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Abstract. Let f(z) = qh
∏∞

n=1(1−qn)c(n) be a modular form on SL2(Z). Formal logarith-
mic differentiation of f yields a q-series g(z) := h −∑∞

n=1

∑
d|n c(d)dqn whose coefficients

are uniquely determined by the exponents of the original form. We provide a formula, due
to Bruinier, Kohnen, and Ono for g(z) in terms of the values of the classical j-function at
the zeros and poles of f(z). Further, we give a variety of cases in which g(z) is additionally
a p-adic modular form in the classical sense of Serre. As an application, we derive some
p-adic formulae, due to Bruinier, Ono, and Papanikolas, in which the class numbers of a
family of imaginary quadratic fields are written in terms of special values of the j-function
at imaginary quadratic arguments.

1. Introduction

Suppose f is a function on the upper half plane H. For each positive integer k, define an
action |k of GL+

2 (Q) on the set of such f by

(1.1) f(z)|kγ = det(γ)k/2(cz + d)−kf

(
az + b

cz + d

)
.

Here γ = ( a b
c d ) ∈ GL+

2 (Q) (with the exception of the proof of Theorem 2, in this thesis
we always use the symbol γ in this sense). Suppose Γ′ ⊂ Γ := SL2(Z) is a congruence sub-
group. LetM∞

k (Γ′) (resp.,Mmero
k (Γ′)) denote the space of holomorphic (resp., meromorphic)

functions on the upper half plane H that satisfy the functional equation

(1.2) f(z)|kγ := f(z)

for all γ ∈ Γ′ and additionally are meromorphic at the cusps of Γ′ (for a precise description
of this “meromorphic at the cusps” condition, see [18, §III.3, p. 125]). Such a function will
be called a weakly modular form of weight k (resp., meromorphic modular form of weight k)
following J-P. Serre’s convention [28, §VII.2]. We further define Mk(Γ

′) ⊂ M∞
k (Γ′) to be

the space of weakly modular forms that, additionally, are holomorphic at the cusps of Γ′.
Such a form will be called a holomorphic modular form, or, simply, a modular form. For any
congruence subgroup Γ′ containing the element ( 1 1

0 1 ), meromorphicity of f at the cusps of
Γ′ implies that f can be identified with a Fourier, or q-series, expansion

(1.3) f(z) :=
∞∑

n=n0

anq
n
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where here, and throughout this thesis, q := e2πiz. In the case Γ′ = Γ, this is in fact equivalent
to meromorphicity at the cusps. Holomorphicity at the cusps in the case of Γ′ = Γ (which
are all in the same orbit as ∞ under the action of Γ) is equivalent to the statement that
n0 ≥ 0. Finally, a holomorphic modular form over Γ′ is said to be a cusp form if it vanishes
at the cusps of Γ′; we denote the space of cusp forms of weight k over Γ′ by Sk(Γ

′). In the
case f ∈ Mk(Γ), this is simply the assertion that in the expansion (1.3) we have n0 > 0. For
convenience we define Mmero

k := Mmero
k (Γ), M∞

k := M∞
k (Γ) and Mk := Mk(Γ).

We take the opportunity now to introduce the only congruence subgroup we will explicitly
use in this thesis, namely the following level N subgroup:

Γ0(N) :=

{(
a b
c d

)
∈ Γ : c ≡ 0 (mod N)

}
.

By convention, Γ0(1) = Γ.

Remark. If
( −1 0

0 −1

) ∈ Γ′, then from (1.2) we have (−1)kf(z) = f(z) for all f ∈ Mmero
k (Γ′),

from which it follows thatMmero
2m+1(Γ

′) = 0 for all integers m. Thus, in particular,Mmero
2m+1 = 0.

For examples of modular forms on Mk for even k ≥ 4, we may take the classical Eisenstein
series of weight k:

(1.4) Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

where Bk is the kth Bernoulli number and σk−1(n) :=
∑

d|n dk−1. We can formally define

E2 using (1.4), and though it is not a modular form, it satisfies the following transformation
law for ( a b

c d ) ∈ Γ:

(1.5) E2

(
az + b

cz + d

)
(cz + d)−2 = E2(z) +

12c

2πi(cz + d)
.

This transformation law turns out to play a role in many arguments; a proof of it in this
form is given in [27, p. 68].

Other useful examples of modular forms are the discriminant function

(1.6) ∆(z) :=
E4(z)3 − E6(z)2

1728
= q

∞∏
n=1

(1− qn)24

which is of weight 12, and the j-function, which is a weakly modular form of weight zero:

(1.7) j(z) :=
E4(z)3

∆(z)
= q−1 + 744 + 196884q + 21493760q2 + · · · .

We note that any element of M∞
0 is a polynomial in j(z). If we wish to emphasize for a

proof that we are regarding Ek, ∆, j as q-series (which can be either viewed formally or as
functions holomorphic in the punctured disc 0 < |q| < 1), we write them as Ek(q), ∆(q),
and J(q), respectively.

It is easy to see that M∞
k (Γ′) is a vector space over C for all congruence subgroups

Γ′. There exists an important class of linear operators on these spaces, namely, the Hecke
operators Tk,n. These can be defined (in an admittedly ad-hoc manner) by

(1.8) f(z)|Tk,n = nk−1
∑

ad=n, d>0

0≤b≤d−1

f

(
az + b

d

)
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or, equivalently,

(1.9) f(z)|Tk,n :=
∑

n∈Z


 ∑

0<d|(m,n)

dk−1a
(mn

d2

)

 qn.

If we define, for positive integers d, the V - and U -operators V (d) and U(d) on formal q-series
in C[[q]] by

(1.10)

(∑
n≥n0

c(n)qn

)
|V (d) :=

∑
n≥n0

c(n)qdn

and

(1.11)

(∑
n≥n0

c(n)qn

)
|U(d) :=

∑
n≥n0

c(dn)qn

then we may write

(1.12) Tk,n =
∑

d|n
dk−1V (d) ◦ U(n/d).

Note that if we identify a meromorphic modular form f with its q-expansion, we have

(1.13) dk/2f |V (d) = f |k ( d 0
0 1 ) .

For more natural definitions of these operators and a discussion of their basic properties,
see, for example, [18, §III.5] or [28, §VII].

If we consider M :=
⊕∞

k=0 Mk it is straightforward to see that we have something better
than a collection of vector spaces, we have a graded algebra, where the grading is given by
weight and the multiplication operation is multiplication of functions (for proof of this, see
[28, §VII]). A question naturally suggests itself: are there natural operators on this algebra?
As one possible answer to this question, we define Ramanujan’s theta operator:

Θ :=
1

2πi

d

dz
= q

d

dq
.

It is perhaps speaking loosely to call Θ an operator, but

f(z) 7→ Θf(z)− f(z)
k

12
E2(z)

is a derivation on M . In particular, we have the following:

Proposition 1. If f is in Mmero
k (Γ′) then

(1.14) g(z) = Θf − f(z)
k

12
E2 ∈Mmero

k+2 (Γ′).

The same statement is true with Mmero
k (Γ′) replaced by M∞

k (Γ′) or Mk(Γ
′) throughout.

Proof. By noting its affect on q-expansions, we see that applying the Θ operator does not
affect meromorphicity (resp., holomorphicity) at the cusps. Thus we need only check the
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functional equation. For γ = ( a b
c d ) ∈ Γ, upon differentiating the functional equation (1.2)

we have

Θf(γz)(cz + d)−k−2 = Θf(z) +
ck

2πi
f(γz)(cz + d)−k−1

= Θf(z) +
ck

2πi
f(z)(cz + d)−1.

Using (1.5), for γ ∈ Γ′ ⊂ Γ we have

Θf(z)|k+2γ − k

12
(E2(z)|2γ) (f(z)|kγ)

= Θf(z) +
ck

2πi
f(γz)(cz + d)−k−1 − k

12
E2(z)f(z)−

(
k

12

)
12c

2πi(cz + d)
f(z)

= Θf(z)− k

12
E2(z)f(z).

¤
Remark. It is worth mentioning that there exists a family of “Rankin-Cohen” brackets on⊕∞

k=0 Mk (defined using Θ), one of which gives this algebra the structure of a graded Lie
algebra. For their definition and basic properties see [33], and for references to recent work,
see [5].

Now, given a modular form f ∈Mmero
k (Γ′), normalized so that its first nonzero q-expansion

coefficient is 1, we can write

f(z) = qh

∞∏
n=1

(1− qn)c(n)

for some complex numbers c(n), in some neighborhood of ∞. Ignoring convergence issues for
a moment (which will be dealt with carefully in Lemma 8), some easy manipulations with
q-series yield

(1.15)
Θf

f
= h−

∑
n≥1

∑

d|n
c(d)dqn

In the next section, we will prove the following characterization of this logarithmic derivative:

Theorem 2 (Bruinier, Kohnen, Ono, [7], [24]). If f(z) =
∑∞

n=h a(n)qn ∈Mmero
k is normal-

ized so that a(h) = 1, then

Θf(z)

f(z)
=

k

12
E2(z)− E4(z)2E6(z)

∆(z)

∑

τi∈F

eτ ordτ (f)

j(z)− j(τ)
.

Remark. This formula has been generalized to several genus zero congruence subgroups in
[1] (see §2 of this thesis) and Hecke subgroups of SL2(R) (see [10]). The author has also
received a preprint [9] giving a generalization to Γ0(N) for squarefree N .

This formula alone is of interest in that it explicitly relates, via equation (1.15), the product
expansion exponents of f to special values of j, namely, j(τ) where τ is a zero or pole of f .
Further, it has been used to provide recursive formulas for the coefficients of any modular
form over Γ (see [7]), to provide infinite families of systems of orthogonal polynomials divisible
by the supersingular locus as polynomials over Fp (see [4]), (generalizing work of Atkin
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described in [16]), and also to provide a characterization of the characteristic polynomials
of the Hecke operators over Γ (again in [7]). We will not discuss these applications in this
thesis. We will, however, give one additional application, which we defer for a moment in
order to introduce the concept of a p-adic modular form.

Following Serre, we define a p-adic modular form to be the p-adic limit of a sequence of
elements of ⊕∞k=0Mk (a precise definition is given in §3). It turns out that in many cases of
interest, the logarithmic derivative of a modular form is a p-adic modular form of weight 2.
In particular, we have the following theorem of Bruinier and Ono:

Theorem 3 ([8]). Let f(z) = qh(1 +
∑∞

n=1 a(n)qn) ∈ qhOK [[q]] ∩Mmero
k (Γ0(1)), where OK

is the ring of integers of a number field K. Moreover, let c(n) ∈ K denote the algebraic
numbers defined by the formal infinite product

(1.16) f(z) = qh

∞∏
n=1

(1− qn)c(n).

If f(z) is good at a prime p, then the formal power series

Θ(f)

f
= h−

∞∑
n=1

∑

d|n
c(d)dqn

is a weight two p-adic modular form.

We offer a brief proof of this result, mainly as motivation for the following generalization:

Theorem 4. Suppose p ≥ 5 is prime. Let f(z) = qh(1 +
∑∞

n=1 a(n)qn) ∈ qhOK [[q]] ∩
Mmero

k (Γ0(p)) where OK is the ring of integers of a number field K. Moreover, let c(n) ∈ K
denote the algebraic numbers defined by the formal infinite product (1.16) for f . If f is good
at p, then the formal power series

Θ(f)

f
= h−

∞∑
n=1

∑

d|n
c(d)dqn

is a weight two p-adic modular form.

The proofs of both of these theorems appear in §5.

Remark. In theorems 3 and 4, we allow h to be negative. The fact that the c(n) are elements
of K (implicitly identified with an embedding K ↪→ C) will be obvious from the proof of
Lemma 8.

The definition of “good” in the preceding two theorems is given in §5 and discussed in
some detail in §7. As one example, the form Ep−1 is good at p. In general, whether or
not a form is good at p is intimately related to the question of whether or not the value
of the j-function at the zeros and poles of the form reduces to a supersingular j-invariant
in characteristic p (which should come as no surprise to those familiar with overconvergent
p-adic modular forms). Through this connection we are able to relate these p-adic modular
forms to class numbers of imaginary quadratic fields. In particular, for small primes, we
obtain p-adic class number formulae involving sums of special values of the j-function.

Before we can state this result, we must recall the notion of a Heegner point. A complex

number τ of the form τ = −b+
√

b2−4ac
2a

with a, b, c ∈ Z, gcd(a, b, c) = 1 and b2 − 4ac < 0 is
known as a Heegner point of discriminant dτ := b2 − 4ac. Heegner points are discussed at
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some length in §6. Denote by hK the class number of the number field K. We have the
following:

Corollary 5 (Ono and Papanikolas, [25]). Suppose that d < −4 is a fundamental discrim-
inant of an imaginary quadratic field and that τ is a Heegner point of discriminant d. If
K = Q(j(τ)), then the following are true:

(1) If d ≡ 5 (mod 8), then as 2-adic numbers we have

hQ(
√

d) = − 1

720
lim

n→∞
TrK/Q

(
n∑

a=0

2a−1∑

b=0

j

(
2n−aτ + b

2a

))
.

