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Introduction

These notes are a short survey of the algorithm the author developed in [4, 5]
in order to compute with Hilbert modular forms over real quadratic fields. Unlike
classical modular forms, computational results on Hilbert modular forms are still
very limited. Our goal is to create a database of Hilbert modular forms over real
quadratic fields in order to compensate for that lack of numerical results. And, in
writing these notes for the MSRI graduate summer school, we hope to motivate
students to join this long term project.

Our approach to the computation of Hilbert modular forms is via the Eichler-
Shimizu or Jacquet-Langlands correspondence. So after giving the definitions and
the basic properties of Hilbert modular forms in Section 1 and Section 3 and dis-
cussing some applications of them in Section 2, we state this correspondence for
weight 2 forms in Section 4. We then present our algorithm and make few com-
ments on how to implement it. In the last section, we explain how one can compute
the elliptic curve corresponding to a Hilbert normalized eigenform that has ratio-
nal Fourier expansion. The computations in that section are based on [6] and uses
results from Oda [10]. Namely, we use the 2-cycles constructed by Oda in order to
compute the periods of a given cusp form. I our application, however, we use the
stronger assumption made in Conjecture 3.

1. Hilbert modular forms and varieties

We fix a totally real number field F of degree g and let JF be the set of all real
embeddings of F . For each τ ∈ JF , we denote the corresponding embedding into
R by a 7→ aτ . Also, we let OF be the ring of integers of F , and d its different.
For an integral p of F , we denote by Fp and OF, p the completions of F and OF ,
respectively, at p. We let A be the ring of adèles of F and denote it finite part by
Af . We say that an element a ∈ F is totally positive if, for all τ ∈ JF , aτ > 0. We
denote this by a � 0. We fix an integral ideal n of F .

1.1. Congurence subrgroups of GL+
2 (F ). The set JF induces an embedding

GL2(F ) ↪→
∏

τ∈JF
GL2(R) by γ 7→ (γτ )τ∈JF

. For any subring A of F , we let

GL+
2 (A) =

{
γ ∈ GL2(A) : (γτ )τ∈JF

∈
∏

τ∈JF

GL+
2 (R)

}
.

We have the restriction GL+
2 (F ) → PGL+

2 (F ), γ 7→ γ̃, of the projection map onto
PGL2(F ). We let Γ(1) = GL+

2 (OF ).
1
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Definition 1. A congurence subgroup of GL+
2 (F ) is a subgroup Γ such that ˜gΓg−1 ∩ Γ(1)

has finite index in both g̃Γg−1 and Γ̃(1) for some g ∈ GL+
2 (F ).

As we will see later, the motivation for such a definition relies in the fact that
the arithmetic of Hilbert modular forms on the field F needs to take its narrow
class group into account.

Example 1. Let c be a fractional ideal of F , and put

Γ0(c, n) =
{(

a b
c d

)
∈
(
OF c−1

cn OF

)
: ad− bc ∈ O×+

F , d ≡ 1( mod n)
}

.

Then, Γ0(c, n) is a congruence subgroup of GL+
2 (F ). This is the only type of

congruence subgroups that will be interested in for the rest of this lecture.

1.2. Classical Hilbert modular forms. Let H be the Poincaré upper-half plane
and put HF = HJF . Then

∏
τ∈JF

GL+
2 (R) acts on HF as follows. For any γ =

(γτ )τ∈JF
∈
∏

τ∈JF
GL+

2 (R) and z = (zτ )τ∈JF
∈ HF ,

γτ · zτ =
aτzτ + bτ

cτzτ + dτ
, where γτ =

(
aτ bτ

cτ dτ

)
.

Definition 2. An element k = (kτ )τ ∈ ZJF is called a weight vector. We always
assume that the components kτ ≥ 2 have the same parity.

From now on, we fix a weight k. For each function f : HF → C, put

f‖kγ =

( ∏
τ∈JF

det(γτ )kτ /2(cτzτ + dτ )−kτ

)
f(γz), γ ∈ Γ0(c, n).

This defines an action of Γ0(c, n) on the space of such functions.

