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1 Introduction

Let Sk(N, ε) be the space of cusp forms of weight k, level N and character ε, where k and
N are integers ≥ 1, and ε is a Dirichlet character N . There are several ways to construct
a basis. For example one can use Selberg’s trace formula. Denote by Tr(n) the trace of Tn,
the n-th Hecke operator. The function

f =
∞∑
n=1

Tr(n)qn

is in Sk(N, ε). The set of fi = Tif generate this space, and this theoretically allows us to
construct a basis. For example, if N is prime, ε = 1 and k = 2, then the set of the fi
(1 ≤ i ≤ g where g is the genus of X0(N)) is a basis of S2(N, 1).

But, even in that case, which is the most favorable, the computations become hard: on
an average computer we can only hope to treat N of the size of 5000 (always with N prime,
weight 2 and trivial character); actually, the computation of Tr(n) requires the knowledge
of many class numbers of imaginary quadratic fields of discriminant of order at most n and
to obtain a basis f1, f2, . . . , fg one needs to compute Tr(n) for n ≤ g2.

In the following section we describe the “method of graphs”, which relies on the results
of Deuring and Eichler, and developed by J. Oestrlé and myself, which allows us to obtain a
basis for S2(N, 1) more quickly (at least when N is a prime).

In the second section, we indicate how this method allows us to prove that certain elliptic
curves defined over Q are Weil curves1 (which, by providing an adequate Weil curve, yields
all the imaginary quadratic fields of class number at most 3, due to a result of Goldfeld and
recent works of Gross and Zagier).

The third section is dedicated to the verification of a conjecture of Serre in certain
particular cases; this is possible because of the method described in the first section. It
is known that this conjecture, if it is true, has numerous consequences (e.g., the Shimura-
Taniyama-Weil conjecture, and thus Fermat’s Last Theorem).

1It is now a theorem that every elliptic curve is a Weil curve, i.e., the Shimura-Taniyama-Weil conjecture
is true. – William Stein
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2 The method of graphs

2.1 Definitions and notations

In the following p is a prime number and N1 is a positive integer coprime to p. Set N = pN1.
Let

MN = ⊕SZ[S]

where S is taken over all supersingular points of X0(N1) in characteristic p, i.e., over the set
of isomorphism classes of pairs (E,C) consisting of an elliptic curve E defined over Fp and
a cyclic group C of E of order N1. Two such pairs are identified if they are, in the obvious
sense, Fp-isomorphic.

Let

αS =
|Aut(S)|

2
,

where Aut(S) is the group of Fp-automorphisms of S. We always have αS ≤ 12, and if p
does not divide 6 then αS ≤ 3.

Therefore we can define a scalar product on MN by 〈S, S〉 = αS and 〈S, S ′〉 = 0 if S 6= S ′.
Let Eis =

∑
α−1
S [S] and let

M0
N =

{∑
xS[S] :

∑
xS = 0

}
be the subspace orthogonal to Eis.

For all integers n ≥ 1 coprime with p we define an operator Tn on M by

Tn(E,C) =
∑
Cn

(E/Cn, (C + Cn)/Cn)

where Cn runs over all the cyclic subgroups of order n such that C ∩ Cn = 0.
For all q | N1 and coprime with q′ = N1/q, we define the same way the Atkin-Lehner

involutions Wq by
Wq(E,C) = (E/q′C, (Eq + C)/q′C),

where Eq is the group of points of order dividing q of E.
Finally we define an involution Wp by Wp = −Frobp, where Frobp is the endomorphism

of MN that transforms (E,C) to (Ep, Cp). (The fact that it is an involution reflects that the
supersingular points are defined over Fp2 .)

These operators have the following properties: the set of Wq and Tn (n coprime with
N) generate an abelian semigroup of hermitian operators with respect to the scalar product
〈·, ·〉. The Tn commute with each other for all n coprime to p. If q = q1q2 (q1, q2 coprime) and
if n = n1n2 (n1, n2 coprime with each other and with p) then Wq = Wq1Wq2 and Tn = Tn1Tn2 .

For all d | N1 we have a homomorphism φd : MN −→ MN/d that transforms (E,C) to
(E, dC). This homomorphism commutes with Tn (n coprime with N), and with Wq (for
q | N/d). For d | N1 and coprime with N1/d we have

Tdφd = φd(Td +Wd)
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2.2 An isomorphism with S2(N)

We consider here the space S2(N) of cusp forms of weight 2 over Γ0(N), with its natural
structure of T-module, where T is the Hecke algebra [1].

Theorem 2.1. There exists an isomorphism compatible with the action of the Hecke opera-
tors, between M0

N ⊗C and the subspace of S2(N) generated by the newforms of level N and
oldforms coming from the cusp forms of weight 2 and level pd, d | N1.

Remark 2.2. Assume N (or without loss N1) is square-free. We can determine efficiently
the subspace M0

N corresponding to newforms in S2(N); it is the subspace formed by all x so
that for all divisors d of N1 we have

φd(x) = φd(Wd(x)) = 0.

In particular if N = pq, q prime, it is the subspace of Mpq intersection of the kernel of φq
and of φqWq.

2.3 Relation to the quaternion algebra

The matrices of the operators Tn acting on MN are the same as the classical Brandt matrices
[15], constructed using quaternion algebras.