(2) If d ≡ 2 (mod 3), then as 3-adic numbers we have

hQ(
√

d) = − 1

360
lim

n→∞
TrK/Q

(
n∑

a=0

3a−1∑

b=0

j

(
3n−aτ + b

3a

))
.

(3) If d ≡ 2, 3 (mod 5), then as 5-adic numbers we have

hQ(
√

d) = − 1

180
lim

n→∞
TrK/Q

(
n∑

a=0

5a−1∑

b=0

j

(
5n−aτ + b

5a

))
.

(4) If d ≡ 3, 5, 6 (mod 7), then as 7-adic numbers we have

hQ(
√

d) = − 1

120
lim

n→∞
TrK/Q

(
n∑

a=0

7a−1∑

b=0

j

(
7n−aτ + b

7a

))
.

In §7, we also use Theorem 4 to provide formulae of the same general form of those in
Corollary 5, with a weight zero modular form in Γ0(p) taking the place of the j-function (see
Theorem 33).

Before we begin the body of this work, we make a few remarks about its structure. Sections
2, 5, and 7 contain results that have only been published recently, if at all, and the primary
purpose of this thesis is to collect their content into one place. Sections 3 and 4, on the
other hand, are mostly derived from two well-known papers ([29] and [3], respectively). The
author has provided proofs of most of the results in these sections that are necessary for the
proof of theorems 2, 3, and 4. The notable exceptions are theorems 12 and 16 which are
proven in [32] and [21], respectively.

In contrast, providing applications of theorems 2, 3 and 4, including Corollary 5 and
Theorem 33, requires results for which we will not provide proofs; it would simply take us
too far afield. In particular, §6 is intended to give a brief survey of the relevant definitions
and theorems in the theory of complex multiplication, but we omit the proofs of results
usually proven using class field theory and reduction theory (we refer the reader to [31, §II]
or [20] for a more complete account). Ergo, §6 can be skipped without interrupting the flow
of ideas, especially if one is familiar with complex multiplication and elementary calculations
involving elliptic curves.
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2. A characterization of Ramanujan’s theta operator

As indicated above, in this section we will prove a useful characterization of the derivative
of a modular form. First we require some preparation. Let

F :=

{
z : −1

2
≤ Re(z) ≤ 0 and |z| ≥ 1

}
∪

{
z : 0 < Re(z) <

1

2
and |z| > 1

}

be the standard fundamental domain for the action of SL2(Z) on the upper half plane H,
and let

eτ =





1
2

if τ = i,
1
3

if τ = e2πi/3,

1 otherwise.

(2.1)

The purpose of this section is to prove the characterization of the logarithmic derivative
of a modular form given by Theorem 2. The proof of the theorem requires two steps. The
first is an identity due to Asai, Kaneko, and Ninomiya [2]. To introduce this result, define
j0(z) := 1, and, for m > 1, define jm(z) to be the unique weight zero meromorphic modular
form with q-expansion

(2.2) jm(z) := Jm(q) := q−m +
∞∑

n=1

am(n)qn ∈ q−mZ[[q]]

We note that jm(z) is a polynomial in j(z) for all m. In fact, it is a polynomial in j with
integral coefficients, for Jm(q) can be formed by subtracting suitable integer multiplies of
the q-series J(q)k ∈ q−kZ[[q]] from J(q)m (where 0 ≤ k < m). The first few jm(z) follow:

j0(z) = J0(q) = 1,(2.3)

j1(z) = J1(q) = j(z)− 744 = q−1 + 196884q + · · · ,(2.4)

j2(z) = J2(q) = j(z)2 − 1488j(z) + 159768 = q−2 + 42987520q + · · · ,(2.5)

j3(z) = J3(q) = j(z)3 − 2232j(z)2 + 1069956j(z)− 36866976 = q−3 + 2592899910q + · · · .(2.6)

We may equivalently define J0(q) := j0(z) := 1, J1(q) := j1(z) := j(z)− 744, and

(2.7) Jm(q) := jm(z) := mj1(z)|T0,m

for m > 1. The equivalence of this definition to the q-series definition (2.2) follows from (1.9)
and the fact that a weakly modular form, being a polynomial in j, is uniquely determined
by the coefficients of non-positive exponent in its q-series expansion. Indeed, from this fact
we see that the Jm(q) form a basis for M∞

0 .
We have the following:

Theorem 6 (Asai, Kaneko, Ninomiya). As an identity of formal power series in ρ, q, we
have

(2.8)
∞∑

n=0

Jn(ρ)qn =
E4(q)

2E6(q)

∆(q)
· 1

J(q)− J(ρ)
.

Remark. Asai, Kaneko, and Ninomiya show in [2] how Theorem 6 implies the famous de-
nominator formula for the Monster Lie algebra, namely

J(ρ)− J(q) = ρ−1
∏

m>0 and n∈Z
(1− ρmqn)β(mn),
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where the coefficients β(n) are defined by

j1(z) =
∞∑

n=−1

β(n)qn.

Proof of Theorem 6. We require a companion set of functions gm(ρ) indexed by positive
integers m, the mth of which can be defined in analogy with (2.2) as the unique weight 2
weakly modular form with ρ-expansion

(2.9) gm(ρ) := ρ−m +
∞∑

n=1

bm(n)ρn ∈M∞
2 .

Alternately, we may define g1(ρ) := E4(ρ)2E6(ρ)
∆(ρ)

and

gm(ρ) := m−1g1(ρ)|T2,m.

As before, the equivalence of these two definitions follows from the definition of the T2,m

and the fact that any weight 2 weakly holomorphic form is uniquely determined by the
coefficients in its q-expansion of negative order. We note that this fact follows from the
well-known “k/12 valence formula” (see, for example, [18, §III.2]), as does the corresponding
fact for weight zero weakly holomorphic forms. In fact, as in the weight zero case, this
implies that the gm(ρ) form a basis for the space M∞

2 . Further, from (1.14), if f ∈ M∞
0

then Θf ∈ M∞
2 , and by simply looking at the bases {Jm},{gm} we have just written down

we see that every element of M∞
2 can be written as Θf for some f ∈M∞

0 . In particular, it
follows from this observation and the definition of Θ that the constant term of any element
of M∞

2 is identically zero (which justifies the indexing of (2.9)).
Now we note that

(2.10) Jm(q) := mJ1(q)|T0,m = q−m + ma1(m)q + · · ·
and

(2.11) gm(ρ) := m−1g1(ρ)|T2,m = ρ−m + b1(m)q + · · ·
for m ≥ 1 simply by (1.9) and the fact that b1(0) = 0. Further, by noting that the constant
term of Jm(q)g1(q) ∈ M∞

2 must be zero by the comments in the preceding paragraph and
using (2.9) and (2.10), we have that

(2.12) b1(m) = −ma1(m)

for m ≥ 1. Now J(ρ)Jm(ρ) ∈M0 and J(q)gm(q) ∈M∞
2 are uniquely determined by their ρ-

(resp., q-) expansion coefficients of non-positive exponent, as we’ve remarked before. Define
ρ-expansion coefficients c(n) by

J(ρ) = ρ−1 +
∞∑

n=0

c(n)ρn

By comparing coefficients using equalities (2.10), (2.11), (2.12) and the observation that
b1(0) = 0, we obtain the recurrence relation

(2.13) J(ρ)Jm(ρ) = Jm+1(ρ) +
m∑

i=0

c(m− i)Ji(ρ)− b1(m)
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for all m ≥ 0. Thus, multiplying both sides of (2.13) by qm and summing over m ≥ 0 we
obtain

(2.14) J(ρ)
∞∑

m=0

Jm(ρ)qm =
1

q
(
∞∑

m=0

Jm(ρ)qm − 1) + (J(q)− 1

q
)
∞∑

m=0

Jm(ρ)qm − g1(q) +
1

q
.

Noting that g1(q) = E4(q)2E6(q)
∆(q)

, we see that (2.14) is a rewriting of (2.8). ¤

Corollary 7. Fix τ ∈ H. Then

E4(z)2E6(z)

∆(z)

1

j(z)− j(τ)
=

∞∑
n=0

jm(τ)qn

as meromorphic functions in z on F.

Proof. Compare Fourier (q-series) coefficients in a deleted neighborhood of infinity using
Theorem 6. ¤

Remark. The main result of [2] is the statement that the zeros of jm(z) in F are simple and
are all contained in the intersection of the unit circle with F. The technique they use is
analogous to that used by Rankin and Swinnerton-Dyer to prove that the “nontrivial” zeros
of Ek(z) have the same property, see [26]. For yet another family of modular forms whose
zeros have the same property, see [12].

We also require the following proposition, which follows from basic complex analysis:

Proposition 8 ([7]). Let f =
∑∞

n=h af (n)qn be a meromorphic function in a neighborhood
of q = 0, normalized so that af (h) = 1. Then there are complex numbers c(n) such that

f = qh

∞∏
n=1

(1− qn)c(n),

where the product converges in a sufficiently small neighborhood of q = 0. Moreover,

(2.15)
Θf

f
= h−

∞∑
n=1

∑

d|n
c(d)dqn.

Remark. We will refer to the c(n) associated to a given meromorphic modular form f by
Proposition 8 as the Borcherds exponents of f .

Proof. As usual, we understand that complex powers are defined by the principle branch of
the complex logarithm. Write F (q) := f(z), and then note that qF ′(q)/F (q) is holomorphic
at q = 0. We may therefore write its Taylor expansion around q = 0, valid in |q| < ε for
some ε > 0, as

(2.16) qF ′(q)/F (q) = h−
∑
n≥1

α(n)qn.

For n ≥ 1 define

c(n) :=
1

n

∑

d|n
α(d)µ(n/d)
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where µ is the Möbius function. By Möbius inversion we have

α(n) =
∑

d|n
c(d)d.(2.17)

If we fix q0 with |q0| < ε, then by absolute convergence of (2.16) we have α(n) = O(|q0|−n)
for all n. Thus the double sum

(2.18)
∑

m,n≥1

c(n)nqmn

converges absolutely in |q| < |q0| and hence in |q| < ε.
Suppose for the remainder of the proof that |q| < ε. From (2.16) and (2.17) we have

d

dq
log(F (q)q−h) =

F ′(q)
F (q)

− h

q

= −
∑
n≥1

c(n)
d

dq

(∑
m≥1

qmn

m

)

=
d

dq

(∑
n≥1

c(n) log(1− qn)

)
.

The interchange of summation and integration can be justified by using local uniform con-
vergence as we did in proving the absolute convergence of (2.18).

Upon integrating, we obtain

log(F (q)q−h) =
∑
n≥1

c(n) log(1− qn).

Here we use the normalization af (h) = 1. Now c(n) log(1− qn) and log(1− qn)c(n) differ by
integer multiples of 2πi. Since c(n) log(1− qn) → 0 as n →∞, we have log(1− qn)c(n) → 0
as well. Thus, as n → ∞, these two quantities differ in value only finitely many times; it
follows that there exists an integer N such that

log(F (q)q−h) =
∑
n≥1

log(1− qn)c(n) + 2πiN.

Taking the exponential on both sides finishes the proof of the proposition. ¤
We now prove Theorem 2.

Proof of Theorem 2. Choose C > 0 large enough so that all poles of f in F (excluding any
at the cusp at infinity) have imaginary part less than C. Let L := {t + iC : −1

2
≤ t ≤ 1

2
}

and consider the contour in H formed from the part of ∂F of imaginary part less than C
and L. Modify this contour as in the proof of the classical k/12 valence formula (see, for
example, [18, §III.2, p. 115]), specifically, if there are poles of f at i or ω := e2πi/3 (which, by
modularity, implies the existence of a pole at eπi/3), form half and “sixth” circles of radius
r > 0 around them, and if there are poles of f on the boundary, form two half circles of
radius r > 0 around them, one enclosing the pole on one side of the fundamental domain,
one not enclosing the pole which must exist on the other side (given that f is modular).
Call the left vertical side of this contour γ1(r), the right vertical side γ2(r), and the bottom
γ3(r). Take the modified contour γ1(r)∪L∪γ2(r)∪γ3(r) to have positive (counterclockwise)
orientation.
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If we integrate

(2.19)
1

2πi

f ′(z)

f(z)
jn(z)

along this full contour and let r → 0, by holomorphicity of jn on H the integral will be equal
to

(2.20)
∑

τ∈F−{ω,i}
ordτ (f)jn(τ).

We can also integrate (2.19) in pieces, from which we see that (2.20) is equal to

−1

3
ordω(f)jn(ω)− 1

2
ordi(f)jn(i) +

∫

L

f ′(z)

f(z)
jn(z)dz +

∫

γ3(r)

f ′(z)

f(z)
jn(z)dz(2.21)

= −1

3
ordω(f)jn(ω)− 1

2
ordi(f)jn(i) +

1

2πi

∫

L′

F ′(q)
F (q)

Jn(q)dq +

∫

γ3(r)

f ′(z)

f(z)
jn(z)dz.