Definition 3. A classical Hilbert modular form of level Γ0(c, n) and weight k is a
holomorphic function f : HF → C such that f‖kγ = f , for all γ ∈ Γ0(c, n). The
space of all classical Hilbert modular forms of level Γ0(c, n) and weight k is denoted
by Mk(c, n).

Let f : HF → C be a Hilbert modular form. Since it is Γ0(c, n)-invariant, we
have in particular

f(z + µ) = f(z), for all z ∈ HF , µ ∈ c−1.

Therefore, it admits a Fourier expansion of the form

f(z) =
∑

µ∈d−1

aµe2πiTr(µz),

where Tr(µz) =
∑

τ∈JF
µτzτ . When g > 1, every Hilbert modular form is auto-

matically holomorphic at cusps as the next lemma shows.

Lemma 1 (Koecher’s principle). Assume that g > 1. Then, f is holomorphic at
the cusp ∞ (hence at all cusps) in the following sense:

aµ 6= 0 ⇒ µ = 0 or µ � 0.
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Proof. The stabilizer of the cusp at ∞ is the semi-direct product O×+
F and c−1.

And so, γ(ε) =
(

ε 0
0 1

)
∈ Γ0(c, n), which means that f ||kγ(ε) = f . Equating the

q–expansion of both members of this equality, it follows that

aεµ = N(ε)k/2aµ, for all µ ∈ cd−1,

where we use the notation N(ε)k =
∏

τ∈JF
(ετ )kτ . Now, let us assume that there is

a non–zero µ0 ∈ cd−1 not totally positive such that aµ0 6= 0. We choose τ0 such
that µτ0

0 < 0. By the Dirichlet units theorem, we can find ε ∈ O×+
F such that

ετ0 > 1 and ετ < 1, for all τ 6= τ0.

We now consider the subseries of f(z) =
∑

µ∈cd−1 aµe2πiTr(µz) index by the set
{µ0ε

m, m ∈ N}, in which we put z = i. Then

aµ0εme−2πTr(µ0εm) = N(ε)mk/2aµ0e
−2πTr(µ0εm).

But, as m →∞, e−2πTr(µ0εm) ∼ e−2πµ
τ0
0 (ετ0 )m

, and the exponential growth ensures
that N(ε)mk/2aµ0e

−2πTr(µ0εm) →∞. Therefore the series does not converge, which
is a contradiction. So we must have aµ0 = 0. �

Definition 4. We say that f is a cusp form if the constant term a0 in the Fourier
expansion is equal to 0 for any f ||kγ, γ ∈ GL+

2 (F ) (i.e., if f vanishes at all cusps).
We will denote by Sk(c, n)) the space of cusp forms of weight k and level Γ0(c, n).

Corollary 1. Sk(c, n) = Mk(c, n) unless kτ = kτ ′ for all τ, τ ′ ∈ JF .

Proof. Let assume that there is f ∈ Mk(c, n) that is not a cusp form. Then at
some cusp σ, the q–expansion must give a0 6= 0. From

a0 = N(ε)k/2a0, for all ε ∈ O×+
F ,

it follows that we must have N(ε)k/2 = 1 for all ε ∈ O×+
F . But this is possible only

if we have kτ = kτ ′ for all τ, τ ∈ JF . �

Proposition 2. (i) Mk(c, n) = 0 unless kτ ≥ 0 for all τ ∈ JF .
(ii) M0(c, n) = C and S0(c, n) = 0.

Proof. van der Geer [7, Chap. I. sec. 6.] �

Example 2. Eisenstein series. Let C be an ideal class and choose a representative
c ∈ C. Let k ≥ 2 be even. Put

Gk, C(z) = N(c)k
∑

(c,d)∈P1(ac×c)

N(cz + d)−k,

where P1(ac×c) = {(c, d) ∈ ac×c|(c, d) 6= (0, 0)}/O×F . This series does not depend
on c ∈ C, and it can be shown to be modular form of weight k = (k, · · · , k) with
respect to Γ0(c, OF ). As in the one–dimensional case, one can find the expansion
at ∞ by making use of Poisson summation (see van der Geer [7, Chap. 1, sec. 6]).
We call Gk, C the Eisenstein series of weight k and class B with repect to Γ0(c, OF ).
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1.3. Adelic Hilbert modular forms. We recall that
∏