Let Bp,∞ be the quaternion algebra over Q ramified exactly at p and infinity, and let O
is an Eichler order of level N1 (defined by Eichler [6] in the case when N1 is square-free,
and defined in general by Pizer [14]), and let I1, I2, . . . , Ih be representatives of the left ideal
classes of O.

Let Oi be the right order (i.e., right normalizers) of the ideals Ii, and ei be the number

of units of Oi. The Brandt matrix B(n) = (b
(n)
i,j ) has i, j entry

b
(n)
i,j = e−1

j · |{α : α ∈ I−1
j Ii, Nor(α) Nor(Ij)/Nor(Ii) = n}|

where Nor is the norm over Bp,∞ (the norm of an ideal being the gcd of the norms of its
nonzero elements).

In the language of supersingular curves of characteristic p, we may give these matrices
(actually their transposes) the following interpretation:

Let S be a supersingular point as in I.1, i.e., a supersingular elliptic curve E defined over
Fp together with a cyclic group C of order N1. The ring of endomorphisms O1 of S is an
Eichler order of level N1. To all the other supersingular points S ′ = (E ′, C ′) we associate
the set IS,S′ of homomorphisms from S to S ′, i.e. the set of all homomorphisms α from
E to E ′ that send C to C ′. This is obviously a left ideal over O1, and its inverse ideal is
IS′,S. We can prove that all the right ideals of O1 are obtained in this way, and the whole
Eichler order of level N1 if the rign of endomorphisms of a supersingular point S. It is clear
that the general term B

(n)
i,j of the n-th Brandt matrix is the number of isogenies of Si to Sj

(the supersingular points being conveniently indexed,) two such isogenies being identified is
different by an automorphism of Sj. We can retrieve the matrix of the operator Tn acting
over Mn.
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On the other hand if for all pairs of supersingular points (S, S ′) we associate the function

θS,S′(q) =
∑
α

qdegα

where α goes through all the homomorphisms of S to S ′, we retrieve the functions θ classically
associated with the ideals of the orders of the quaternions, or, if one prefers, associated with
the positive integer quadratic forms in 4 variables.

It is therefore easy to prove that if
∑
xS[S] is an elements of MN ⊗C eigenvector of all

the Hecke operators and if f(q) is the corresponding modular form, we have, for all S ′

xS′f(q) =
∑
S

xSθS,S′

which allows, in theory, to find the coefficients an of f , using the xS. In practice, unfortu-
nately, the computation of an demands the knowledge of all the isogenies of degree n to S ′,
and there doesn’t seem to be a simple algorithm for that.

Nevertheless, in certain cases, there exists a different method to calculate the coefficients
of f , which is easy as far as computation is concerned. Suppose that N is a prime (thus
equal to p), or N is a product of primes pq and X0(q) is of genus 0 (thus q = 2, 3, 5, 7 or 13).

In the appendix, we give for each such case an equation of X0(q) of the form xy = pk,
thus the action of the Hecke operators T2 and T3 over X0(q), which is given by an equation
much simpler than the equation of modular polynomials Φ2(j, j

′),Φ3(j, j
′) (which give the

action of T2, T3 on X0(1), parametrized by the modular invariant j; cf. section 2.4).
Let u = x if N = pq and u = j if N = p. The Fourier expansion of u at infinity is

1/q + · · · . Let f(q) =
∑
anq

n a normalized newform of level N and weight 2 corresponding
to a vector

∑
xS[S] of M0

N⊗K, where K is the extension of Q generated by the an. Therefore
there exists a prime ideal ℘ of K over p so that(∑

xS · u(S)
)
f(q)

dq

q
≡
∑

xS
du

u− u(S)
(mod ℘). (1)

(it is about the congruence between Laurent series in q).
Suppose for example that f corresponds to a Weil curve of conductor N , so that an are

in Z. The xS are in Z and one can prove that
∑
xSu(S) 6= 0. Thus we know anmod p for

all n. Hasse’s inequality |al| < 2
√
l for l prime proves that we know the an for n < p2/16.

2.4 Explicit construction of the net MN

In this section we suppose that N is odd. Suppose that given an explicit model of the curve
X0(N1), and so the action of the Hecke operator T2 on that model (cf. Appedix).

First we need to find a supersingular points. Note that they are defined over Fp2 . For
example suppose that N = p. First we check to see if p is inert in one of the 9 imaginary
quadratic fields of class number 1. If yes, then one can take for the initial value of j the
modular invariant of the curve of complex multiplication by the ring of integers of corre-
sponding fields. If not, one can know a list of minimal polynomials of modular invariants of
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elliptic curves of complex multiplication by imaginary quadratic fields of small class num-
bers, and apply the same method. One needs here to solve over Fp2 a polynomial equation,
which can be done in log p operations – at least probabilistically. Finally suppose that all
these attempts fail. There remains the possibility to enumerate all the values of Fp until
finding a supersingular value. We know there must exist a supersingular j-invariant in Fp,
but unfortunately only a very small number—on the order of the size of the class group of
Q(
√
−p), or approximately

√
p.

So assume we know a supersingular point S1. Knowing the action of T2 on the model
given by X0(N) allows us to obtain the three supersingular points S2, S3, S4 (not necessarily
distinct) related to S1 by a 2-isogeny. It comes down to solving a degree 3 polynomial over
Fp2 , which needs extracting cubic and square roots, operations that need O(log p) operations.
Sometimes we may as well exlude this computation. Suppose that n = p and that we have,
say p ≡ 2(mod 3). Thus p is inert in Q(

√
−3), so j = 0 is a supersingular value, and we

know that the three isogenies of degree 2 send the curve of the invariant to the curve of
complex multiplication by Z[

√
−3], for which the invariant is j = 54000.