Here L′ is a simple loop around q = 0. By Proposition 8 we have

qF ′(q)
F (q)

=
Θ(f)

f
= h−

∞∑
n=1

∑

d|n
c(d)dqn

and thus, applying the residue theorem, we have

1

2πi

∫

L′

F ′(q)
F (q)

Jn(q)dq =
∑

d|n
c(d)d.

We now deal with the last term in (2.21). By Proposition 1, if the weight of f is k, there
exists a weight k + 2 modular form g such that

∫

γ3(r)

f ′(z)

f(z)
jn(z) = 2πi

∫

γ3(r)

Θ(f)

f
jn(z)dz(2.22)

= 2πi

∫

γ3(r)

g(z)

f(z)
jn(z)dz + 2πi

∫

γ3(r)

k

12
jn(z)E2(z)dz.

Now let β denote the path along the unit circle from i to ω, taken with positive orientation,
and S the fractional linear transformation defined by S(z) = −1/z. Then γ3 = −β + Sβ,
and thus the right hand side of equation (2.22) is equal to

(∫

−β

g(z)

f(z)
jn(z)dz +

∫

Sβ

g(z)

f(z)
jn(z)dz

)
+

k

12

(∫

−β

jn(z)E2(z)dz +

∫

Sβ

jn(z)E2(z)dz

)

=
k

12

(∫

−β

jn(z)E2(z)dz +

∫

Sβ

jn(z)E2(z)dz

)

=
k

12

(∫

−β

jn(z)E2(z)dz +

∫

β

jn(z)E2(z)dz +

∫

β

12

2πi

jn(z)

z
dz

)

=
k

2πi

∫

β

jn(z)

z
dz.

To obtain the first equality we used the functional equation for elements of M∞
2 along with

a standard change of variables (which introduces a factor of 1/z2). To move from the second
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line to the third we used the functional equation for elements of M∞
2 , a change of variables,

and the functional equation (1.5) for E2(z).

Now, instead of trying to evaluate k
2πi

∫
β

jn(z)
z

dz directly, we plug f = ∆ into (2.21), notice

that
∑

τ∈F ordτ (f)jn(τ) = 0, and thereby obtain

1

2πi

∫

β

jn(z)

z
dz = − 1

12

∫

β

∆′(q)
∆(q)

Jn(q)dq

= − 1

12

∑

d|n
c(d)d

= −2σ1(n)

where c(d) ≡ 24 are (just for the purposes of the preceding equation) the product expansion
exponents of ∆(z) = q

∏∞
n=1(1− qn)24.

Thus, collecting all of this, equation (2.21) implies that
∑

τ∈F
eτ ordτ (f)jn(τ) =

∑

d|n
c(d)d− 2kσ1(n)

Now we recall that by Theorem 6, it is sufficient to show that

Θ(f)

f
=

kE2

12
−

∞∑
n=1

(∑

τ∈F
eτ ordτ (f)jn(τ)

)
qn.

To prove this identity, we apply Proposition 8, note

k

12
E2(z) =

k

12
− 2k

∞∑
n=1

σ1(n)qn,

and argue coefficient by coefficient. The only coefficient that might be unclear is the constant
n = 0 term. In this case, on the left we have h, which is the order of f at infinity, and on
the right we have k

12
−∑

τ∈F eτ ordτ (f), which is precisely ord∞(f) = h by the k/12 valence
formula (for example, see [18, §III.II, p. 115]).

¤
We remark here that the derivative formula of Theorem 2 explicitly relates, via Proposition

2.15, the coefficients c(n) of the product expansion of a modular form to a specific weight
2 meromorphic modular form. This relationship is in the spirit of the work of Borcherds
on the product expansion exponents of Jacobi forms with Heegner divisors. See [6] for the
details of this theory.

As we mentioned in the introduction, Ahlgren, in [1], has proven a generalization of
Theorem 4 to certain genus zero congruence subgroups. We will state his theorem after
fixing some notation. Define Dedekind’s eta-function

η(z) := q
1
24

∞∏
n=1

(1− qn)

as usual. For p = 2, 3, 5, 7 or 13, let

j(p)(z) :=

(
η(z)

η(pz)

) 24
p−1

∈M∞
0 (Γ0(p)).
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This j(p)(z) is a modular form with a simple pole at ∞ and a simple zero (with respect to
local coordinates) at 0. Additionally, its restriction to a fundamental domain for the action of
Γ0(p) on H forms a bijection from that fundamental domain to C. In analogy with (2.2), we

now define a sequence of modular functions {j(p)
m (z)}∞m=0. Let j

(p)
0 (z) := 1 and for m > 0 let

j
(p)
m (z) ∈ M∞

0 (Γ0(p)) be the unique modular function which is holomorphic on H, vanishes
at the cusp 0 and whose Fourier expansion at infinity has the form

j(p)
m (z) = q−m + c(0) + c(1)q + c(2)q2 + · · · .(2.23)

Because Γ0(p) is genus zero, each of these functions can be written as monic polynomials in

j
(p)
1 (z) = j(p)(z) with constant term equal to zero. For example, we have

j
(5)
0 (z) = 1,

j
(5)
1 (z) = j(5)(z) = q−1 − 6 + 9q + 10q2 − 30q3 + · · ·

j
(5)
2 (z) = j(5)(z)2 + 12j(5)(z) = q−2 − 18 + 20q + 21q2 + 192q3 + · · ·

j
(5)
3 (z) = j(5)(z)3 + 18j(5)(z)2 + 81j(5)(z) = q−3 − 24− 90q + 288q2 + 144q3 + · · ·

In analogy with our definition of F, we define Fp to be a fundamental domain for the action
of Γ0(p) on H, taking the convention that Fp does not include the two cusps ∞ and 0. If

τ ∈ H, then (in analogy with (2.1)) we define e
(p)
τ ∈ {

1, 1
2
, 1

3

}
by

e(p)
τ := (the order of the isotropy subgroup of τ in Γ0(p)/{±I})−1.

We can now state the following theorem:

Theorem 9 ([1]). Suppose that p ∈ {2, 3, 5, 7, 13} and that f(z) =
∑∞

n=h a(n)qn ∈Mmero
k (Γ0(p)),

normalized so that a(h) = 1. Then

θf

f
= −

∑

τ∈Fp

(
e(p)

τ

∞∑
n=1

j(p)
n (τ)qn

)
+

h− k/12

p− 1
· pE2|V (p) +

pk/12− h

p− 1
· E2.

We will not provide a proof of this theorem; it is entirely analogous to the proof of Theorem
2 except for some difficulties which naturally arise when dealing with congruence subgroups.
We note that a formula analogous to Corollary 7 holds in the Γ0(p) case for p ∈ {2, 3, 5, 7, 13}
as well (see [1]).

3. Serre’s p-adic modular forms

We begin with the notion of congruent q-series. Two q-series f(z) =
∑∞

n=n0
a(n)qn ∈

qn0Z[[q]] and g(z) =
∑∞

m=m0
b(m)qm ∈ qm0Z[[q]] are said to be congruent modulo N if

a(k) ≡ b(k) (mod N)

for all k. For primes p, we say that a q-series f(z) with integral coefficients is a weakly modular
form modulo pn if it is congruent modulo pn to a modular form g(z) ∈ M∞ ∩ q−m0Z[[q]].
This is written as

f(z) ≡ g(z) (mod pn)

We note here that the theory of modular forms modulo prime powers is quite well developed;
for a basic introduction, see [19, §IV.X], and for a variety of interesting number-theoretic
applications, see [24].
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We begin by establishing some well-known congruences involving the Eisenstein series
Ek(z). First we recall two classical Bernoulli number congruences (see [15, p. 233-238]).
Let Dn be the denominator of the nth Bernoulli number, written in lowest terms. The von
Staudt-Clausen congruences state

(3.1) Dn = 6
∏

(pi−1)|n
pi

where the pi’s are prime. Let p ≥ 5 be prime. Now suppose m ≥ 2 is even and m′ ≡ m
(mod φ(pr)) where φ is the Euler φ-function. Then the Kummer congruences state

(3.2)
(1− pm′−1)Bm′

m′ ≡ (1− pm−1)Bm

m
(mod pr).

Using these congruences, we prove the following lemma:

Lemma 10. For r ≥ 1 and p ≥ 5,

(3.3) (Ep−1(z))pr−1 ≡ 1 (mod pr).

Proof. We have

(Ep−1(z))pr−1

=

(
1− 2(p− 1)

Bp−1

∞∑
n=1

σp−1(n)qn

)pr−1

=

(
1− 2(p− 1)Dp−1

Up−1

∞∑
n=1

σp−1(n)qn

)pr−1

where Up−1 is an integer coprime to Dp−1. From (3.1) we have p|Dp−1 which implies (3.3)
after an application of the binomial theorem. ¤
We also record here the following congruences, which will be useful in §7:

Lemma 11. Suppose k ≥ 4 is even. Then

Ek(z) ≡ 1 (mod 24),

and, if p ≥ 5 is a prime such that (p− 1) | k,

Ek(z) ≡ 1 (mod p).

Proof. These both follow immediately from the von Staudt-Clausen equation (3.1). ¤
Before we can proceed any farther, we must generalize the notion of congruent modular

forms introduced above. Let K be a number field with ring of integers OK , and m ⊂ OK an
ideal. We define the order of f modulo m by

Ordm(f) := min{n : a(n) 6∈ m}
with the convention that Ordm(f) := +∞ if a(n) ∈ m for all n. Though this is certainly not
obvious a priori, given a modular form with coefficients in OK , one need only check finitely
many q-series coefficients to calculate ordm(f). The following theorem of Sturm (see [24,
§2.9] or [32]) makes this precise:

Theorem 12. Suppose k ≥ 0 is an integer and K is a number field with ring of integers
OK. Moreover let f =

∑∞
n=0 a(n)qn ∈ Mk(Γ0(N))∩OK [[q]]. If m ⊂ OK is an ideal for which

Ordm(f) >
k

12
[Γ0(1) : Γ0(N)]

then Ordm(f) = +∞.
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Remark. We will not prove this theorem in this thesis. We will only require it for the proofs
of theorems 3 and 4, and there we only invoke it briefly to prove that we can normalize certain
forms so that they have coefficients in a ring of integers. To see how this works, consider
some form f ∈ Mk(Γ0(N)) with p-integral algebraic coefficients. Then we can pick an integer
M ≡ 1 (mod p) such that the first k

12
[Γ0(1) : Γ0(N)] coefficients of Mf are contained in the

ring of integers of some number field OK . Applying Theorem 12, it follows that all of the
coefficients of Mf are in OK , in other words, we have produced a form Mf ≡ f (mod p)
with algebraic integer coefficients.

Elements of Mk(Γ
′) have the extremely useful property that they determined by their first

few q-series coefficients. Though, as noted above, we will not need Theorem 12 until §5, we
included it at this point to call the reader’s attention to the fact that a similar statement is
true when working with modular forms congruent modulo ideals in a number field.

We are now in a position to justify the title of this section. Let K be a number field and
let Ov be the completion of its ring of integers at a finite place v with residue characteristic
p. Moreover, let λ be a uniformizer for Ov. Finally, for an ∈ Kv, let

ordλ

( ∞∑
n=n0

anqn

)
:= inf{ordλ(an)}.

We make the following:

Definition. A formal power series

f :=
∞∑

n=0

a(n)qn ∈ Ov[[q]]

is a p-adic modular form of weight k ∈ Ov if there is a sequence fi ∈ Ov[[q]] of
holomorphic modular forms on Γ with weights ki for which ordλ(fi−f) → +∞ and ordλ(k−
ki) → +∞.

Remark (1). This is Serre’s original definition of a p-adic modular form [29]. The notion of
a p-adic modular form has been substantially generalized by Katz; for an introduction and
an explanation of how the two definitions relate, see [13, §I].
Remark (2). Note that the ordλ here is different from the Ord introduced above.

Thus we observe, with the help of Lemma 10 and Lemma 11, that 1 is a p-adic modular
form for all primes p, or, more precisely, is a p-adic modular forms when identified with its
q-expansion considered as an element of Ov[[q]] (the q-expansion of 1 is just 1+0q+0q2+· · · ).
Further, any element of Mk ∩Ov[[q]] is trivially a p-adic modular form. As another example,
we have the following:

Proposition 13. The q-series E2(z) is a p-adic modular form for all p.

Proof. We have

Bφ(pr)+2

φ(pr) + 2
Eφ(pr)(z) ≡ B2

2
E2(z)− p

B2

2
E2(z)|V (p) mod pr+1

for all r ≥ 1 by examining q-series using the Kummer congruences (3.2) and Euler’s theorem.
The proposition then follows by inverting the formal operator (1−pV (p))−1, which preserves
the space of p-adic modular forms. For details, see [29, §2.1]. ¤
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The only nontrivial result we will require from the theory of p-adic modular forms is a
theorem, due to Serre, which allows us to compute the constant term of a p-adic modular
form in terms of a p-adic limit of its other coefficients for small primes p. Let ζ∗p (s) be the
Kubota-Leopoldt p-adic zeta function. We have

Theorem 14 (Theorem 7, [29]). If p ≤ 7 is prime and

f =
∞∑

n=0

a(n)qn

is a p-adic modular form of weight k 6= 0, then

a(0) =
ζ∗p (1− k)

2
· lim

n→+∞
a(pn).

