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Abstract. Let Tp,k(x) be the characteristic polynomial of the Hecke operator Tp acting on

the space of level 1 cusp forms Sk(1). We show that Tp,k(x) is irreducible and has full Galois

group over Q for k ≤ 2000 and p < 2000, p prime.

1. Introduction and statement of results

Let Sk(1) denote the space of holomorphic cusp forms of even integral weight k for the
full modular group Γ(1) = SL2(Z). We will denote by Tp,k(x) the characteristic polynomial
of the action of the Hecke operator Tp on Sk(1). (For an introductory reference for these
terms see Apostol’s book [A].)

A conjecture of Maeda asserts that the Hecke algebra of Sk(1) over Q is simple, and
that its Galois closure over Q has Galois group the full symmetric group. There is even
some speculation that Tp,k(x) is irreducible in Q[x] and has full Galois group over Q for
every prime p. This conjecture is related to the nonvanishing of L–functions [KZ][CF], and
to constructing base changes to totally real number fields for level 1 eigenforms [HM].

There has been some progress towards this conjecture in recent years. For instance,
Maeda’s conjecture has been checked for p = 2 and k ≤ 540 [B][CF], and various other
small cases. Also, we know the following density result of [JO].

Theorem. Let T k,χ
N,q(x) denote the characteristic polynomial of the action of the Hecke

operator Tq on the space Sk(N,χ) of cusp forms of weight k, level N and character χ. Let
q and ` be distinct primes not dividing N , and let L denote a prime ideal lying above ` in
Kk,χ,N (the finite extension of Q obtained by adjoining all of the Fourier coefficients of the
normalized eigenforms of Sk(N,χ)). Then

#
{

p < X | T k,χ
N,p(x) ≡ T k,χ

N,q(x) (mod L)
}
ÀN,χ,k

X

log X
.

In particular, if T k,χ
N,p(x) is irreducible mod 4` for some p, then the same holds for a positive

proportion of primes p.

If we specialize to N = 1, Conrey, Wallace and the first author have obtained a result
similar to the last statement of this theorem with the added benefit that they achieve the
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condition of having full Galois group as well as irreducibility. They also obtained a lower
bound of 5/6 for the constant in this case. In this paper we report on calculations which
establish:

Theorem 1. The Hecke polynomial Tp,k(x) is irreducible and has full Galois group over Q
for k ≤ 2000 and p < 2000, p prime.

For the remainder of the paper, p and ` will represent distinct rational primes, and
we will abbreviate “Tp,k(x) is irreducible and has full Galois group over Q” by “Tp,k(x)
satisfies Maeda’s conjecture.”

Our calculations have two distinct parts. First we show that if p < 2000, then Tn,k(x)
satisfying Maeda’s conjecture for some n implies Maeda’s conjecture for Tp,k(x). This
is described in Section 2. In Section 3 we describe calculations which show that T2,k(x)
satisfies Maeda’s conjecture for k ≤ 2000.

2. Tp,k(x) for fixed k.

We show

Proposition 1. If p < 2000, p prime, and Tn,k(x) satisfies Maeda’s conjecture for
some n, then Tp,k(x) satisfies Maeda’s conjecture.

The proof involves exploiting the fact that if Tn,k(x) satisfies Maeda’s conjecture, then
this puts severe restrictions on every other Tm,k(x).

Lemma 1. Suppose Tn,k(x) is irreducible and has full Galois group for some n. Then for
each m either

a) Tm,k(x) is irreducible and has full Galois group,
or,

b) Tm,k(x) = (x− a)d for some a ∈ Z.

The proof involves considering the action of G = Gal(Kk/Q) on the Hecke basis for
Sk(1), where Kk is the field generated by the Fourier coefficients of the Hecke basis. Since
G acts on both the individual coefficients and the Hecke basis, if one Tm,k(x) is irreducible
then all of the eigenforms are in one Galois orbit. And if Tm,k(x) also has full Galois group
then there are no intermediate subfields between Kk and Q.

Thus, if Tn,k(x) satisfies Maeda’s conjecture, then we need only check that Tp,k(x) has
at least two distinct roots in order to verify Maeda’s conjecture for Tp,k(x). Our approach
is to show that Tp,k(x) has at least two distinct roots mod ` for some `. The following
result from [CFW] verifies this for 5/6 of all primes p.