In any case, we have at most one time when we need to solve a 3rd degree equation: once
S2 is known, we search from Si (i ≥ 2) the three supersingular points which are related, but
we already know one, so we only need to solve a second degree equation, which comes down
to square roots over Fp2 which is fast (probabilistic methods require O(log p) operations using
an algorithm that is very simple to implement).

To prove that we can find, step by step, all the supersingular points of MN it is enough to
prove that the graph of T2 (and more generally of Tn) is connected. But, as Serre remarked,
the eigenvalue a2 = 3 of T2 over MN has multiplicity equal to the number of connected
components of the graph of T2. But in MN , the space M0

N corresponding to the cusp forms
of codimension 1, so 3 is a simple eigenvalue in MN (because for a cusp form we have
|a2| < 2

√
2), so the graph of T2 is connected.

In conclusion, an algorithm in O(N logN) operations gives all the supersingular points
and the Brandt matrix B2 associated to them. One of the advantages of this matrix is that
it is very sparse; on each line and column there are at most 3 nonzero terms, which are
integers whose sum is 3. This allows, given an eigenvalue, to find very quickly, if N is large,
the corresponding eigenvectors.

2.5 Examples

1. Take for example N = p = 37. Since 37 is inert in Q(
√
−2), one can take as the first

vertex of our graph the curve E1 of complex multiplications by Z[
√
−2], for which the

modular invariant is j1 = 8000 ≡ 8mod 37. We need to find now all the invariants of
curves 2-isogenous to this, i.e., to solve the equation Φ2(x, 8000) ≡ 0(mod 37). But√
−2 is an endomorphism of degree 2 of E1, so j1 is a root (over Q) of the polynomial

Φ2(x, 8000). Dividing this polynomial by x− 8000 we get a second degree polynomials
with roots j2, j3, the invariants of the other two curves, E2, E3 related to E1 by a degree
2 isogeny. Let ω ∈ Fp2 so that ω2 = −2. One gets that then j2 = 3+14ω, j3 = 3−14ω.

Another method to find j2, j3 consists in remarking that 37 is equally inert in the field
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K = Q(
√
−15), for which the class number is 2. The second degree polynomial giving

the values of the modular invariants of 2 curves of complex multiplication by the ring
of integers of K is x2 + 191025x− 121287375, whose roots generate Q(

√
5), so modulo

37 are conjugate in F372 . We can thus find j2, j3.

For N prime congruent to 1 mod 12, the number of supersingular curves mod N is
(N − 1)/12. For N = 37 we get 3 supersingular curves. It remains to show that the
action of T2 on E2 (by conjugations we get the action on E3). It is not possible to have
2 isogenies of E2 on E1, because then we would have 5 isogenies of degree 2 starting
in E1. Therefore there is one 2-isogeny of E2 over E2.

Actually, if there is a 2-isogeny of an elliptic curve of invariant j on itself, this invariant
is the root of the equation Φ2(x, x) = 0, a fourth degree equation that can be written
as

(x− 1728)(x− 8000)(x+ 3375)2

. (To see this, one can make the computation of the equation of Φ2(j, j
′) above. One

can also search which are the curves of complex multiplication that admit a degree 2
endomorphism, i.e., which are the imaginary quadratic fields that contains an element
of norm 2. One finds, by multiplication by the units of the (“corps pres?”) the elements

1 + i,
√
−2, 1+

√
−7

2
and 1−

√
−7

2
that are the endomorphisms of degree 2 of the curves of

invariant j = 1728, j = 8000 and for the last two, j = −3375.)

By order, mod p, the graph of T2 cannot contain a loop of a supersingular curve on
itself – although this curve is defined over Fp (and, more precisely, it is one of 3 curves
described above). Therefore, there are 2 isogenies relating E2 to E3 and the graph of
T2 acting on M37 is completely determined.

To compute the corresponding eigenvectors, one can evidently diagonalize the matrix
(3, 3) of T2 but there is a simpler method:

the involution W37 = −Frob37 separates M37 in an obvious way into two orthogonal
proper subspaces, one generated by u1 = [E2]− [E3], associated with the eigenvalue 1,
and the other associated with the eigenvalue -1, generates by Eis = [E1] + [E2] + [E3]
and the vector product of u1 and Eis, let it be u2 = 2[E1] − [E2] − [E3]. One can
deduce, without recourse to T2, that there exist 2 newforms for which the q-expansion
has rational coefficient, and thus that J0(37), the jacobian of X0(37) is isogenous to
the product of 2 elliptic curves (which is well-known, see for example [9]). Formula (1)
above allows us to obtain the first 83 terms of their function L.

2. p− 37, N = 2 · 37.

To study X0(74) one uses the homomorphism φ2 of M74 to M37 defined previously.
The fibres of reach of the three supersingular points [E1], [E2] and [E3] of X0(1)mod 37
are formed by three distinct supersingular points of X0(2)mod 2. In a general way,
write that if S1, S2, . . . , Sk are the supersingular points of X0(qM)mod p above a su-
persingular point S of X0(M)mod p (p, q coprime and coprime with M), one has the
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formula
q + 1

AutS
=

k∑
1

1

AutSi
.