τ∈JF
GL+

2 (R) acts transi-
tively on HF by linear fractional transforms and that the stabilizer of i = (i, . . . , i)
is given by K+

∞ = (R×SO2(R))JF . We consider the unique action of
∏

τ∈JF
GL2(R)

on HF that extends the action of
∏

τ∈JF
GL+

2 (R). Namely, on each copy of H, we

let the element
(
−1 0
0 1

)
acts by z 7→ −z̄. We consider the following compact open

subgroup of GL2(Af ):

K0(n) :=
{(

a b
c d

)
∈ GL2(ÔF ) : c ∈ n

}
,

where ÔF =
∏

pOF, p. We set t = (1, . . . , 1) and m = k− 2t, then choose v ∈ ZJF

such that each vτ ≥ 0, vτ = 0 for some τ , and m + 2v = nt for some non-negative
n ∈ Z.

Definition 5. For any γ =
(

a b
c d

)
∈
∏

τ GL2(R) and z ∈ HF , put

j(γ, z) =
∏

τ∈JF

(cτzτ + dτ ).

The map (γ, z) 7→ j(γ, z) is called an automorphy factor.

Definition 6. An adelic Hilbert modular form of weight k and level n is a function
f : GL2(A) → C satisfying the following conditions:

(i) f(γgu) = f(g) for all γ ∈ GL2(F ), u ∈ K0(n) and g ∈ GL2(A).
(ii) f(gu) = det(γτ )k−v−tj(u, i)−kf(g) for all u ∈ K+

∞ and g ∈ GL2(A).
For all x ∈ GL2(Af ), define fx : HF → C by z 7→ det(g)t−v−kj(g, i)f(xg), where
we choose g ∈

∏
τ∈JF

GL+
2 (R) such that z = g · i. By (ii) fx does not depend on

the choice of g.
(iii) fx is holomorphic (when F = Q, an extra holomorphy condition at cusps

is needed).
(iv) In addition, when

∫
U(A)/U(Q)

f(ux)du = 0 for all x ∈ GL2(A) and all addi-
tive Haar measures du on U(A), where U is the unipotent radical of GL2/F ,
we say that f is an adelic cusp form.

We will denote the space of all Hilbert modular forms (resp. cusp forms) of
weight k and level n by Mk(n) (resp. Sk(n)). There is a relation between classical
and adelic Hilbert modular forms which proves important when dealing with ques-
tions that relate to the arithmetic of these forms. To explain this relationship, let
cλ, λ = 1, . . . , h+, be representatives of the narrow ideal classes of F . For each
λ = 1, . . . , h+, take xλ ∈ GL2(A), so that tλ = det(xλ) generates the ideal cλ.
Then, by the strong approximation theorem,

GL2(A) =
h+∐
λ=1

GL2(F )xλ

(∏
τ

GL+
2 (R)×K0(n)

)
,

and we see that

Γλ = Γ(cλ, n) = xλ

(∏
τ

GL+
2 (R)×K0(n)

)
x−1

λ ∩GL2(F ).

To each adelic Hilbert modular form f , we associated the h+-tuple (f1, . . . , fh+) ∈
⊕h+

λ=1Sk(cλ, n), where fλ = fxλ
is given by Definition 6. Then, we have
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Proposition 3. The map

Sk(n) →
h+⊕
λ=1

Sk(cλ, n)

f 7→ (f1, . . . , fh+)

is an isomorphism of complex vector spaces.

Proof. The converse of the map is given by the C-valued function f on GL2(A)
defined by

f(γxλg) = (fλ||kg∞)(i), γ ∈ GL2(F ) and g ∈ GL+
2 (R)×K0(n).

�

2. Applications of Hilbert modular forms

The theory of Hilbert modular forms has a wide range of applications. Here we
list few of them.

