once again grouped factoring and dis-
crete log into the same complexity class, sometimes c#8l@®, of problems solvable by prob-
abilistic polynomial-time algorithms on a quantum computer. As already mentioned, the practi-
cality of these results has not yet been seen—in fact it is just one of several new computational
paradigms which seek to harness the massive computation power of natural phenomena, among the
most researched is DNA-based computers [4], which are believed capable of sglPrmpmplete
problems in polynomial time.

5.3 Oracle Complexity

We now turn to a seemingly all-powerful model of computation, in which algorithms have access
to an infinite font of knowledge. We imagine this source of knowledge as an “oracle” capable of
instantly answering any yes/no question, and we consider the number of questions necessary to
solve a particular problem.

In some settings, particularly cryptographic ones, this model bears some resemblance to reality
despite its fantastic nature—we can use the oracle model to answer questions such as “if an adver-
sary gains access to the low-order bits of pgndqg, can they recover the full andq efficiently?”

We consider both the restriction of our oracle to actual bits of the secret, and the operation of the
oracle on arbitrary yes/no questions; the latter is naturally a more theoretical mode of analysis, but
it does provide an alternative way of considering how much security is contained in a certain kind
of secret.

5.3.1 Oracle Complexity of Factoring

Here we present two results on the oracle complexity of factoring. The first was shown by Rivest
and Shamir in 1985. As two thirds of the team which created the RSA cryptosystem (shown in
Chap. 2 to depend on the inability to recoyeandq from N = pq), they were naturally concerned
with the security op andq even in the event that some kind of “side information” was leaked to an
adversary.

For introduction, we show the trivial method of factoring integers using an all-powerful oracle.

Proposition 5.4 A composite integeN can be factored in polynomial time using?2 oracle ques-
tions, wherer = [log, N1.

Proof . Fori = 1,...,n/2, ask the oracle “what is thah bit of the smallest prime factor of ?”,
and let the result bg;. Then output the binary numbg, 5 - - - 231

We know that ifp is the smallest prime factop < /N, so the binary representation pf
requires no more thaleg, VN = n/2 bits. Therefore:/2 questions will always suffice. L]

Rivest and Shamir [42] improved on this result as follows.

Proposition 5.5 A composite integeN = pq can be factored in polynomial time usifg= n/3
oracle questions.
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Proof . Ask for the topk bits of the smallest factgs. We can then writep = p12™ + pg, where
m = n/6; py < 2¥ is known andpy < 2™ is not known. We can represent the other fagtor
similarly asq = ¢12™ + qo; while both quantities are initially unknown, we can compgtes the
k highest bits ofV/(p;2™).

Therefore we have

N = (p12™ + po)(12™ + q0) = p1¢12*™ + (p12™)q0 + (12™)po + Pogo-

To isolate our unknowns, we abbreviate = N — p1¢12?™, A = p12™, B = ¢;2™, and our
equation becomes
X = Apo + Bqo + poqo-

At this point we can try to approximat®¥ as best as possible by a linear combinationatnd
B, the remaining ternpyqo (which is relatively small) is our approximation error. We therefore
have a 2-dimensional integer programming problem of minimizihg- Apy — Bqo subject to
the constraint$) < pg,qo < 2™. H.W. Lenstra proved [24] that this problem can be solved in
polynomial time, the details of which we omit because it is quite involved. [

The Rivest/Shamir result shows that knowledge of the high-order bits of one factotezds
in polynomial time to the entire factorization, and indeed the same proof applies when considering
knowledge of the low-order bits. In this sense, the question of oracle complexity is relevant, for
we can conceive of an adversary who, with some direct access to the computer hardware or some
temporary storage might be able to piece together parts of the actual values used in computation.
However, if we generalize back into the world of an oracle capable of providing bits which answer
anyquestion, not simply bits which at one point physically existed, Maurer showed that the number
of questions can be made less tharfor arbitrarily smalle, although a small probability of failure
is introduced.

The result depends on manipulating the parameters of the elliptic curve factoring method de-
scribed in Section 3.3.

Proposition 5.6 (Maurer) For anye > 0, a sufficiently large integeN (with n = log, N bits) can
be factored in polynomial time using at mastn oracle questions. The probability of error is at
mostN —¢/2 under plausible conjectures relating to the elliptic curve factoring algorithm.