Lemma 2. Suppose dim(Sk(1)) ≥ 2. If p 6≡ −1, 0, 1 mod 5 then Tp,k(x) has at least two
distinct roots mod 5, and if p 6≡ −1, 0, 1 mod 7 then Tp,k(x) has at least two distinct roots
mod 7.

The proof is by inspection of the factorization of Tp,k(x) mod 5 and mod 7, which is
given in [CFW].

By Lemmas 1 and 2, we have Proposition 1 for all p except those in four congruence
classes mod 35. That is a total of 45 primes p < 2000. For those primes we must do
some explicit calculations. However, the need for calculation can be further reduced by
the following, which is part of Lemma 1 of [CFW].
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Lemma 3. If ` ≥ 5 then Tp,k(x) divides Tp,k+`−1(x) mod `.

The proof is to consider the inclusion Sk(1) ⊂ Sk+`−1(1) mod `, given by multiplication
by the level 1 Eisenstein series E`−1(z).

Thus, if Tp,k(x) has at at least two distinct roots mod `, then so does Tp,k′(x) for all
k′ ≥ k with k′ ≡ k mod (`− 1).

We will let ` = 11 for the remainder of this section. For each of the 45 primes p described
above, and for each of the 5 possible values of k mod 10, we will determine the smallest
k such that Tp,k(x) has at least two distinct roots mod 11. The most favorable situation
(for our purposes) is when Tp,k(x) has at least two distinct roots mod 11 for k = 24 and
28 ≤ k ≤ 36. By Lemma 3 this would imply that Tp,k(x) has at least two distinct roots
for all k, so conclusion b) of Lemma 1 never holds for Tp,k(x).

It turns out that this “favorable situation” holds for 35 out of the 45 primes p < 2000
not covered by Lemma 2. For the remaining 10 cases we find larger values of k for which
Tp,k(x) has at least two distinct roots mod 11. This will leave a small number of exceptional
cases to check.

We first summarize the results of our calculations, and then describe the method used
for the calculations.

Proposition 2. Table 1 shows all pairs (p, k) with p prime, p < 2000, such that Lemma 2
does not apply, dimSk(1) ≥ 2, and Tp,k(x) has only one root mod 11.

p k

251 24, 34
379 24, 34
419 28, 30, 38, 40, 50
461 28, 30, 38, 40, 50
601 32
659 28, 30, 38, 40, 50
769 28, 30, 38, 40, 50
881 28, 30, 38, 40, 50

1231 28, 30, 38, 40, 50
1429 28, 30, 38, 40, 50

Table 1: All pairs p, k with p < 2000, p prime, such that Proposition 1 cannot be
established by a calculation mod 5, 7, or 11.

Thus, Proposition 1 is established except for the 40 cases given in Table 1. Those
remaining cases were checked by explicitly verifying that the polynomial was irreducible.
This completes the proof of Proposition 1.

We briefly review the methods required to generate the Hecke polynomials. For details,
see [A]. The Hecke operator Tp acts on Sk(1) by

(Tpf)(z) = pk−1f(pz) + p−1

p−1∑
b=0

f

(
z + b

p

)
.
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In terms of Fourier expansions, if f(z) =
∑

a(n)qn and (Tpf)(z) =
∑

b(n)qn, then it is
easy to check that

b(n) =
{

a(pn) if p - n

a(pn) + pk−1a(n/p) if p|n.

Thus, given a (partial) Fourier expansion of a basis for Sk(1), it is straightforward to find
the matrix of Tp with respect to that basis.

A basis for Sk(1) is given by

Bk = {∆aEb
4E

c
6 | a ≥ 1, b ≥ 0, c = 0 or 1, 12a + 4b + 6c = k}.

Here Ek(z) is the weight k Eisenstein series, which has Fourier expansion

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

and ∆(z) is the weight 12 cusp form given by

∆(z) =
E4(z)3 − E6(z)2

1728

=
∞∑

n=1

τ(n)qn.

Thus, finding a partial Fourier expansion of a basis for Sk(1) is straightforward.
For the cases required in this section, the dimension of Sk(1) was at most 5, a total of

2000 Fourier coefficients were required, and the calculation took less than one day using
Mathematica on a personal computer. This is a reflection of the fact that we were able
to assume that Tp,k(x) was irreducible and had full Galois group for some p, and this
is an extremely strong assumption. The verification that this assumption holds takes a
considerable amount of additional work, and this is described in the next section.