The equation of X0(2) used here is that described in the appendix: uv = 212, the
involution W2 switching u and v. Recall that W37 = −Frob37 and that j = (u+16)3/u
(where j is the invariant of the curve E, image of the point (E,C) of X0(2) via the
homomorphism “oubli – oblivion?” of X0(2) on X0(1).) From the equation j =
j1 = 8 one gets the values of the three supersingular points of E1, of coordinates
u1 = (−1 + ω)/2, u2 = (−1 − ω)/2 = W2(u1) and u3 = 27 = W2(u2). (Here again,
it is possible to guess the value of u3, because it is clear by the action of T (2) on
X0(1)mod 37 done previously that one of the above E1 must be invariant relative to
W2; or the two solutions of u2 = 212 are u1,−u1. Replacing them in the equation that
gives j one can see that it is about u1. To get u2, u3 it is enough to solve a second
degree equation.)

One can compute that u4 = W2(u1) = 212/u1 = −5 − 5ω, and one finds that the
corresponding invariant j(u4) is j2 = 3 + 14ω. One solves the second degree equation
given 2 other points above by j2 and so u5 = 15 + 17ω, u6 = 16 − 12ω. Note that
u7 = W2(u2) = ū4, u8 = W2(u5) = ū5 and u9 = W2(u6) = ū6 the x-coordinates of three
supersingular points over E3 (x −→ x̄ being the nontrivial automorphism of Fp2 .) We
get the list of all supersingular points of X0(2)mod 37.

As said above, the space Mnew
74 corresponding to the newforms is the intersection of the

kernel of φ2 and the kernel of φ2W2. If we write [ui], i = 1, . . . , 9) the generators of M74

corresponding to the supersingular points of x-coordinate ui, an examination of the
action of W37 and W2 prove that Mnew

74 is the direct sum of two 2-dimensional subspaces,
one G1, generated by e1 = [u1]− [u2]− [u4]+ [u7]− [u9] and e2 = [u5]− [u6]− [u8]+ [u9],
on which W37 = −W2 = 1 and the other, G2, generated by e3 = [u1] + [u2] − 2[u3] +
[u4]− [u6] + [u7]− [u9], on which W2 = −W37 = 1.

Using the equation of T3 acting on X0(2) (cf. appendix), one can prove that the ma-
trix of T3 acting on G1 (respectively G2) in the basis (e1, e2) (respectively (e3, e4)) is(
−1 1
1 0

)
, of characteristic polynomial x2 + x− 1 (respectively

(
3 1
1 0

)
, of charac-

teristic polynomial x2 − 3x− 1).

One deduces that Jnew0 (74) is isogenous to the product of two abelian simple varieties,
A1 (resp. A2), of real multiplication by the ring of integers of Q(

√
5), (respectively

Q(
√

13).)

If λ = −1+
√

5
2

, µ = 3+
√

13
2

, then the vectors v1 = e1 + (λ + 1)e2, v2 = e1 − λe2, v3 =
µe3 + e4, v4 = (3− µ)e3 + e4 corresponding to the 4 newforms f1, f2, f3, f4 of weights 2
and level 74. Using (1) one gets the first 83 values of the coefficients of these newforms.
For example for f1 the list of the first values of al is

l 2 3 5 7 11 13

al 1 −1+
√

5
2

1−3
√

5
2

−1 +
√

5 −5−
√

5
2

1+3
√

5
2
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and for f3 one gets

l 2 3 5 7 11 13

al −1 3+
√

13
2

−1−
√

13 1−
√

13
2

−1−
√

13
2

−1+
√

13
2

3 Application to the study of Weil curves

Let f =
∑
anq

n be a newform of weight 2 and level N with integer coefficients. They
correspond to a strong Weil curve E of conductor N . Unfortunately the coefficients an don’t
give too much information on E and do not allow us to obtain a simple equation for E . (In
[10] there is a method due to Serre that sometimes allows us to get such an equation, but
that method is not systematic.) Here we give a method that at least when N = p is a prime,
one can solve the problem.

From now on let N be a prime. According to the last section, for a newform f there is
associated a vector vf =

∑
xS[S], xS ∈ Z, an eigenvector of the Hecke operators defined in

2.1. Theorem 1 doesn’t describe the isomorphism (which is not canonical) between S2(N)
and M0

N ⊗ C. But suppose known the terms an of f (a2 is sufficient in general). The
construction of section 2.4 gives us both the supersingular values mod N and the graph of
T2 acting on MN . We can determine the eigenspace V2 associated with the eigenvalue a2. If
it is of dimension 1, we also have vf , or at least the space it generates. Otherwise, we apply
T3 to V2 (which is of tentatively small dimension—for conductors < 80000, dimV2 doesn’t
goes beyond 6), until finding a 1-dimensional space, corresponding to the same eigenvalues of
the operators Tl as f . Choose in this space a vector rf =

∑
xE[E] with integer xE coprime

in pairs2; then rf is determined up to sign.
To go further, we need a geometric interpretation of the xE. Let ∆ = ±N δ, the discrim-

inant of the minimal Weierstrass model of E , let φ : X0(N) −→ E be a minimal cover of E
of degree n = deg φ.