Proof . We assume for this section thatis not divisible by2 or 3, and thatV is not a prime power;
in these cases a factor can be easily found.
Now, with £ given, choose an arbitrary positive < ¢ and letc = 1/(e — 4), W = n°.
Now leth = []¢@ for all prime ¢ < W, wheree(q) is the greatest integer such that® <
N1/2 4 2N1/% 4 1. We note that this is an upper bound on the number of elements on an elliptic
curve overF, for any prime factop of IV, based on Hasse’s result that the order of a curve Byer
is bounded above by + 2,/p + 1.
Let F represent the finite field witk*” elements, and chooseandt uniformly at random from
F. Choose a natural enumeration of the element§ @fs a1, . . . , ays., and a natural representa-
tion of the elements of- as triples ofn-bit integers(a, x, y); let (ax, xx, yx) be the triple which
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corresponds to the element o, + t; define

b, = y,% — xz — apxr mod N.

For motivation, we note thatr, y:) is then a point on the modul®y elliptic curvey? = 23 +
arx + by.
We then ask the oracle the following - n| questions. Foi =1,..., |- n]:

o If there exists an integér with |k| < ¢ - n such that the following two conditions hold under
the above definitions:

1. For p the smallest prime factor a¥, 4a; + 2762 # 0 (mod p), and the order of the
elliptic curveE : y? = 23 + axx + by, overF,, is W-smooth.

2. For some prime factog > p of N, 4a} + 27b7 # 0 (mod ¢), and the order of the
elliptic curvey? = 2? + ajx + by, overF, is not divisible by the largest prime factor of
the order of the pointxy, yi) on E overF,,.

then output théth bit of the smallest such; otherwise output 0.

If the oracle returns 0, then we have failed. If not, we have a valuéMe can compute
ag, bk, T,y as defined above, and then proceed as in the ECM for factoring described in Sec-
tion 3.3. Consider the curvg = 23 + axz + by, moduloN. We know that the poinP = (zx, yx)
is on it, so try to compute the poirit - P. The conditions ork guarantee for us the fact that
h-P = O (mod p), but for some other factay of N we haveh - P # O (mod q). It follows
that we thus will have found a factor &f, since wherh - P is written as(« : 3 : ) in projective
coordinatesy is a multiple ofp but not of N. Refer to Section 3.3 for the details.

Consider the running time of our algorithm. The formal addition of points on an elliptic curve
in the ECM isO(n?), and (using the same trick as seen in the modular exponentiation algorithm of
Proposition 1.6) we can compute P with approximatel\2 log h additions. This is polynomial in
n since

logh = Ze(r) logr < wlogw = O(nlogn®).
The probability of success requires extending Lenstra’s conjecture about the distribution of

smooth integers in the Hasse interval, and a complete derivation of Maurer’s claim can be found
in [27]. ]

Practically, Maurer’s result is not particularly damning for cryptographers, since while the oracle
necessary for Rivest and Shamir seems potentially real, this oracle is unlikely to ever find a real-
world manifestation. Maurer is only able to ask so few questions because the oracle is being asked
to search through a huge directory of possible elliptic curves and find one which will work.

5.3.2 Oracle Complexity of Discrete Log

Rivest and Shamir suggest the additional problem of considering the oracle complexity of the dis-
crete logarithm, although they do not address it at all, nor does the current literature contain much
on this point.
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| conjecture that discrete log will behave differently than factoring under this complexity model
because discrete log is significantly more malleable than factoring. That is, given one problem
instance (say = g mod p) we can easy construct related problem instancesf&ayiod p = 3?)
without breaking the problem.

Because of this observation, it seems to be possible to take an algotiththich solves dis-
crete logs based on partial information about the exponent and build an algorithm which solves
full discrete logs using this subroutine. In order to structure the proof, we do not actuallydhave
make queries to an oracle; rather we allow ourselves to simulate the role of the oracle and, knowing
the questions thatl will ask (in this case, for the low order bits of the exponeptprovide those
answers ourselves in the form of an additional input to the algorithm.

Conjecture 5.7 Suppose that there exists an algoritbtdinwhich on input©, g, v, b, wherey =

¢“ mod p°, outputsa in polynomial time provided thdtis thek = k(n) lowest bits ofz for some
functionk(n) < n, wheren = log, p is the size of the modulus. It follows that there exists a
polynomial time algorithm which on inpugs, g, y of the same form outputs

We would like to convert our inpuyt?, g, y into a new inpup’®’, ¢', /' = ¢’*, where in some way
a can be recovered froni and we know thé& lowest bits ofa’. From this, we can use our subroutine
A to find &/, and then recover. Naively we could generate = 2* - q by lettingy’ = 2", and
then we would know that the lowektbits of «’ are0. Unfortunately this does not succeed, sinte
only exists mods(p®), and therefore multiplying bg* will cause some “wrap-around” and ttke
low order bits will be scrambled.

To correct for this we might try letting’ = p ande’ = 2e. This gives us more space to work
with in the exponent, and it’s likely that multiplying B will not cause wraparound. However we
are left with findingg’ which has high order modulp?¢, and doing this successfully implies the
ability to multiply by a, which we cannot do.

So we leave the question open.
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