3. T2,k(x) for large k

Since the size of the coefficients of T2,k(x) explodes as k grows, it is advantageous to
work modulo a suitable prime `. Thus our strategy for verifying that T2,k(x) satisfies
Maeda’s conjecture is to find appropriate factorizations of T2,k(x) mod ` for various ` as
described in the following lemma from [CF], which is an elaboration of the corresponding
lemma of [B].

Lemma 4. Let f(x) ∈ Z[x] be a monic polynomial of degree d, with splitting field K/Q.
Suppose there are primes q, r and s such that

i) f ≡ g0g1 · · · gj (mod q) for distinct irreducible gi ∈ Fq[x] with deg(g0) = 2 and
deg(gi) odd for i ≥ 1.

ii) f ≡ h0h1 · · ·hl (mod r) for distinct irreducible hi ∈ Fr[x] with deg(h0) = p, where
p > d/2 is prime.

iii) f is irreducible modulo s.
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Then f is irreducible and Gal(K/Q) is the full symmetric group Sd.

In the remainder of this section we will first briefly recall some facts about fast multi-
plication of polynomials modulo a prime ` using the discrete fast Fourier transform. We
then review how the Berlekamp-Massey algorithm can be used to compute a factor of the
characteristic polynomial of a matrix. Finally, we will use these algorithms in conjunc-
tion with Lemma 4 to obtain an algorithm for verifying Maeda’s conjecture for T2,k(x) for
k = 542, . . . , 2000.

First, we recall (see Prop. III.2.9 in [Ko]) that we only need the first k/12 coefficients
in order to distinguish the cuspforms in Sk(1). Thus for computational purposes we will
treat these cuspforms as polynomials modulo xN for some N > k/12. Now if N is a
power of 2, then we will let ` be a prime which is 1 modulo 2N , and let ω be a primitive
2N -th root of unity modulo `. Recall the discrete fast Fourier transform (FFT) allows us
to evaluate any polynomial f of degree less than 2N simultaneously at all of the 2N -th
roots of unity modulo ` in time proportional to N log N . For a detailed account of the fast
Fourier transform, we refer the reader to [Ch]. If we wish to multiply two polynomials f
and g each of degree less than N , then we can use FFT to evaluate each of these at all of
the 2N -th roots of unity. Note that h = fg is the unique polynomial of degree less than
2N with h(ωi) = f(ωi)g(ωi) for i = 1, 2, . . . , 2N . Thus, to determine the coefficients of h
all we need to do is solve the linear system:




1 ω ω2 . . . ω2N−1

1 ω2 ω4 . . . (ω2)2N−1

. . .
1 ωN (ωN )2 . . . (ωN )2N−1







h0

h1
...

h2N−1


 =




h(ω)
h(ω2)

...
h(ω2N−1)


 .

Now, we note that the matrix on the left is a Vandermonde and its inverse is:

1
N




1 ω−1 ω−2 . . . (ω−1)2N−1

1 ω−2 ω−4 . . . (ω−2)2N−1

. . .
1 ω−N ω−2N . . . (ω−N )2N−1


 .

Therefore, in order to determine the coefficients h0, . . . h2N−1 we simply need to evaluate
the polynomial

∑2N−1
i=0 h(ωi)xi at all of the 2N -th roots of unity and we can once again

rely on FFT for this. Thus we can multiply any two polynomials each having degree less
than N over F` in O(N log N) time.

Another algorithm which proved useful for our purposes was the Berlekamp-Massey
algorithm (see [M]). This algorithm takes as input a sequence of integers a0, a1, . . . , an

and gives as its output the coefficients c1, c2, . . . , cL of the shortest linear recurrence which
generates the input sequence, that is the shortest sequence of numbers c1, c2, . . . , cL such
that

aj = −
L∑

i=1

ciaj−i j = L,L + 1, . . . .
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It can be shown (see [M Theorem 3]) that if L ≤ n/2 then c1, c2, . . . , cL is the unique
minimal length sequence that generates a0, a1, . . . , an. The running time of this algorithm
is O(n).

Now, let A be a non-singular square matrix of dimension d and let f(x) = xm +∑d−1
m=0 bd−mxm be its characteristic polynomial. Following [W], we note that if for any

fixed vector ~V , we define a sequence of integers {vm}m∈N by

vm = (Am~V ) ·




1
0
...
0


 ,

then for all j ≥ d we have f(A)Aj−d~V = 0, which implies

vj = −
d∑

i=1

bivj−i.