This theorem is proven by decomposing the vector space M of p-adic modular forms into
M = E ⊕N , where N is a space on which the U operator (defined exactly as in (1.11)) acts
nilpotently and E is a space on which U acts bijectively. It turns out that for 2 ≤ p ≤ 7 prime,
E is spanned by the reductions of Eisenstein series, and N is spanned by the reductions of
cusp forms. By analyzing each subspace, the theorem follows. For a complete proof, see
[29, §2.3]. Incidentally, [29] is a beautiful paper, and provides an interesting counterpoint to
Katz’s geometric approach to p-adic modular forms.

Also mentioned in [29, §1.6] is the fact that ζ∗p (1−k) = (1−pk−1)ζ(1−k) for even integers
k ≥ 2, where ζ(s) is the usual characteristic zero Riemann zeta function. In the sequel we
will only be interested in the special case k = 2, in which we have:

ζ∗p (1− 2) = (1− p)ζ(−1) =
p− 1

12
.

Thus we immediately have the following corollary of Theorem 14:

Corollary 15. If p ≤ 7 is prime and

f =
∞∑

n=0

a(n)qn

is a p-adic modular form of weight k 6= 0, then

a(0) =
p− 1

24
· lim

n→+∞
a(pn).

4. Varying the level

Given a modular form f ∈ Mk(Γ0(M)) (resp., f ∈ Sk(Γ0(M))) and recalling (1.10) and
(1.13), it is not hard to verify using the functional equation (1.2) that f |V (d) ∈ Mk(Γ0(dM))
(resp., f |V (d) ∈ Sk(Γ0(dM))). These forms are holdovers from lower levels; they’re nothing
new, which justifies the notation

Sk(Γ0(N)) ⊃ Sold
k (Γ0(N)) :=

⊕

dM |N
Sk(Γ0(M))|V (d).

We define the space of newforms Snew
k (Γ0(N)) to be the orthogonal complement to Sold

k (Γ0(N)
with respect to a certain inner product, called the Petersson inner product (see [19, §III.4]
or [18, §III.3]). As a first example, for p ≥ 3 prime, we have

M2(Γ0(p)) = 〈E2(z)− pE2(pz)〉 ⊕ Snew
2 (Γ0(p))(4.1)
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because M2(Γ) = 0. One can check that E2(z) − pE2(pz) satisfies the requisite functional
equation using (1.5). For arbitrary weights, the space of newforms has the useful property
that it is preserved under the action of the Hecke operators. It is also invariant under another
operator, the Atkin-Lehner involution, which we now define.

Definition. For a prime divisor p of N with ordp(N) = `, let Qp := p`. We define the
Atkin-Lehner operator |kW (Qp) on Mk(Γ0(N)) by any matrix

W (Qp) :=
(

Qpa b
Nc Qpd

)
∈ M2×2(Z)

with determinant Qp, where a, b, c, d ∈ Z. Further, define the Fricke involution |kW (N)
on Mk(Γ0(N)) by the matrix

W (N) :=

(
0 −1
N 0

)
.

Well-definition of |kW (Qp) follows from the functional equation of f ∈ Mk(Γ0(N)) and the
fact that W (Qp) is unique up to left multiplication by elements of Γ0(N). We note here that
for f ∈ Mk(Γ0(p)) we have f |kW (Qp) = f |kW (p). By abuse of language, we will call W (p)
an Atkin-Lehner operator in this setting.

We now are in a position to make the following:

Definition. A newform in Snew
k (Γ0(N)) is a normalized cusp form that is an eigenform

for all the Hecke operators, all of the Atkin-Lehner involutions |kW (Qp) for p|N , and the
Fricke involution |kW (N).

Newforms enjoy remarkable properties. We recall a few such properties on the more
utilitarian side of things:

Theorem 16. Suppose that k is a positive even integer. Then

(1) The space Snew
k (Γ0(N)) has a basis of newforms.

(2) If f(z) =
∑∞

n=1 a(n)qn ∈ Snew
k (Γ0(N)) is a newform, then there is a number field K

with the property that for every integer n we have a(n) ∈ OK, the ring of algebraic
integers of K.

(3) If f ∈ Snew
k (Γ0(N)) is a newform then there is an integer λf ∈ {±1} for which

f |kW (Qp) = λpf.

For the statements of a collection of results, including the above, on newforms, see [24,
§2.4,§2.5]. For proofs, see [3], and for generalizations, see [21] and [23].

We began this section by discussing how one can raise the level of an element of Mk(Γ0(N))
to obtain an element of Mk(Γ0(MN)). We now discuss the trace operator TrMN

N , which lowers
the level. For coprime M, N , define

TrMN
N : Mk(Γ0(MN)) → Mk(Γ0(N))

by

TrMN
N (f) =

r∑
i=1

f |kγi

where {γ1, ..., γr} is a complete set of coset representatives for Γ0(NM)\Γ0(N). The fact
that TrMN

N (f) ∈ Mk(Γ0(N)) is immediate; acting on TrMN
N (f) by an element of Γ0(N) simply

permutes the γi by the invariance of f under the action of Γ0(NM). We have the following
explicit formula for TrNp

p :
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Lemma 17 ([22]). Suppose that p is an odd prime and that p - N . If f ∈ Mk(Γ0(Np)) then

TrNp
N (f) = f + p1−k/2f |kW (p)U(p)

Proof. A complete set of coset representatives for Γ0(Np) in Γ0(N) is given by
{(

1 0
0 1

)}
∪

{(
1 0
N 1

)(
1 j
0 1

)}p−1

j=0

.

We also have (
1 0
N 1

)(
1 j
0 1

)
=

(
1/p 0
0 1/p

)(
p a

Np pb

)(
1 j − a
0 p

)

where (
p a

Np pb

)

is a matrix for W (p). Since scalar matrices act trivially on Mk(Γ0(Np)),

TrMN
N (f) = f +

p−1∑
j=1

f |kW (p)

(
1 j
0 p

)
.

By considering q-expansions, we have
p−1∑
j=0

g

(
z + j

p

)
= p(g|U(p))(z),

which completes the proof of the lemma. ¤
It is well-known that if p is prime with p - N , then TrNp

N (f) = 0 for f ∈ Snew
k (Γ0(Np)) (see

[21]). Combining this observation with Lemma 17 yields the following:

Proposition 18 ([3]). If f ∈ Snew
k (Γ0(p)), then

f |kW (p) = −p1−k/2f |U(p).

Proof. First suppose that f is a newform. From Lemma 17, we have

0 = Trp
1(f) = f + p1−k/2f |kW (p)U(p).

Thus

(4.2) f = −p1−k/2f |kW (p)U(p).

Note that U(p) = Tk,p because the level is p (see (1.12)). Now note that f , being a newform,
is an eigenform both for the Hecke operators and W (p) (by Theorem 16). Thus the actions
of W (p) and U(p) on f commute. With all this in mind, applying W (p) to both sides of
(4.2), we have

f |kW (p) = −p1−k/2f |kW (p)U(p)W (p)

= −p1−k/2f |kW (p)2U(p)

= −p1−k/2f |kU(p).

To derive the last equality, we used the fact that the action of W (p)2 is trivial, which
can be seen from directly from a matrix representation of W (p):

(
0 −1
p 0

) (
0 −1
p 0

)
=

( −p 0
0 −p

)
.

Since U(p) and W (p) are both linear operators, the proposition now follows for all f ∈
Snew

k (Γ0(p)). ¤
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5. p-adic properties of Borcherds exponents

We begin with the following:

Definition. Let f be a meromorphic modular form of weight k over Γ or Γ0(p) whose poles
and zeros, away from z = ∞, are at the points z1, ..., zs ∈ H. We say that f(z) is good at
p if there is a holomorphic modular form Ef (z) ∈ Mb(Γ) with p-integral algebraic coefficients
for which the following are true:

(1) As q-series, Ef (z) ≡ 1 (mod p).
(2) For each 1 ≤ i ≤ s we have Ef (zi) = 0.

Remark (1). It follows immediately that if f and g are good, then fg is good.

Remark (2). As mentioned in the introduction, we will provide several families of good forms
in §7; other families are provided in [8]. Unfortunately, the author has not thought carefully
about interesting examples of forms which are not good.

In view of the observations we made in sections 1 and 2, it is now straightforward to prove
Theorem 3:

Proof of Theorem 3. By examining the proof of Proposition 1.14, we see that if f is a mero-
morphic modular form of weight k over Γ, then

(5.1) f̃ := 12Θf(z)− kE2(z)f(z)

is a meromorphic modular form of weight k + 2 over Γ. Further, from (5.1) we see that the

poles of f̃(z) are supported at the poles of f(z).
Now consider

θf

f
=

1

12

(
f̃(z)

f(z)
+ kE2(z)

)
.

By 10, E2 is a p-adic modular form of weight 2 with integer coefficients. Thus it suffices

to show that f̃/f is as well. If b is the weight of Ef (z), then note Ef (z)pj
f̃/f ∈ Mpjb+2. If

Ef (z)pj
f̃/f does not have algebraic integer coefficients, then multiply it by a suitable integer

tj+1 ≡ 1 (mod pj+1) so that the resulting series does. Thus we have

tj+1Ef (z)pj f̃

f
≡ f̃

f
(mod pj+1).

If we define Fj+1(z) := tj+1E(z)pj
f̃(z)/f(z), then we have that {Fj+1} is a sequence of

holomorphic modular forms whose coefficients p-adically converge to F̃ (z)/F (z) and whose
weights p-adically converge to 2. ¤

We will devote the rest this section to proving Theorem 4, a generalization of Bruinier and
Ono’s result to forms of prime level p ≥ 5. We require two lemmas before we start on the
main body of the proof. The first is most naturally proven using the notion of the divisor
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polynomial of a modular form, which we now recall. If k ≥ 4 is even, then define Ẽk(z) by

(5.2) Ẽk(z) :=





1 if k ≡ 0 (mod 12),

E4(z)2E6(z) if k ≡ 2 (mod 12),

E4(z) if k ≡ 4 (mod 12),

E6(z) if k ≡ 6 (mod 12),

E4(z)2 if k ≡ 8 (mod 12),

E4(z)E6(z) if k ≡ 10 (mod 12),

and polynomials hk by

(5.3) hk(x) :=





1 if k ≡ 0 (mod 12),

x2(x− 1728) if k ≡ 2 (mod 12),

x if k ≡ 4 (mod 12),

x− 1728 if k ≡ 6 (mod 12),

x2 if k ≡ 8 (mod 12),

x(x− 1728) if k ≡ 10 (mod 12).

Further, define m(k) by

m(k) :=

{
bk/12c if k 6≡ 2 (mod 12),

bk/12c − 1 if k ≡ 2 (mod 12).

With this notation, if f(z) ∈ Mk and F̃ (f, x) is the unique rational function in x for which

(5.4) f(z) = ∆(z)m(k)Ẽk(z)F̃ (f, j(z)),

then F̃ (f, x) is a polynomial; this follows from the familiar fact that any element of M∞
0 is

a polynomial in j. We will refer to

(5.5) F (f, x) := hk(x)F̃ (f, x)

as the divisor polynomial for f . From (5.2), (5.4) and the classical k/12 valence formula
(again, see [18, §III.2]) the polynomial F (f, x) will have a zero of order nk precisely at j(zk)
for all zeros zk of f , where nk := ordzk

(f). For a discussion of divisor polynomials, see [24,
§2.6].

Lemma 19. Suppose f = qh
∏∞

n=1(1− qn)c(n) ∈Mmero
k (Γ0(p)) ∩ qhOK [[q]] for some number

field K and some prime p ≥ 5, and further that f is good at p. Then
(

Θ(f)− k(12)−1E2

f

)
|2W (p) ∈Mmero

2 (Γ0(p))

is p-integral.

Proof. Note that F (Ef , j) has p-integral algebraic coefficients as a q-series and as a polynomial
because Ef has p-integral algebraic coefficients. Thus, if z1, ..., zn are the zeros and poles of
f as before (written without multiplicity),

G(j(z)) := (j(z)− j(z1)) · · · (j(z)− j(zn))
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has p-integral algebraic q-series coefficients. Because no prime above p divides the q-
expansion coefficient of lowest exponent in G(j(z)), we also have that (G(j))−1 is p-integral
(again as a q-series). Thus we may write

Θ(f)− k(12)−1E2

f
=

g

G(j)

where g ∈ M2(Γ0(p)) ∩Q[[q]] has p-integral algebraic coefficients. We have

(
Θ(f)− k(12)−1E2

f

)
|2W (p) =

(
1

G(j)

)
|0W (p)g|2W (p).