According to Deligne-Rapoport [5], there exists a model X0(N)/Z of X0(N) defined over Z
for which reduction mod N is the union of two projective lines, one C∞ classifying the elliptic
curves of characteristic N provided with the group scheme kernel of the Frobenius (this
corresponding to inseparable isogenies), the other one, C0, classifying the curves provided
with Verschiebung. These two lines intersect at supersingular points. As far as the curve E
is concerned, reduction mod N of its Neron model has identity component E0

/FN
isomorphic

to FN2 of the multiplicative group Gm. One can prove that the cover extends to X0(N)/Z−§
where § is the set of all supersingular points of characteristic N , and define by restriction
a regular “application ?” of C∞ on E0

/FN
, of a rational function φ over C∞, for which the

poles and zeros are in E . The divisor
∑
λE[E] of φ, E going through all the supersingular

curves mod N , and thus an element of M0
N , defined up to sign (depending on the choice of

isomorphism of E0
/FN

over Gm.)

Proposition 3.1. In the above notation the divisor (Φ) =
∑
λE[E] is equal to ±rf .

2That seems to strong to me; do we just mean that the gcd of coefficients is 1?
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It is not difficult to see that (Φ) is proportional to rf . By contradiction, the fact that
the lE are coprime with one another is obtained from the result of Ribet which says that if l
is a prime different from 2, 3 then all cusp forms mod l of weight 2 and level Np (where Np
is square-free) for which the associated representation mod l is irreducible and not ramified
at p, comes from a cusp form mod l of weight 2 and level N (this result was conjectured
by Serre in 1985. This also shows that the Taniyama-Weil conjecture implies the Fermat
theorem.)

To prove the previous theorem, one proves first that δ is related to λE by δ = gcd(λEωE−
λFωF ) where ωE is the number of automorphisms of E. Suppose that a prime number l
divides the gcd is λE. It also divides δ, and one deduces from here that p is not ramified
in the field of points of order l or E . If l is coprime with 6 Ribet’s 3 theorem shows that
the modular form f associated to E is congruent mod l to a modular form of weight 2 and
level 1, which cannot be but the Eisenstein series. The curve E is semi-stable, which implies
([16], p.306) that E or a curve Q-isogenous to it has a point of finite order l. If l = 2, 3
we get the same result due to [4], Appendix. Now, we know explicitly the curves of prime
conductor with torsion [11] namely the curves 11A and 11B of [19], which have a point of
order 5, curves 17A,17B,17C (point of order 4), 17D (point of order 2), 19A and 19B (point
of order 3), 37B, 37C (point of order 3) and the curves of Setzer-Neumann [18], which have
a point of order 2. In each of these cases, we know δ, which is equal to the number of finite
points rational over Q of the considered curves, and one can verify that the λE are coprime
with one another. This proves the proposition. Note that along the proof we showed that
Ribet’s theorem implies the following

Theorem 3.2. Let E be a strong Weil curve of prime conductor N . The valuation of its
discriminant in N is equal to the number of torsion points of E(Q).

We state without proof the theorem that allows us to get an explicit equation for E once
we know the λE.

Theorem 3.3. Let E be a strong Weil curve of prime conductor N , and
∑
λE[E] the element

of M0
N associated to E via the constructions above. There exists an equation of E

y2 = x3 − c4
48
x− c6

864

with c4, c6 ∈ Z so that, if H = max(
√
|c4|, 3

√
|c6|) we have:

1. H ≤ 8n√
N−2

(log(H6/1728) + b), where b = (Γ(1/3)/Γ(2/3))3 = 7.74316962 . . ..

2. Let ∆′ = (c34 − c26)/1728. Then ∆′ = ∆ if E is supersingular in characteristic 2, and
∆′ = ∆ or 212∆ otherwise.

3. c4 ≡ (
∑
λEjE)4mod N .

4. c6 ≡ −(
∑
λEjE)6mod N .

3K.Ribet, Lectures on Serre’s conjectures, MSRI, Fall 1986
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5. nδ =
∑
λ2
EωE.

If the λE are known then 5 allows us to get n and 1 allows us to find a bound on H, thus
on c4, c6. By 2 we have c34 − c26 = 1728∆′, which allows us to find c4, c6. The congruences 3
and 4 allow us to reduce the number of computations significantly. Thus we have found an
equation of a strong Weil curve corresponding to the initial newform f .

This method also allows us to prove that an elliptic curve of small prime conductor is a
Weil curve. Suppose that we are given such a curve by its equation. Then we may compute
the number of its points Nl mod l for l = 2, 3, . . .. Next we search, by the method of graphs,
whether a2 = 3 − N2 is the eigenvalue of T2 acting on MN . If not then the Taniyama-Weil
conjecture is false. If yes, then continue with T3 acting on the found eigenspace, if it is not of
dimension 1, until we get an eigenspace of dimension 1 for the Hecke operators, with integers
eigenvalues. If there is no such thing, then we get a counterexample to the Taniyama-Weil
conjecture. If there is one, we compute the equation of a corresponding Weil curve. If this
curve is isogenous to the initial curve, we are done. Otherwise, the initial curve is not a Weil
curve.