Thus, our sequence is generated by the linear recurrence with coefficients b1, . . . , bd. There-
fore, given the first 2d terms of this sequence, the Berlekamp-Massey algorithm will return
the coefficients c1, . . . , cL of the unique shortest linear recurrence which generates the vi’s.
Let g(x) = xL+

∑L−1
i=0 cL−ix

i. Since, the coefficients of f and g generate the same sequence
and since g is the minimal such polynomial, one can show that g|f . Thus, given the first 2d
terms of the above sequence, the Berlekamp-Massey algorithm will produce for us a factor
of the characteristic polynomial of A in time proportional to d. Unfortunately, the time
needed to produce the first 2d terms of this sequence is proportional to d3. Thus we can
find a factor of the characteristic polynomial of A in O(d3) time, which is a bit better than
computing the characteristic polynomial in the straight forward manner which is O(d4). It
is noteworthy that in practice it seems that the Berlekamp-Massey algorithm quite often
produces the entire characteristic polynomial of our matrix. In any case, the most difficult
aspect of our task proved to be producing primes for which T2,k(X) was irreducible and
for this it is sufficient to produce any factor of T2,k(X).

The computation for checking that T2,k(X) satisfied Maeda’s conjecture for 540 ≤ k ≤
2000 proceeded as follows. We set N = 512, the first power of 2 greater than 2× 2000/12.
We need the extra factor of 2 because we wish to distinguish modular forms in Sk(1) for
k ≤ 2000 which are in the image of T2. Next, we generated a list of primes which were
1 modulo 2N and a list of corresponding primitive 2N -th roots of unity modulo those
primes for use with FFT. For each of the primes p on our list, we performed the following
calculations. For each weight 540 ≤ k ≤ 2000, we first generated N − 1 coefficients of
the rational basis forms for Sk(1) and then constructed the matrix giving the action of
T2 on Sk(1) with respect to our choice of basis. The Berlekamp-Massey algorithm was
then employed to compute a factor of the characteristic polynomial of T2,k(X) modulo
p. If the entire polynomial was not computed then we discarded it and proceeded to the
next weight. If we were able to obtain the entire characteristic polynomial of T2, then by
analyzing the degrees of gcd(T2,k(X), xpi − x) for i = 1, 2, . . . ,deg(T2,k(X)) we attempted
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to verify the conditions of Lemma 4 for T2,k(X) modulo p. We made note of any successes
and then moved up to the next weight. We then selected another prime from our list and
carried out the above computation again. We repeated this process until the conditions of
Lemma 4 were verified for T2,k(X) for all weights 540 ≤ k ≤ 2000. Since all computations
were carried out modulo p, the growth of the coefficients of the basis forms for Sk(1) and
T2,k(X) became irrelevant. Also, our selection of primes allowed us to use FFT to quickly
multiply forms together, which made construction of the basis much faster.

For the sake of brevity we include the following table containing the last 40 weights
and the corresponding primes q, r and s as in Lemma 4. All computations were coded
in C and performed on Penn State’s IBM SP (a 32 processor machine devoted solely to
parallel applications) which allowed us to check for the conditions of Lemma 4 modulo 32
primes simultaneously. The computer time necessary for these computations was roughly
12 weeks.



8 D.W. FARMER K. JAMES

k q r s
1922 319489 974849 16465921
1924 1720321 1720321 11591681
1926 1130497 188417 20635649
1928 1032193 319489 37306369
1930 1843201 286721 13344769
1932 1990657 114689 1130497
1934 1097729 65537 3194881
1936 1810433 1662977 14663681
1938 3194881 163841 35880961
1940 270337 286721 3383297
1942 417793 417793 1146881
1944 319489 65537 35045377
1946 7667713 925697 12042241
1948 286721 737281 3022849
1950 6684673 925697 20914177
1952 114689 417793 737281
1954 5767169 557057 1097729
1956 1769473 286721 13631489
1958 1769473 147457 1810433
1960 925697 925697 26214401
1962 974849 163841 20316161
1964 557057 270337 18128897
1966 417793 147457 21594113
1968 1196033 147457 2424833
1970 925697 925697 17440769
1972 4866049 270337 13631489
1974 3383297 638977 1843201
1976 2482177 417793 925697
1978 737281 319489 15228929
1980 6725633 319489 22552577
1982 319489 786433 3604481
1984 147457 1196033 48906241
1986 1179649 147457 22454273
1988 2277377 417793 40058881
1990 778241 163841 17440769
1992 778241 188417 38256641
1994 1318913 114689 33005569
1996 4882433 1032193 26238977
1998 4620289 286721 53370881
2000 2424833 974849 17522689
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