We will prove that each of the factors on the right hand side is p-integral. First,
(

1

G(j(z))

)
|0W (p) =

(
1

G(j(z))

)
|0

(
0 −1
p 0

)
=

(
1

G(j(z))

)
|0

(
0 −1
1 0

)(
p 0
0 1

)

=

(
1

G(j(z))

)
|0

(
p 0
0 1

)
=

1

G(j(pz))
,

which is evidently p-integral. Now note that we can write g = c1(E2(z) − pE2(pz)) + h(z),
where h(z) ∈ Snew

2 (Γ0(p)) has p-integral algebraic coefficients and c1 is a p-integral algebraic
number. From Proposition 18 we have h(z)|2W (p) = −h(z)|U(p), which is p-integral by the
q-series definition (1.11) of the U(p) operator. Using (1.5), we also have

(E2(z)− pE2(pz))|2W (p) = E2(z)|2
(

0 −1
1 0

)(
p 0
0 1

)
− p2(pz)−2E2(−1/z)

=

(
12

2πiz
+ E2(z)

)
|2

(
p 0
0 1

)
− 12

2πiz
− E2(z)

= pE2(pz)− E2(z).

which is also p-integral. Since we have dealt with both factors, the lemma follows. ¤

Remark. If restrict to the case k = 0, this lemma is also true for p = 3; the proof is the same.

Define

(5.6) Ẽ3(z) := E2(z)− 3E2(3z) ∈ M2(Γ0(3))

(see 4.1) and

(5.7) Ẽp := Ep−1(z)− p(p−1)/2(Ep−1(z)|p−1W (p)) ∈ Mp−1(Γ0(p))

for primes p ≥ 5. We have following:

Lemma 20. If p is an odd prime, then

Ẽp(z) ≡ 1 (mod p)(5.8)

(Ẽp(z)|p−1W (p)) ≡ 0 (mod p(p−1)/2+1)(5.9)
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Proof. For p = 3, the first claim is obvious, and the second follows from the end of the proof
of Lemma 19. For p ≥ 5 we compute

Ep−1|p−1W (p) = Ep−1|p−1

(
0 −1
p 0

)

= Ep−1|p−1

(
0 −1
1 0

)(
p 0
0 1

)

= p(p−1)/2Ep−1|V (p)

From Lemma 10, we know that Ep−1 is p-integral. Thus we have the congruence Ẽp ≡ Ep−1

(mod p), which yields Ẽp ≡ 1 (mod p) for all odd primes p after an application of Lemma
10.

For the second claim, we have

Ẽp|p−1W (p) = Ep−1|p−1W (p)− p(p−1)/2Ep−1|p−1W (p)W (p)

= Ep−1|p−1W (p)− p(p−1)/2Ep−1

= p(p−1)/2Ep−1|V (p)− p(p−1)/2Ep−1.

We note the p-integrality of Ep−1 and Ep−1|V (p) and again apply Lemma 10 to finish the
proof of the lemma. ¤

We now prove Theorem 4. The two main inputs into this proof are the ideas behind the
proof of Theorem 3 and Serre’s proof that a newform in Snew

k (Γ0(p)) is a p-adic modular
form (see [22] and [29]).

Proof of Theorem 4. By (1.14), there exists a meromorphic modular form g on Γ0(p) so that

Θf

f
=

g

f
+

k

12
E2.

Because E2 is a p-adic modular form of weight two, it suffices to show that the same is true

of Θf−k(12)−1E2f
f

= g
f
.

Fix a positive integer r. Then (using the fact that f is good at p), we have

(Ef )
pr−1 Θf − k(12)−1E2f

f
∈ M2+pr−1b(Γ0(p))

where b is the weight of Ef . Further, this form is congruent modulo pr to g/f . Now consider

fr(z) := (Ẽp)
pr−1

(Ef )
pr−1 Θf − k(12)−1E2f

f
≡ g

f
(mod pr).

We clearly have fr ∈ M2+pr−1b+pr−pr−1(Γ0(p)). We now take the trace of these fr to lower their
level. We certainly have Trp

1(fr) ∈ M2+pr−1b+pr−pr−1 , and we will prove shortly that Trp
1(fr) ≡

fr ≡ g
f

(mod pr). Now, as in the proof of Theorem 3, choose a suitable integer tr ≡ 1

(mod pr) such that trTrp
1(fr) has coefficients in the ring of integers OKr of some number field

OKr (this normalization may or may not be necessary depending on Ef ). Then {trTrp
1(fr)}

forms a sequence of holomorphic modular forms over Γ whose coefficients converge p-adically
to g/f and whose weights converge to 2, thus g/f is a p-adic modular form of weight 2.
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We now prove that Trp
1(fr) ≡ fr (mod pr). By Lemma 17, we have

Trp
1(fr) = fr + p1−(2+pr−1b+pr−pr−1)/2fr|(2+pr−1b+pr−pr−1)/2W (p)U(p)

= fr + p1−(2+pr−1b+pr−pr−1)/2

×
((

Θf − k(12)−1E2f

f

)
|2W (p)(Ẽp)

pr−1|pr−pr−1W (p)(Ef )
pr−1|pr−1bW (p)

)
U(p)

Because f is good, applying Lemma 19 implies that
(

Θ(f)−k(12)−1E2

f

)
|2W (p) is p-integral,

which, together with the definition of U(p), implies that(
Θf − k(12)−1E2f

f

)
|2W (p)U(p)(5.10)

is p-integral. Using (5.9), we also compute

Ẽpr−1|pr−pr−1W (p)U(p)

= (Ẽp|p−1W (p))pr−1|U(p) ≡ 0 (mod p(p−1)pr−1/2+pr−1

),(5.11)

and, just from the definitions,

(Ef )
pr−1|pr−1W (p)U(p)(5.12)

= ppr−1b/2(Ef )
pr−1|pr−1b

(
p 0
0 1

)
U(p) ≡ 0 (mod ppr−1b/2).

The inequalities (5.10), (5.11) and (5.12) together imply (as claimed) that Trp
1(fr) ≡ fr

(mod pr). ¤
Remark. As with Lemma 19, Theorem 4 is true in the case k = 0 for p = 3 as well. We will
use this fact without further comment in the proof of Theorem 33.

6. CM elliptic curves and supersingularity

As indicated in the introduction, the construction of explicit families of good forms will
require a discussion of complex multiplication and supersingularity, which we now begin.
Recall that for an elliptic curve E/C, there exists a lattice L ⊂ C such that

C/L −̃→ E(6.1)

z 6∈ L 7→ (℘(z, L), ℘′(z, L), 1)

z ∈ L 7→ (0 : 1 : 0)

is an analytic isomorphism. Here ℘ is the classical Weierstrass ℘-function. Conversely,
given any lattice L ⊂ C, one can show that there exists an elliptic curve E for which an
analytic isomorphism of the form (6.1) holds. Under this correspondence between lattices
and elliptic curves, isomorphism classes of elliptic curves over C correspond to equivalence
classes of lattices, where the equivalence is given by L ∼ L′ if L = cL′ for some c ∈ C∗. By
way of terminology, the map L′ → L given by multiplication by c ∈ C∗ is called a homothety,
and two lattices related in such a way are called homothetic. Note that we may choose a
lattice Lτ with basis {τ, 1} with τ ∈ H in each homothety class. Different bases of Lτ are
given by applying elements of Γ to the basis {τ, 1}; it follows that we may take τ ∈ F.
With this stipulation, the basis {τ, 1} is uniquely determined. We will denote by Eτ the
corresponding elliptic curve under the map

C/Lτ → Eτ .
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We call this map (which is induced by (6.1)) an analytic representation of Eτ .
We now wish to make this analytic representation more explicit; additionally, because it

will be useful later, we work in a slightly more general context. Let E/K be an elliptic curve
over a field K of characteristic not equal to 2 or 3. Up to isomorphism, we can assume that
E is given in affine coordinates by

(6.2) E : y2 = 4x3 − g4x− g6

(see, for example, [17, §III.2]). If we restrict to the case K = C, with the normalizations
given above, the map (6.1) just formalizes the parametrization

E : (℘′(z, L))2 = 4(℘(z, L))3 − g4℘(z, L)− g6.

that exists for some lattice L ⊂ C.
We now wish define the j-invariant of Eτ , and show how it relates to j(τ). First, the

discriminant ∆(E) of the elliptic curve E/k is defined as

(6.3) ∆(E) = (2π)−12(g3
4 − 27g2

6).

Remark. It is important to observe that the discriminant function ∆(E) is not equal to
the discriminant of the cubic polynomial defining the curve. Since the discriminant of the
polynomial defining an elliptic curve E is not an isomorphism invariant of E, there are a
variety of essentially equivalent ways to define the discriminant; the reason for our particular
definition will soon be apparent.

We define the j-invariant of E to be the quantity

(6.4) j(E) :=
1728g3

4

(2π)12∆(E)
.

One can show by elementary means over any field K of characteristic not equal to 2 or 3 that
j(E) is indeed an invariant of the isomorphism class of E, and, further, given any j(E) ∈ K,
there exists a curve of j-invariant j(E) (see [17, §III.2]).

Note the similarity of (6.4) and (1.7). This is no accident. Let C/Lτ → Eτ be an
analytic representation. It turns out that, with the normalizations given above, we have
g2 = 4

3
π4E4(τ), g3 = 8

27
π6E6(τ). Hence, we have

∆(E) =
(E4(τ)3 − E6(τ)2)

1728
= ∆(τ)

and

j(Eτ ) = j(τ).(6.5)

Thus the coincidence of the “j” in j-function and j-invariant is really no coincidence. Indeed,
noting the fact that as the j-invariant varies over K it parameterizes isomorphism classes of
elliptic curves over K (at least if we continue to assume that the characteristic of K is not 2
or 3), and recalling that the j-function is a bijection between F and C, we have a bijective
map

F ←→ {isomorphism classes of E/C} .

For proofs of the statements we just made on the equality of the various definitions of j and
∆, see [18, §I and p. 112]. For a basic introduction to the theory of elliptic curves, see [17].

Later we will be giving examples of elliptic curves in the form E : y2 = x3 +ax+b for some
a, b ∈ k. It is easy to see that given any elliptic curve over k with defining affine equation
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y2 = 4x3 + cx + d, if the characteristic of k is not 2, then this curve is isomorphic to a curve

with defining affine equation y2 = x3 + c̃x + d̃ for some c̃, d̃ ∈ K. We shall call an elliptic
curve written in this form an elliptic curve in Weierstrass form. We now write formally as
a proposition some elementary properties of curves written in Weierstrass form; for a proof,
see [17, §III.2]

Proposition 21. Suppose a, b ∈ K, where K is a field with characteristic not equal to 2 or
3. Then the discriminant of x3 + ax + b is −4a3− 27b2. If the discriminant is nonzero, then
E : y2 = x3 + ax + b is nonsingular. Further, the j-invariant of E : y2 = x3 + ax + b is
1728 4a3

4a3+27b2
.

Now that we have (6.1) and the isomorphism invariant j(E) in hand, we completely
understand isomorphism classes of elliptic curves over C considered as analytic objects; they
are explicitly parameterized by ℘(z, Lτ ) (considered as a function of τ ∈ F). For example,
define E[N ], the N-division points of E, to be the points of E of order dividing N . Viewing
E/C as C/Lτ , it is evident that E[N ] is simply the group 1

N
Lτ/Lτ , that is,

E[N ] ≈ Z/NZ× Z/NZ.

The ring of endomorphisms of E, or End(E), can also be understood in a relatively straight-
forward manner using analytic representations. To begin, we have the following:

Lemma 22. Let L,M be two lattices in C, and let

λ : C/L → C/M

be a complex analytic homomorphism. Then there exists a complex number α so that the
following diagram commutes:

α : C → C
↓ ↓

λ : C/L → C/M.

Here the top map is multiplication by α and the bottom is the homomorphism λ.

Proof (compare [21]). In a neighborhood of zero, λ can be expressed by a power series

λ(z) = a0 + a1z + a2z
2 + · · · ,

On the other hand, λ is a homomorphism, so a0 = 0 and additionally we have

λ(z + z′) ≡ λ(z) + λ(z′) (mod M).

If we choose a small enough neighborhood U of zero, we must have that this congruence is
an equality in U ; thus

λ(z) = a1z

for z ∈ U . But for any z ∈ C, z/n is in U for sufficiently large integers n, and from this we
conclude that, identifying z with its reduction modulo L,

λ(z) = λ
(
n

( z

n

))
= nλ

( z

n

)
= na1

( z

n

)
= a1z.

¤
Remark. Abusing notation, we will often denote the complex number α and the homomor-
phism λ by the same symbol λ. We will also only be considering the special case L = M of
Lemma 22.
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It is clear that any λ ∈ Z will induce an endomorphism of C/Lτ , which we can then identify
with an element of End(Eτ ). We will call these endomorphisms the trivial endomorphisms
of Eτ . We have the following:

Definition. If E/C is an elliptic curve with nontrivial elements in its endomorphism ring
End(E/C), then we say E is a curve with complex multiplication, or, briefly, E has
CM.