In particular, this allows us to prove that the elliptic equation

y2 + y = x3 − 7x+ 6

of conductor 5077, is a Weil curve.
This curve seems to be the smallest curve (ordering the curves by their conductors)

having a Mordell-Weil rank ≥ 3 [3]. The interest in it is the following:
Let f(z) =

∑
anq

n (q = e2πiz), a newform of weight 2 and conductor N , and let L(s) =∑
ann

−s, the associated L function. If the order of L in 1 is ≥ 3 then Goldfeld proved that
there exists a computable constant Cf so that

log p < Cfh(−p),

where p ≡ 3(mod 4) is a prime number coprime with N and h(−p) is the number of classes
of imaginary quadratic fields of discriminant −p. We have other formulas, but more com-
plicated, in the case of imaginary quadratic fields of non-prime discriminant (see [13] for
example).

If the Birch and Swinnerton-Dyer conjecture is true, all the Weil curves for which the
Mordell-Weil group over Q is of rank ≥ 3 have to be given by such modular forms, but
until the work of Gross and Zagier [8], there was no way to verify that the derivative at 1 of
the L function of a Weil curve is indeed 0. The results of Gross and Zagier allow to write
L′(1) as the product of a non-zero factor easily computable and the Néron-Tate height of a
Heegner point (cf. [8] for more details.) It is therefore possible, by decreasing the height of
rational points on the curve and increasing L′(1) by a careful computation, to prove that L
is of order ≥ 3 at s = 1. (In all the previous, we considered odd Weil curves, i.e., for which
the L function has an odd order at 1 – or if one prefers for which the sign of the functional
equation is -1.)

One has several method to construct Weil curves for which the Mordell-Weil group is
of rank ≥ 3 (and which are good candidates for the preceding question: by the method of

10



Gross-Zagier, one may compute L′(1). If it is zero, one has an L function which allows to
obtain an increase of the absolute value of the discriminant of imaginary quadratic fields of
given class numbers; if it is non-zero, the conjecture of Birch and Swinnerton-Dyer is false.)
One can, for example, search for curves of complex multiplication of rank 3 (we know that
they are Weil curves), but the constant Cf is very large. One can deform4 a Weil curve (for
example the curve 37C of [19] until getting a rank 3 curve (for the curve 37C, one can deform
by Q(

√
−139), as shown by Gross and Zagier [8].) This leads to a constant Cf of order of

7000
One may choose some elliptic curve defined over Q, or rank 3, and try to prove that it

is a Weil curve. This was done in [10] for the mentioned curve of conductor 5077, using the
trace formula. But the computation is very long. The method of graphs allows us to do it
in about 5 seconds an a computer that needed 5 hours with the mentioned method.

For this curve, one has Cf < 50: all imaginary quadratic curves of discriminant d with
|d| > e150 therefore has a class number ≥ 4. On the other hand, there is no imaginary
quadratic field of discriminant d and class number 3 for 907 < |d| < 102500 [12]. Therefore
(after an examination of a table of class numbers of the first quadratic fields):

Theorem 3.4. The imaginary quadratic fields of class number 3 are the 16 fields of discrimi-
nant: −23,−31,−59.−83,−107,−139,−211,−283,−307,−331,−379,−499,−547,−643,−883,−907.

4 Application to a conjecture of Serre

Let ρ be a continuous representation of Gal(Q/Q) in GL2(V ) where V is a dimension 2
vector space over a finite field Fq of characteristic p. Assume this is an odd representation,
i.e., that ρ(c) the image of the complex conjugation, seen as an element of Gal(Q/Q) has
eigenvalues 1 and -1. In that case put G = Imρ.

In [17] Serre defines the level, the character and the weight of such a representation:

1. The level.

Let l be a prime number different from p. Write Gi (i = 0, . . .) the groups of ramifica-
tions of ρ at l. Let

n(l) =
∞∑
i=0

gi
g0

codimV Gi ,

where gi = |Gi|.
The conductor of the representation ρ is defined as

N =
∏
l 6=p

ln(l).

2. The character.

4Twist?
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The determinant of ρ yields a character of Gal(Q/Q) in F∗q, for which the conductor
divides pN . Therefore, one can write

det ρ = εχk−1,

where χ is the cyclotomic character of conductor p and ε is the character (Z/NZ)∗ −→
F∗q. The integer k is defined mod (p − 1), and the fact that the representation is odd
implies that ε(−1) = (−1)k.

By definition, ε is the character of the representation ρ.

3. The weight.

The integer k above is defined mod (p − 1). Read Serre’s article for the definition of
the weight k ∈ Z of the representation ρ. As the conductor N depends only on the
behavior of ρ ar places coprime with p, the definition of weight only uses the local
properties at p of the representation ρ.

Then Serre’s conjecture is:

Conjecture 4.1. Let ρ be a representation as above, of weight k, level N and character ε.
Assume this representation is irreducible. Then it comes from a cusp form mod p of weight
k, level N and character ε.

This conjectures, if true, has numerous consequences: it implies the Taniyama-Weil con-
jecture and Fermat’s theorem.

Many such representations ρ are modular, either by construction, or because they are part
of classical conjectures (Langlands, Artin, . . .) that carry on the conjecture (but sometimes
in a weak form, i.e., with a weight or conductor bigger than those defined in [17].)

In order to verify (or contradict) Serre’s conjecture, we need to find the extensions K/Q
of Galois group subgroup of GL2(Fq) of odd determinant and p 6= 2. It is in general not
difficult to calculate, for l prime and not too large, the trace al of Frobl in GL2(Fq): if P (x)
is a polynomial whose roots generate K the decomposition of Pmod l usually will suffice.

It is however, much harder to find modular forms mod p, if they exist, that correspond
to the representation ρ given by the field K: the discriminant of K is usually large, thus so
is the conductor of ρ, which is related to it, so it is not easy to make the computations.

4.1 The case SL2(F4)

A troubling case is that of p = 2, because, since −1 ≡ 1(mod 2) all representations are odd.
The representations of Gal(Q/Q) in GL2(F2) = S3 (although altogether real, cf. [17])

come from weight 1 modular forms; the group S3 can be realized as a subgroup of GL2(C).
One can hope that by multiplication with convenient Eisenstein series, one can obtain a
modular form of weight and level predicted by the Serre conjecture (cf. [17] for examples.)

In order to obtain the most interesting case for characteristic 2, one considers the rep-
resentations with values in GL2(F4). The isomorphism A5 ' SL2(F4) allows us to obtain
several examples. Let K be an extension of Q of Galois group A5. Since A5 “immerses ?”
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into PGL2(C), if the field is not completely real, the associated representation ρ comes from
a weight 1 modular form (module Artin’s conjecture, cf. [2]). Suppose now that K is real.
None of the classical conjectures allow us to suspect that ρ comes from a modular form, even
if of higher weight or level. It is this case that we will study in what follows. The method
of graphs here is indispensable, the modular forms that we look at having a conductor too
large to be studied with the Eichler-Selberg trace formula.

Let P (x) = x5 +a1x
4 +a2x

3 +a3x
2 +a4x+a5 be a rational polynomial of discriminant D.

In order that the field of roots of P be A5 it is sufficient and necessary that P be irreducible,
that D be square-free, and that there exist a prime number l not dividing D so that Pmod l
having exactly two roots in Fl (this last condition assuring that the group is all of A5).

It is clear that ε = 1. If p | D, p coprime with 30, n(p) = 1 if it “seulment si l’inertie en
p ==?” is of order 2, and thus the polynomial P has at most double roots mod p. As far
as the weight k is concerned, it is either 2 or 4 according to the ramification of K at 2. To
simplify the computation, we have limited to searching examples among the representations
of prime level and weight 2.

On the other hand, since it is about representations in SL2(F4)m the coefficient a2 of the
sought modular form, if it exists, cannot be in F4, but in F16. This comes from the fact that
the coefficient al of a modular form mod l is equal to an eigenvalue of Frobl, and not to its
trace. Now, if a matrix in SL2(F4) is of order 5, its eigenvalues are in F16 not in F4.

The examples treated above were obtained by making a systematic search on a computer
of convenient polynomials (totally real, of type A5, for which the conductor of the associated
representation is a prime N , and for which the weight is 2).

Thereafter, for each such polynomial P , one computes the corresponding eigenvalue a2 (in
F16), and one tries to find whether there exists a modular form mod 2 of level N and weight
2 so that T2 has a2 as an eigenvalue. In all the cases considered, we have thereafter found
an eigenspace of dimension 1 or 2. Using the operators T3, T5, one calculates the coefficients
a3, a5, and verifies that they correspond to the values predicted by the decomposition of P
in 3 and 5.

Clearly, this doesn’t really prove that the representation ρ associated to P is modular:
we have only exhibited a modular form mod 2 of proper level and weight for which the
terms a2, a3, a5 are convenient. But there is a good indication of the truthfulness of the
conjecture of Serre in the considered cases: an exhaustive search over numerous primes N of
the coefficients a2 of modular forms of weight 2 and level N proves that it is rare that there
are fields of small degree. (Actually, is seems that 2, and in general the small primes, are the
most “inert” possible in the fields that appear in the Hecke algebra of modular forms, fields
which themselves in general appear to have the largest degree possible, taking into account
constraints such as the Atkin-Lehner involutions, primes of Eisenstein, etc. One gets that
one has small factors, – corresponding for example to elliptic curves with prime conductor –
but this is apparently rare.)

4.2 A few examples

1. P (x) = x5 − 10x3 + 2x2 + 19x− 6.
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The discriminant is (23887)2. This polynomial is irreducible mod 5, thus irreducible
over Q. Its roots are all real (apply Sturm’s algorithm). One has that

P (x) ≡ x(x− 1)(x3 + x2 − 1)mod 3,

which gives a cycle of order 3; the Galois group of K, the field of roots of P , is thus
A5.

From P (x) ≡ (x− 462)(x− 755)2(x− 788)2mod 887 one gets that the conductor N of
the associated representation is N = 887. One can also prove that 2 is “little ramified”
in the sense of [17], thus ρ has weight 2. Examining the reduction mod 2 of P proves
that the coefficients a2, a3, a5 of the modular form mod 2 of level 887 (which must
correspond to ρ via the Serre conjecture) are 1, 1, j (where j ∈ F4 has the property
that j2 + j + 1 = 0).

One therefore applies the method of graphs: the space of modular forms mod 2 of
weight 2 and level 887 has dimension 73, and computation shows that the eigenspace
G1 of T2 corresponding to the eigenvalue 1 has dimension 2; T3 acts as the identity
on G1, and j, j2 are the eigenvalues of T5 acting on G1, from where get a basis of G1

formed by f1 = q + q2 + q3 + q4 + jq5 + · · · and f2 = q + q2 + q3 + q4 + j2q5 + · · · ,
eigenvectors of Hecke operators. These corroborate the conjecture.