The complex numbers λ inducing a nontrivial endomorphism of a lattice L turn out to
be algebraic numbers; more specifically, they are quadratic over Q. Before we formalize and
prove this as a proposition, we offer another definition, which will also be useful in §7:

Definition. Suppose τ ∈ H is the root of a quadratic equation with integer coefficients; that

is, τ = −b+
√

b2−4ac
2a

with a, b, c ∈ Z and gcd(a, b, c) = 1. We say that τ is a Heegner point
and that dτ = b2 − 4ac is the discriminant of τ .

Proposition 23. Suppose E/C is an elliptic curve. Then

(1) Every nontrivial endomorphism of E/C is induced (in the sense of Theorem 22) either
by a Heegner point λ ∈ H or by −λ for a Heegner point λ ∈ H.

(2) The curve E/C has CM if and only if j(E) = j(τ) for some Heegner point τ ∈ F.
(3) The curve E/C has CM if and only if End(E) ∼= O, where O is an order in an

imaginary quadratic number field K.

Proof. The endomorphism ring of E is unchanged if we replace it with another elliptic curve
isomorphic to it, so we assume without loss of generality that E = Eτ , τ ∈ F. Thus we have
an analytic representation

C/Lτ → Eτ .

As we proved in Lemma 22, a nontrivial automorphism of Eτ can now be realized as a
λ ∈ C∗ − Z such that

λLτ ⊂ Lτ

or, equivalently, for some ( a b
c d ) ∈ GL2(Q) ∩M2×2(Z),

λτ = aτ + b

λ = cτ + d.

This implies that λ is a root of the quadratic equation∣∣∣∣
x− a −b
−c x− d

∣∣∣∣ = 0.

Thus λ is a quadratic irrational algebraic integer. Now note that τ cannot be real; other-
wise Lτ would not be a lattice, and c 6= 0, for then λ would be an integer. Thus Q(τ) = Q(λ),
and, further, both λ and τ are imaginary quadratic numbers. This proves (1).

We’ve also proven the “only if” implication of (2), just by recalling that j is an isomorphism
invariant. The other direction follows similarly: note that if j(E) = j(τ) with τ a Heegner
point, then Eτ ≈ E, and Eτ is evidently CM.

Finally, for (3), note that if E is CM, as proven above, there is an isomorphic curve
Eτ where τ is a Heegner point. Thus End(E) ≈ End(Lτ ), and, again as proven above, any
complex number inducing a nontrivial endomorphism of Lτ is an element of OQ(τ), the ring of
integers of Q(τ), but not an element of Z. With this observation in mind it is easy to see that
the evident map End(Lτ ) → OQ(τ) is a homomorphism of rings with identity, and, further,
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the image of this homomorphism is not contained in Z ⊂ OQ(τ). Thus End(Lτ ) ≈ End(Eτ )
is isomorphic to an order in OQ(τ). Conversely, note that if End(E) ≈ O, with O an order
in a quadratic imaginary field, then End(E) is not isomorphic to Z, so E must be CM. ¤

By way of terminology, if τ ∈ H is a Heegner point, then j(τ) ∈ C is called a singular
modulus. In view of parts (3) and (4) of the last proposition, one might guess that these
singular moduli would be of interest in the study of the arithmetic of imaginary quadratic
number fields. This is indeed the case, but before we can explain anything in any more
detail we must briefly explore the connection between the CM elliptic curves and quadratic
imaginary fields. The content of our discussion is derived mostly from [31, §II].

We’ve seen in Proposition 23 that every CM elliptic curve has endomorphism ring isomor-
phic to an order in a quadratic number field. We now work in an opposite direction. Fix an
imaginary quadratic number field K, and let OK be its ring of integers. We wish to study
the following sets:

ELL(OK) : =
{elliptic curves E/C with End(E) ∼= OK}

isomorphism over C
(6.6)

∼= {lattices L with End(L) ∼= OK}
homothety

.

We now show that these sets are nonempty for any imaginary quadratic number field
K. Fix an embedding K ↪→ C. Given any nonzero fractional ideal a ⊂ K, we know from
elementary algebraic number theory that the image of a under our chosen embedding (which
we will also denote by a) is a lattice in C. Denote by Ea the elliptic curve associated to this
lattice. We have

End(Ea) ∼= {α ∈ C : αa ⊂ a}
= {α ∈ K : αa ⊂ a} since a ⊂ K,

= OK since a is a fractional ideal.

Thus given OK , we can find an elliptic curve E with End(E) ≈ OK . Further, since homo-
thetic lattices give rise to isomorphic elliptic curves, if c ∈ K, then E(c)a ≈ Ea. In other
words, multiplying a fractional ideal by a principal ideal in OK does not change the elliptic
curve that arises from that ideal. In particular, if we denote by CL(K) the ideal class group
of K, that is,

CL(K) :=
{nonzero fractional ideals of K}
{nonzero principal ideals of K} .

then we have a map

CL(K) −→ ELL(OK)

a 7−→ Ea

where a is the ideal class of a ∈ CL(k). More generally, if L is any lattice and a any nonzero
fractional ideal of K, then define the product

aL := {α1λ1 + · · ·+ αrλr : αi ∈ a, λi ∈ L}.
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Now fix a lattice L with EL ∈ ELL(OK) its associated elliptic curve. One can show in an
elementary manner that the map

CL(k) −→ ELL(OK)(6.7)

a 7−→ Ea−1L

defines a simply transitive action of CL(K) on ELL(OK) (see Proposition 1.2, [31, §II.2]).
In particular, because CL(K) is finite, ELL(OK) is as well. This observation is the main
input into Proposition 24 below. Fix the notation

hK = |CL(K)|.
For σ ∈ Aut(C), let cσ denote σ(c) for all c ∈ C, and let Eσ denote the elliptic curve formed

by letting σ act on the coefficients of the defining affine equation of E. Further, if φ : E → E
is an endomorphism of E, then denote by φσ : Eσ → Eσ the induced endomorphism (i.e.
isogeny from Eσ to itself) of Eσ.

Remark. We are implicitly identifying the ring of analytic endomorphisms of E, thought of
as a lattice, with the ring of algebraic endomorphisms of E, thought of as group. It is a fact
that these two rings are indeed isomorphic; see [30, §VI.4, Theorem 4.1].

Then we have the following:

Proposition 24. Let E/C be an representative of a class of elliptic curves in ELL(OK) for
OK the ring of integers of an imaginary quadratic field K. We have

(1) j(E) ∈ Q.
(2) Let E1, ..., EhK

be a complete set of representatives for ELL(OK). Then j(E1), ..., j(EhK
)

are the Gal(K/K) conjugates for j(E).

Proof. Let σ : C → C be a field automorphism of C. First note that End(Eσ) ' End(E),
simply because if φ : E → E is any endomorphism of E, then φσ : Eσ → Eσ is an
endomorphism of Eσ. Thus End(Eσ) ≈ End(E). In particular, as σ varies, Eσ varies
over only finitely many C-automorphism classes of elliptic curves with endomorphism ring
isomorphic to OK because the action (6.7) is simply transitive and the class group is finite.

Now Eσ is obtained from E by letting σ act on the coefficients of the affine equation
defining E. The invariant j(E) is just a rational combination of those coefficients, so we
have

j(Eσ) = j(E)σ.

Since the isomorphism class of an elliptic curve is determined by its j-invariant, and, as
we’ve noted above, there are only finitely many C-isomorphism classes in {Eσ}σ∈Aut(C), it
follows that j(E)σ takes on only finitely many values as σ ranges over Aut(C). Therefore
[Q(j(E)) : Q] is finite, so j(E) is an algebraic number. This completes the proof of (1).

To prove (2), first note that the action of CL(K) on ELL(OK) induces a simply transitive
action Ψ : CL(K) → {j(E1), ..., j(EhK

)} if we identify an isomorphism class of elliptic curves
with its j-invariant. One then defines a surjective homomorphism Φ : Gal(K/K) → CL(K)
such that the canonical action of Gal(K/K) on the set {j(E1), ..., j(EhK

)} is just Ψ ◦ Φ.
See [31, §II.2] for the construction of this homomorphism; the proof of Theorem 4.3, [31,
§II.4] shows that it has the desired property. The fact that (6.7) is simply transitive then
immediately yields the desired result. ¤
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Actually, the j(E) for E as in the previous proposition are integral, which can be proven by
constructing certain polynomials related to n-isogenies of elliptic curves. This proof requires
no more machinery than that which we have already developed (and in fact many of the
ideas behind it will be used in the proof of Theorem 33), but it is rather long, and the reader
would do just as well to read it in [31, §II.6]. We state this fact as a theorem:

Theorem 25. Let E/C be an elliptic curve with complex multiplication. Then j(E) is an
algebraic integer.

We now wish to restate Proposition 24 using the language of Heegner points. Recall that
an integer d 6= 1 is a fundamental discriminant if it is not divisible by the square of any
odd prime and satisfies either d ≡ 1 (mod 4) or d ≡ 8, 12 (mod 16). We prove the following
lemma:

Lemma 26. Let d < 0 be a fundamental discriminant, and K = Q(
√

d). Then there are
precisely hK Heegner points of discriminant d in F.

Proof. Notice that if τ = −b+
√

b2−4ac
2a

∈ F with a, b, c ∈ Z, gcd(a, b, c) = 1, and b2 − 4ac = d,
then ax2 + bxy + cy2 is a primitive positive definite quadratic form of discriminant d. Since
d is fundamental, the number of such forms is precisely |CL(K)| = hK . ¤
We now have the following corollary of Proposition 24:

Corollary 27. Let d < 0 be a fundamental discriminant and τ1, ..., τhK
be the Heegner points

of discriminant d in F. Then j(τi) ∈ Z for all i, and j(τ1), ..., j(τhK
) is a complete set of

Galois conjugates under the action of Gal(K/K).

Proof. First note that the map

F ←→ {lattices L ⊂ C}
homothety

z 7−→ [Lz](6.8)

is a bijection. Suppose τ ∈ F is a Heegner point of discriminant d. Using (6.5), we have that
j(Eτ ) = j(τ), which implies by part (2) of Proposition 23 that Eτ has endomorphism ring
isomorphic to an order in an imaginary quadratic number field. This implies that the same
is true of Lτ . By the proof of Proposition 23, we may take this imaginary quadratic number
field to be K. In fact, End(Lτ ) ∼= OK , the full ring of integers. To see this, we observe that

OK = Z[1+
√

d
2

] if d is odd (resp., OK = Z[
√

d
2

] if d is even), hence one need only check that
1+
√

d
2

· τ ∈ Lτ (resp.,
√

d
2
· τ ∈ Lτ ). We omit this calculation.

With this claim in hand, (6.8) yields an injection

{Heegner points in F of discriminant d} ↪→ {lattices L ⊂ C with End(L) ∼= OK}
homothety

τ 7−→ [Lτ ].(6.9)

The set on the left hand side of (6.9) has cardinality hK by Lemma 26 as does the set on the
right hand side by (6.6) and the fact that the action (6.7) is simply transitive. Thus (6.9) is
a bijection.

We now identify the set on the right of (6.9) with (6.6). Applying Proposition 24 then
yields the corollary. ¤
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We close our discussion of the connection between the j-invariants of CM elliptic curves
over C by noting that the propositions and lemmas we have proven above are really the
elementary preliminaries to a discussion of the class field theory of imaginary quadratic
fields. This is one of two cases in which the class field theory of an extension of Q has been
explicitly worked out (the other is the class field theory of Q itself). It would take us too
far afield to prove the following theorem, but it seems important to state for the reader
the main result in the class field theory of imaginary quadratic extensions of Q, namely a
characterization of the Hilbert class field of such an extension. The connection with the CM
theory of elliptic curves will be evident.

Theorem 28. Let E be an elliptic curve representing an isomorphism class in ELL(OK).
Then K(j(E)) is the maximal unramified abelian extension of K, that is, K(j(E)) is the
Hilbert class field of K.

For a proof of this result, see either [31, §II.4] or [20, §10.1].
It should come as no surprise that in order to apply our discussion of CM to the con-

struction of p-adic modular forms, we will have to understand at some level what happens
when we move from elliptic curves defined over Q to those defined over a field of prime
characteristic greater than or equal to 5. We begin with the notion of good reduction:

Definition. Let K be a number field, and let P ⊂ OK be a prime ideal. An elliptic curve
E/Q : y2 = x3 + ax + b with P-integral coefficients a, b is said to have good reduction

at P if the reduced elliptic curve Ẽ : y2 = x3 + ãx + b̃ is nonsingular. Here ã denotes the
reduction of a in OK/P.

Remark (1). For ease of exposition, we have restricted our definition of good reduction so
as only to include elliptic curves written in Weierstrass form. With this definition, whether
or not an elliptic curve E has good reduction at a particular prime is not an invariant of
the isomorphism class of the curve. For a more general (and natural) discussion of good
reduction, see [30, §VII.5].