2. P (x) = x5 − 23x3 + 55x2 − 33x− 1.

Then D = 136132, P (x) ≡ (x− 6308)(x− 2211)2(x− 8248)2mod 13613, N = 13613; P
being irreducible mod 2, Frob2 is a cycle of order 5, and a2 = ζ5 is a fifth root of unity,
viewed as an element of F16. Computation also shows that in the space of modular
forms mod 2 of level 13613 and weight 2, which has dimension 1134, ζ5 is a simple
eigenvalue of T2. The coefficients a3, a5 are respectively equal to 1 + ζ2

5 + ζ3
5 = j and

ζ2
5 + ζ3

5 = j2, which are the traces of Frob3,Frob5 in SL2(F4).

3. We write the other found polynomials; in each case there exists a modular form of
weight 2 and appropriate level, for which the first terms an correspond to those values
predicted by the Serre conjecture.

P (x) = x5 + x4 − 16x3 − 7x2 + 57x− 35, N = 8311,
√
D = N

P (x) = x5 + 2x4 − 43x3 + 29x2 + 2x− 3, N = 8447,
√
D = 22N

P (x) = x5 + x4 − 13x3 − 14x2 + 18x+ 14, N = 15233,
√
D = 2N

P (x) = x5 + x4 − 37x3 + 67x2 + 21x+ 1, N = 24077,
√
D = 22N

5 Appendix: The curves X0(p) of genus 0

In [5], it is proven that if p is a prime number then the curve X0(p) over Zp is formally
isomorphic to the curve of equation xy = pk, in the neighborhood of each point reducing
mod p to a supersingular point S, k being one half the number of automorphisms of S.
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If X0(p) has genus 0 (i.e., p = 2, 3, 5, 7, 13) one has such a model over Z, given by the
function

x =

(
η(z)

η(pz)

) 24
p−1

, (2)

where η(z) = q1/24
∏∞

i=1(1− qn) and q = e2πiz.
This results from Fricke [7], who gives for each of the above p’s an expression of the “oubli

?” homomorphism j : X0(p) −→ X0(1), which associates to each point (E,C) of X0(p) the
point (E) of X0(1), parametrized by the modular invariant j.

In the following we recall these equations and give the expressions of the correspondences
T2, T3 over these curves. The variable x is the one given by equation (2), the involution Wp

switches x and y and the divisor of x is (0)− (∞), where 0 and ∞ are two points of X0(p).

1. p = 2 The equations given by Fricke (modified to give the model of X0(2) over Z) are:

xy = 212

j =
(x+ 16)3

x

T2 is given by
y2 − y(x2 + 243x)− 212x = 0

(to each point x is associated by T2 the formal sum of points of coordinate y that are
roots of this polynomial.)

T3 is given by

x4+y4−x3y3−2332x2y2(x+y)−223252xy(x2+y2)+2·321579x2y2−21532xy(x+y)−224xy = 0

2. p = 3.
xy = 36

j =
(x+ 27)(x+ 3)3

x

T2 : x3 + y3 − 233xy(x+ y)− x2y2 − 36xy = 0

T3 : y3 − y2(x3 + 2232x2 + 2 · 325y)− 36yx(x+ 2232)− 312x = 0

3. p = 5.
xy = 53

j =
(x2 + 10x+ 5)3

x

T2 : x3 + y3 − x2y2 − 23xy(x+ y)− 72xy = 0

T3 : x4+y4−x3y3−2·32x2y2(x+y)−34xy(x2+y2)−2·3223x2y2−2250xy(x+y)−56xy = 0
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4. p = 7.
xy = 72

j =
(x2 + 13x+ 49)(x2 + 5x+ 1)3

x

T2 : x3 + y3 − x2y2 − 23xy(x+ y)− 72xy = 0

T3 : x4+y4−x3y3−223x2y2(x+y)−2·3·7xy(x2+y2)−3·53x2y2−223·72xy(x+y)−74xy = 0

5. p = 13.
xy = 13

j =
(x2 + 5x+ 13)(x4 + 7x3 + 20x2 + 19x+ 1)3

x

T2 : x3 + y3 − x2y2 − 22xy(x+ y)− 13xy = 0

T3 : x4+y4−x3y3−2·3x2y2(x+y)−3·5xy(x2+y2)−3·11x2y2−2·3·13xy(x+y)−132xy = 0

The polynomials above that give T2, T3 are of simpler form than the classical modular
equations Φ2(j, j

′) and Φ3(j, j
′) (that correspond to the action of T2 and T3 on X0(1)). For

comparison, we recall their expressions:

Φ2(j, j
′) = j3 + j′3 − j2j′2 + 243 · 31jj′(j + j′)− 243453(j2 + j′2)

+34534027jj′ + 283756(j + j′)− 2123959

Φ3(j, j
′) = j4 + j′4 − j3j′3 − 22339907jj′(j2 + j′2) + 233231j2j′2(j + j′)

−216533517 · 263jj′(j + j′) + 2153253(j3 + j′3) + 2 · 3413 · 193 · 6367j2j′2

−2315622973jj′ + 2303356(j2 + j′2) + 2453359(j + j′)
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Math. J.

[18] C. B. Setzer, Elliptic curves of prime conductor, J. London Math. Soc. 10 (1975), 367-
378.

[19] Tables, Modular Functions of One Variable IV, Springer Lecture Notes 476 (1975),
33-52.

17