Remark (2). Suppose P is a prime ideal above a prime integer p 6∈ {2, 3}. From Proposition
21, we have an easy way to determine whether or not the elliptic curve E/Q : y2 = x3+ax+b
has good reduction at P; this is the case if and only if ordP(−4a3 − 27b2) = 0.

We discussed two algebraic objects attached to an elliptic curve defined in characteristic
zero, namely, its group of N -division points and its endomorphism ring. The corresponding
objects for elliptic curves defined over fields of positive characteristic are a good deal more
subtle; a proper treatment of them would be a thesis in itself. In the remainder of this section
we indicate some of what is true about them as motivation for the concept of supersingularity.

First, suppose E is the reduction of an elliptic curve or an elliptic curve defined over a
field K of prime characteristic p ≥ 5. It is natural to ask for a description of the groups
E[N ]. For N coprime to p, we have the same answer as before, namely

E[N ] ≈ Z/NZ× Z/NZ
(see, for example, Corollary 6.4 of [30, §III.6]). The behavior is quite different at p; we have

E[pe] ≈ {0} for all e ∈ N
or

E[pe] ≈ Z/peZ for all e ∈ N.
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Again, see [30, §III.6]. In the first case, we say that E is supersingular.
The endomorphism rings, which we completely described for elliptic curves over C using

analytic parameterizations, also behave in a much less straightforward manner upon reduc-
tion of the curve. In particular, let K be a number field, and let E/Q have good reduction
at P ⊂ OK . Then one can show that the natural reduction map

End(E) → End(Ẽ)

is injective (see [30, §VII.3] and Proposition 4.4, [31, §II.4]). If E has CM, and this map is not

surjective, then it turns out that End(Ẽ), instead of being an order in a quadratic imaginary
field, is an order in a quaternion algebra (see Corollary 9.4, [30, §III.9 ]). Whether or not E

has CM, the condition that End(Ẽ) is an order in a quaternion algebra is in fact equivalent
to supersingularity of the curve as defined above; sometimes it is said that a supersingular
elliptic curve has “extra” endomorphisms. We write the two definitions of supersingularity
we have encountered as a displayed definition so they are not lost in the text:

Definition. Let K be a number field, P ⊂ OK an prime ideal above p ≥ 3. An elliptic curve
E/Q with good reduction at P is said to be supersingular at P if one of the following
equivalent conditions holds:

(1) E[pe] = 0 for all e > 0.
(2) End(E) is an order in a quaternion algebra.

Remark. In fact, if E[pk] = 0 for some k > 0, then E[pe] = 0 for all e > 0.

For a discussion of the equivalence of these two definitions, see [30, §V.3]. Essentially every-
thing proven therein is derived from the classical results of Deuring in [11].

Recalling that j(E) is an isomorphism invariant of E, and given the central role that
the study of j-invariants plays in CM theory, it should come as no surprise that it enters
the discussion here as well. We note first that if E/Q has good reduction at a prime ideal
P ⊂ OK above p ≥ 5, then j(E) is p-integral. This follows trivially for any curve written in
Weierstrass form by Proposition 21 (and we are restricting our discussion of good reduction
to curves in Weierstrass form). Thus we can make the following:

Definition. Let K be a number field, and suppose E/Q is supersingular at a prime ideal P ⊂
OK above a prime p ≥ 5. Then the reduction of j(E) in Fp is said to be a supersingular
j-invariant over Fp.

Using the dictionary between Heegner points and CM elliptic curves we have developed,
we can state the following theorem, which yields a particularly nice method of deciding
whether or not a CM curve is supersingular at a particular prime:

Theorem 29. Let τ be a Heegner point of discriminant dτ , and Eτ be an elliptic curve with
j-invariant j(τ). Fix a prime p ≥ 5, and suppose that p is inert or ramified in Q(

√
dτ ).

If Eτ has good reduction at p for all primes p above p in Q(j(τ)), then j(τ) reduces to a
supersingular j-invariant in Fp.

See [20, §13.4, p. 182] for a proof of this result.
We are now almost ready to state the theorem which will be the main tool used in the

construction of a family of good forms. We fix the notation

(6.10) Ωp :=
{
jE : jE is a supersingular j-invariant over Fp

}
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and

(6.11) gp := |Ωp|.
Further, define the supersingular locus Sp(x) as

(6.12) Sp(x) =
∏

jE∈Ωp

(x− jE) ∈ Fp[x].

We have swept under the rug the assertion that |Ωp| is finite and Sp(x) ∈ Fp[x]. For proofs
of these assertions, see either [16] or [30, §V.4]. We have the following result of Deligne:

Theorem 30 (Deligne). If p ≥ 5 is prime, then

Sp(x) ≡ F (Ep−1, x) (mod p).

Note that the “F” in Theorem 30 is a divisor polynomial (see §5). An elementary proof
of Theorem 30 using only basic properties of Hasse invariants and complex analysis can be
found in [16].

In this section we have asked the reader to accept many results without proof. An explicit
example could be enlightening:

Example. Consider the elliptic curve E : y2 = x3+x. Using Proposition 21, we calculate that
the discriminant of this curve is −4 and conclude that it has good reduction at any prime
p ≥ 3. We then use Proposition 21 to calculate that the j-invariant is 1728. It is a standard

fact from the theory of modular functions that j maps the arc from e2πi/3 = −1
2

+
√−3

2
to i along the unit disc {z : |z| = 1} bijectively onto the interval [0, 1728]; in particular,
j(i) = 1728. It follows that from Proposition 23 that E has CM with endomorphism ring an
order in K = Q(i).

It is a fact from elementary number theory that a prime p ≥ 5 splits in K if and only
if p ≡ 1 (mod 4). Therefore, by Theorem 29, we should expect that E : y2 = x3 + x is
supersingular when considered as a curve in Fp for primes p ≥ 5 with p ≡ 3 (mod 4). We
prove this in an elementary manner by demonstrating that |E/Fp| = p + 1. This implies
E/Fp has no p-torsion, which is one of our definitions of supersingularity.

Let
( ·
·
)

denote the typical Legendre symbol. We have

(
x3 + x

p

)
=

(
x

p

)(
x2 + 1

p

)
.

Because p ≡ 3 (mod 4),
(
−1
p

)
= −1, so

(
(−x)3 + (−x)

p

)
=

(−x

p

)(
(−x)2 + 1

p

)
=

(−1

p

)(
x

p

)(
x2 + 1

p

)
= −

(
x

p

)(
x2 + 1

p

)
.

By pairing x and −x for x ∈ F∗p, we can conclude that exactly half the p− 1 elements x ∈ F∗p
have the property that x3 +x is a quadratic residue. Each such x yields two solutions to the
equation y2 = x3 + x over F∗p, corresponding to ±y. Adding in the point (x, y) = (0, 0) and
the point at infinity, we have |E/Fp| = p + 1.
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7. Good forms

As promised, in this section we now provide several families of good forms. Before we
begin, however, we recall the following congruences involving singular moduli:

Proposition 31 (Gross and Zagier). Let p < 12 be a prime and τ be a Heegner point of

discriminant d < −4. If
(

d
p

)
= −1 we have

j(τ) ≡ 0 (mod 215) if p = 2

j(τ) ≡ 123 (mod 36) if p = 3

j(τ) ≡ 0 (mod 53) if p = 5

j(τ) ≡ 123 (mod 72) if p = 7.

Proof. If p 6= 2, then this proposition follows from elementary manipulations of elliptic curves
and Theorem 29. The case p = 2 is more complicated. For a proof, see [14, Corollary 2.5]. ¤

We can now state and prove the following:

Theorem 32. Let K be a number field and OK be its ring of integers. Suppose that f(z) =
qh

∏∞
n=1(1 − qn)c(n) ∈ Mmero

k (Γ0(p)) ∩ qhOK [[q]] has poles and zeros at the Heegner points
τ1, ..., τs ∈ F, all of fixed discriminant d < −4. Then the following are true:

(1) If p ≥ 5 is a prime for which
(

d
p

)
∈ {0,−1} and

s∏
i=1

j(τi)(j(τi)− 1728) 6≡ 0 (mod p)

then f is good at p.

(2) If p ∈ {2, 3, 5, 7} and
(

d
p

)
= −1 then f is good at p.

Remark (1). The work of Gross and Zagier on differences of singular moduli [14] provides a
simple description of those primes p which do not satisfy the congruence condition given in
part (1) of Theorem 32.

Remark (2). In [8], Bruinier and Ono provide several additional families of good modular
forms. The proof that these forms are good requires the classical work of Deuring on singular
moduli (see [11]) as well as further results from [14], but the method of proof is essentially
the same.

Remark (3). The proof of (2) was given by Ono and Papanikolas in [25].

Proof. By the definition of good, we must produce a holomorphic modular form Ef on Γ with
algebraic p-integral coefficients for which Ef (τi) = 0 for 1 ≤ i ≤ s that additionally satisfies
the congruence

Ef (z) ≡ 1 (mod p).

We first prove (1). For each 1 ≤ i ≤ s let Ai be the curve

(7.1) Ai : y2 = x3 − 108j(τi)(j(τi)− 1728)x− 432j(τi)(j(τi)− 1728)2.
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This curve is defined over the number field Q(j(τi)). Let p be a prime ideal of OQ(j(τi)) lying
above a prime p ≥ 5. By assumption,

j(τi)(j(τi)− 1728) 6≡ 0 (mod p).

We check that the discriminant of the cubic defining Ai is nonzero modulo p. Applying
Proposition 21 and the definition of good reduction, this will simultaneously show us that
Ai is an elliptic curve (i.e. it is nonsingular) and that it has good reduction at p. The
discriminant of the cubic defining Ai is

−4(−108j(τi)(j(τi)− 1728))3 − 27(−432j(τi)(j(τi)− 1728)2)2

= 214312j(τi)
2(j(τi)− 1728)3(7.2)

By assumption, j(τi)(j(τi) − 1728) 6≡ 0 (mod p), so (7.2) is nonzero modulo p; in other
words, Ai is an elliptic curve that has good reduction at p.

Using Proposition 21 and (7.2) (the discriminant of the cubic defining Ai), we compute
that

j(Ai) = 1728
4(−108j(τi)(j(τi)− 1728))3

−214312j(τi)2(j(τi)− 1728)3
= j(τi).

Thus we have a CM curve Ai with good reduction at p for all primes p ⊂ OQ(j(τi)) above an

integer prime p ≥ 5. The condition
(

d
p

)
∈ {0,−1} implies that p does not split in Q(

√
d),

ergo, applying Theorem 29, we have that j(τi) reduces to a supersingular j-invariant in Fp.
Since j(τi) is supersingular, Theorem 30 implies that there exists some Qi ∈ F such that

Ep−1(Qi) = 0 and j(Qi) ≡ j(τi) (mod p), which implies

(j(z)− j(Qi)) ≡ (j(z)− j(τi)) (mod p).

Recalling from Lemma 10 that Ep−1(z) ≡ 1 (mod p), we may take

Ef (z) :=
s∏

i=1

(
Ep−1(z)

j(z)− j(τi)

j(z)− j(Qi)

)
.

For (2), we claim that we may take

Ef (z) =
s∏

i=1

∆(z)(j(z)− j(τi)) ∈ M12s(Γ)

Because j(τi) is an algebraic integer, the weight 12s holomorphic modular form Ef has
coefficients in the ring of integers of some fixed number field K. It is evident that Ef (τi) = 0
for all 1 ≤ i ≤ s. In view of the fact that

∆(z) =
E4(z)3

j(z)
=

E6(z)2

j(z)− 1728

the congruences in Lemma 11 and Proposition 31 yield the desired result. ¤
With the machinery we have now developed, it is straightforward to prove Corollary 5:

Proof of Corollary 5. Let τ1(:= τ), τ2, ..., τhQ(
√

d)
∈ F be the Heegner points of discriminant d

(see Lemma 26). Define

fd(z) :=

hQ(
√

d)∏
s=1

(j(z)− j(τs)).
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Our assumptions on d guarantee, via part (2) of Theorem 32, that fd is good at p for all
relevant pairs of p and d. Therefore,

Θfd(z)

fd(z)

is a weight two p-adic modular form by Theorem 3. On the other hand, applying Theorem
2, we have

Θfd(z)

fd(z)
= −E4(z)2E6(z)

∆(z)

∑

τ∈F

eτ ordτ (fd)

j(z)− j(τ)

which, by Corollary 7, yields

Θfd(z)

fd(z)
= −

hQ(
√

d)∑
s=1

( ∞∑
n=0

jn(τs)q
n

)
= −hQ(

√
d) −

∞∑
n=1




hQ(
√

d)∑
s=1

jn(τs)


 qn.

Recall that from (2.7) that j1(z) := j(z) − 744, and jm(z) := mj1(z)|T0,m. From (1.8) (the
definition of T0,m) we have the first of the two following equalities:

hQ(
√

d)∑
s=1

jpm(τs) =

hQ(
√

d)∑
s=1

(
m∑

a=0

pa−1∑

b=0

(
j

(
pm−aτs + b

pa

)
− 744

))

= −744hQ(
√

d)(1− pm+1)

1− p
+ TrK/Q

(
m∑

a=0

pa−1∑

b=0

j

(
pm−aτ1 + b

pa

))
.(7.3)

The second equality follows from Corollary 24 and the observation that jm(τ) is a polynomial
in j(τ) with integer coefficients.

The computation in (7.3), when restricted to m = pn, gives us the pnth coefficient of
the p-adic modular form Θfd(z)/fd(z). The constant term of this p-adic modular form is
precisely −hQ(

√
d), so, by Corollary 15, we have

−hQ(
√

d) =
p− 1

24
· lim

n→∞

(
−744hQ(

√
d)(1− pn+1)

1− p
+ TrK/Q

(
n∑

a=0

pa−1∑

b=0

j

(
pn−aτ1 + b

pa

)))

as p-adic numbers. Simplifying this expression yields the corollary. ¤
Recall the weight zero modular forms j(p)(z) ∈ M∞

0 (Γ0(p)) introduced in §2. We now
provide formulae involving j(p)(z) similar to those in Corollary 5:

Theorem 33. Suppose that d < −4 is a fundamental discriminant of an imaginary quadratic
field and that τ is a Heegner point of discriminant d. Then the following are true

(1) Let K = Q(j(3)(τ), j(τ)). If d ≡ 2 (mod 3), then

lim
n→∞

(
TrK/Q

(
n∑

a=0

3a−1∑

b=0

j(3)

(
3n−aτ + b

3a

)))
= 0

3-adically.
(2) Let K = Q(j5(τ), j(τ)). If d ≡ 2, 3 (mod 5), then

lim
n→∞

(
TrK/Q

(
n∑

a=0

5a−1∑

b=0

j(5)

(
5n−aτ + b

5a

)))
= 0



36 JAYCE GETZ SENIOR THESIS

5-adically.
(3) Let K = Q(j(7)(τ), j(τ)). If d ≡ 3, 5, 6 (mod 7), then

lim
n→∞

(
TrK/Q

(
n∑

a=0

7a−1∑

b=0

j(7)

(
7n−aτ + b

7a

)))
= 0

7-adically.

We will see in the course of the proof of Theorem 33 that j(p)(τ) is an algebraic integer of
degree (p + 1) · hQ(

√
d) for p and τ as in the statement of the theorem. Before we begin the

main body of the proof, we require the following lemma:

Lemma 34. Suppose p ∈ {3, 5, 7, 13} and 0 ≤ n ≤ p. Let γ1, ..., γp+1 be a complete set of
coset representatives for Γ0(p) in Γ, and further let sn,p(z) be the nth symmetric polynomial

in {j(p)(γi · z)}p+1
i=1 . Then the q-series expansion of sn,p(z) has integer coefficients, that is,

sn,p(z) ∈ q−nZ[[q]].

Proof. As we recalled in Lemma 17, a complete set of coset representatives for Γ0(p) in Γ is
given by {(

1 0
0 1

)}
∪

{(
1 0
1 1

)(
1 j
0 1

)}p−1

j=0

and we have (
1 0
1 1

)(
1 j
0 1

)
=

(
1/p 0
0 1/p

)(
p a
p pb

)(
1 j − a
0 p

)

where (
p a
p pb

)

is a matrix for W (p).
Now fix n and p for the remainder of this proof. Let P (x1, ..., xp+1) ∈ Z[x1, ..., xp+1] be

the homogeneous polynomial such that sn,p(z) = P (j(p)(γ1 · z), ..., j(p)(γp+1 · z)). From the
calculation above and the definition of W (p), we have

sn,p(z) = P
(
j(p)(z), j(p)(z)|0W (p)

(
1 0
0 p

)
, ..., j(p)(z)|0W (p)

(
1 p−1
0 p

))
(7.4)

= P
(
j(p)(z), j(p)(z)|0

(
0 −1
p 0

) (
1 0
0 p

)
, ..., j(p)(z)|0

(
0 −1
p 0

) (
1 p−1
0 p

))
.

Recall that j(p)(z) =
(

η(z)
η(pz)

) 24
p−1

by definition, and η(−1/z) = (
√

z/i)η(z) (see, for example,

[18, §III.2, p. 121]). Thus

j(p)(z)|0
(

0 −1
p 0

)
=

(
η(−1/pz)

η(−1/z)

) 24
p−1

=

(
(
√

pz/i)η(pz)

(
√

z/i)η(z)

) 24
p−1

= p
12

p−1

(
η(pz)

η(z)

) 24
p−1

= p
12

p−1

(
qp/24

∏∞
n=1(1− qpn)

q1/24
∏∞

n=1(1− qn)

) 24
p−1

=:
∞∑

n=−1

a(n)qn ∈ q−1Z[[q]].
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For ease of notation, following [31, §II.6] we define ζ := e2πi/p and Q := q1/p = e2πiz/p.
Then we have

q|0
(

1 j
0 p

)
= e2πi z+j

p = ζjQ,

which implies that ( ∞∑
n=−1

a(n)qn

)
|0

(
1 j
0 p

)
=

∞∑
n=−1

a(n)ζjnQn.

Thus each of the arguments of P in (7.4) is a Q-series with coefficients in Z[ζ]. Let σ ∈
Gal(Q(ζ)/Q), and write ζσ = ζr(σ) for some 1 ≤ r(σ) ≤ p − 1. Letting σ act on Q-series
coefficients we note that(( ∞∑

n=−1

a(n)qn

)
|0

(
1 j
0 p

)
)σ

=
∞∑

n=−1

a(n)ζr(σ)jnQn.

Thus, comparing Q-series coefficients, we have
(( ∞∑

n=−1

a(n)qn

)
|0

(
1 j
0 p

)
)σ

=

( ∞∑
n=−1

a(n)qn

)
|0

(
1 r(σ)j
0 p

)
.

Because the value of f |0
(

1 j
0 p

)
depends only on the residue class of j modulo p for f ∈

M∞
0 (Γ0(p)), this calculation, along with the fact that j(p)(z)|0

(
0 −1
p 0

) ∈ q−1Z[[q]], implies
that

P
(
j(p)(z), j(p)(z)|0W (p)

(
1 0
0 p

)
, ..., j(p)(z)|0W (p)

(
1 p−1
0 p

))

= P
(
(j(p)(z))σ, (j(p)(z)|0W (p)

(
1 0
0 p

)
)σ, ..., (j(p)(z)|0W (p)

(
1 p−1
0 p

)
)σ

)

for all σ ∈ Gal(Q(ζ)/Q). Recalling that P has coefficients in Z, this implies that sn,p(z) has

Q-series coefficients in Z. Because the action of Γ just permutes the set {j(p)(γi · z)}p+1
i=1 , it

follows that sn,p(z) ∈ M∞
0 (Γ). Thus, in particular, if p - n, the Q series coefficient of Qn is

zero. This completes the proof of the lemma. ¤

Proof of Theorem 33. First note that there are precisely

[Γ0(1) : Γ0(p)] · hQ(
√

d) = (p + 1) · hQ(
√

d)

Heegner points τ1(:= τ), τ2, ..., τhQ(
√

d)(p+1) of discriminant d in Fp because there are hQ(
√

d)

Heegner points of discriminant d in F. Without loss of generality, we may assume τ1, ..., τhQ(
√

d)
∈

F. With this in mind we form the product

fd(z) :=

(p+1)·hQ(
√

d)∏

k=1

(j(p)(z)− j(p)(τk))(7.5)

By our assumptions regarding d, it is evident that fd(z) satisfies all the hypotheses of The-
orem 32, with the possible exception of the hypothesis that

fd(z) ∈ q−(p+1)·hQ(
√

d)OL[[q]](7.6)

for some number field L. We claim that this hypothesis is also satisfied (in particular, we
will see that we can take L = Q).
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Let γ1, ..., γp+1 be a complete set of coset representatives for Γ0(p) in Γ0(1) as in Lemma
34 (without loss of generality we assume γ1 = ( 1 0

0 1 )). We have

fd(z) :=

hQ(
√

d)∏

k=1

p+1∏
i=1

(j(p)(z)− j(p)(γi · τk)).(7.7)

Consider

gd,k(z) :=

p+1∏
i=1

(j(p)(z)− j(p)(γi · τk)) ∈M∞
0 (Γ0(1)).(7.8)

Let sn,p(z) be as in Lemma 34. As noted in the proof of Lemma 34, sn,p(z) ∈ M∞
0 (Γ0(1)).

Hence sn,p(z) is a polynomial in j(z), that is, it can be regarded as an element of C[j(z)].
The q-series expansion of sn,p(z) has integral coefficients by Lemma 34, from which it follows
that

sn,p(z) ∈ Z[j(z)].(7.9)

Thus sn,p(τk) ∈ Z[j(τk)]. Theorem 25 tells us that j(τk) is an algebraic integer. Thus, since

gd,k(z) ∈ q−(p+1)OQ(j(τk))[[q]],

we have that fd(z) has a q-expansion with algebraic integer coefficients. If we now apply
Corollary 27 we have that fd(z) has a q-series with integral coefficients, which establishes
(7.6) with L = Q as claimed. In particular, this proves that fd(z) is a good modular form.
We will return to this point in a moment.

Write gd,k(z) = Gd,k(j
(p)(z)) with Gd,k(x) ∈ OQ(j(τk))[x]. We now show that Gd,k(x) is

irreducible over Q(j(τk)). The roots of Gd,k(x) are j(p)(γ1 · τk), ..., j
(p)(γp+1 · τk); they are

distinct because
j(p)(z) : Fp → C

is a bijection. Therefore, it suffices to exhibit a field automorphism of

K := Q(j(τk), j
(p)(γ1 · τk), ..., j

(p)(γp+1 · τk))

taking j(p)(γ1 · τk) to j(p)(γi · τk) for arbitrary i that additionally fixes Q(j(τk)). Choose
β ∈ Γ0(1) such that βγ1 = γi. Then one can check that the linear map φi : K → K defined
on a basis for K as a vector space over Q by

φi(1) := 1

φi(j(τk)) := j(β · τk) = j(τk)

φi(j
(p)(γs · τk)) := j(p)((βγs) · τk) 1 ≤ s ≤ p + 1

induces a well-defined field automorphism with the desired characteristics.

Now we return to fd(z). From above, fd(z) is good, so Θfd(z)
fd(z)

is a p-adic modular form.

Applying Theorem 9 we have

Θfd(z)

fd(z)
= −

∑

τ∈Fp

(
e(p)

τ

∞∑
n=1

j(p)
n (τ)qn

)
+

(p + 1) · hQ(
√

d)

p− 1
(pE2(z)|V (p)− E2(z))

= −
∞∑

n=1




hQ(
√

d)∑

k=1

p+1∑
i=1

j(p)
n (γi · τk)


 qn +

(p + 1) · hQ(
√

d)

p− 1
(pE2(z)|V (p)− E2(z)).(7.10)
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Recall from the discussion before the statement of Theorem 9 that j
(p)
m (z) is a polynomial in

j(p)(z) with integer coefficients for all positive m. Combining this observation with the fact
that j(p)(γi · τk) is a root of the irreducible polynomial Gd,k(x) ∈ OQ(j(τk))[x], we have

p+1∑
i=1

j(p)
m (γi · τk) = TrK/Q(j(τk)) j(p)

m (γ1 · τk) = TrK/Q(j(τk)) j(p)
m (τk)

(recall our convention that γ1 = ( 1 0
0 1 )). Because {j(τk)}

hQ(
√

d)

k=0 is the set of Galois conjugates
of j(τ), we have

hQ(
√

d)∑

k=1

TrK/Q(j(τk)) j(p)
m (τk) = TrQ(j(τk))/Q

(
TrK/Q(j(τk)) j(p)

m (τk)
)

= TrK/Q j(p)
m (τ).

On the other hand, the pnth coefficient of
(p+1)·hQ(

√
d)

p−1
(pE2(z)|V (p)− E2(z)) is equal to

(p + 1) · hQ(
√

d)

p− 1
(−24(pσ1(p

n−1)− σ1(p
n))) =

24(p + 1) · hQ(
√

d)

p− 1
.

Note that the constant term of Θ(fd(z)
fd(z)

is (p+1) ·hQ(
√

d). In view of (7.10) and the calculations

above, we apply Corollary 15 to conclude that

(p + 1) · hQ(
√

d) =
p− 1

24
· lim

n→∞

(
TrK/Q j

(p)
pn (τ) +

24(p + 1) · hQ(
√

d)

p− 1

)

= (p + 1) · hQ(
√

d) +
p− 1

24
· lim

n→∞

(
TrK/Q

(
n∑

a=0

pa−1∑

b=0

j(p)

(
pn−aτ + b

pa

)))
.

p-adically. Rewriting this expression completes the proof of the theorem. ¤
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