2.1. Diophantine equations. After Wiles proof of the Fermat Last Theorem, a
strategy has been outlined by Darmon [3] in order to solve the generalized Fermat
equation xp+yq = zr, for p, q, r a set of arbitrary primes. In his framework, Hilbert
modular play a central rôle. For example, to solve the generalized Fermat equation
xp + yp = z5 one is led to the natural consideration of Galois representations
associated to Hilbert modular forms over the real quadratic field Q(

√
5).

2.2. Ramanujan graphs and construction of communication networks. R.
Livné, K. Lauter et al. have constructed Ramanujan graphs using Hilbert modular
forms. Their works find some application to the construction of robust networks.

2.3. The Serre conjecture for Hilbert modular forms. Many conjectures
relating the classical modular forms find their natural generalization to the setting
of Hilbert modular forms. One such conjecture is the Serre conjecture. In this case
it is stated as follows.

Conjecture 1. Let ρ : Gal(F/F ) → GL2(F`) be a continous irreducible Galois
representation such that det(ρ(cτ )) = −1, where cτ is complex conjugation at τ ∈
JF , ane which is unramified outside a finite set of primes. Then ρ comes form a
Hilbert cusp form.

The Serre conjecture for Hilbert modular forms is still far from a complete proof
as the key ingredient used by Khare and others in the classical setting quickly
breaks down in this case.

3. The Hecke action on Hilbert modular forms

In the rest of these notes, we will make some simplifying assumptions. We will
assume that F is a quadratic field of narrow class number one. This assumption
have the advantage of making the analogy between Hilbert modular forms and their
classical counterpart more transparent.

Let

Γ0(n) =
{(

a b
c d

)
∈ GL+

2 (OF ) : c ∈ n

}
.

Then Definition 6 and Proposition 3 now specialize to give the following.
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Definition 7. A Hilbert modular form of level n and weight k is a holomorphic
function f : HF → C such that f‖kγ = f , for all γ ∈ Γ0(n).

Again, we recall that the space of Hilbert modular forms of level n and weight k
will be denoted by Mk(n). Now, let f ∈ Mk(n) be a Hilbert modular form. We
recall that, by Koecher’s principle, f is holomorphic at cusps, so that it admits a
Fourier expansion

f(z) =
∑
µ=0,
µ�0

aµe2πiTr(µz).

For any integral ideal a, choose a totally positive generator µ of a and put

c(a, f) := N(µ)k/2aµ.

Lemma 2 (Lemma-Definition). The coefficient c(a, f) does not depend on the
choice of the generator µ � 0. We call it the Fourier coefficient of the form f
associated to the integral ideal a. The L-series attached to f is given by

L(f, s) :=
∑

a⊆OF

c(a, f)
N(a)−s

, s ∈ C.

The L-series of a modular cusp form is an entire function; i.e., it is holomorphic
on the whole complex plane. We will see later that, for a particular class of cusp
forms, it encodes lot of arithmetic properties.

3.1. The Hecke operators. Let p 6| n be a prime ideal and πp a totally positive
generator of p. We write the finite disjoint union

Γ0(n)
(

1 0
0 πp

)
Γ0(n) =

∐
i

Γ0(n)ui,

and for each f ∈ Mk(n), we put

f‖kTp :=
∑

i

f‖kui.

This gives a well defined linear map Tp : Mk(n) → Mk(n) which preserves the cusp
space Sk(n). We call Tp the Hecke operator at the prime p. This definition can be
extended to the primes p that divide the level n. The Hecke operators p, as p runs
through all the primes in F , generate a finite Z-subalgebra of End(Sk(n)) which we
call the Hecke algebra of level n and denote by T0(n).

3.2. Eigenforms and Hecke action. The Hecke algebra T0(n) is a commutative
algebra which is (almost) self-adjoint with respect to an inner product on Sk(n)
called the Petersson inner product. As a result, it is diagonalizable and admits a
common basis of eigenvectors.

Definition 8. Let f be a Hilbert modular cusp form. We say that f is an eigenform
if it is a common eigenvector for the Hecke algebra. A normalized eigenform is an
eigenform f such that c(OF , f) = 1.

Thanks to Shimura [12], we have the following result.

Theorem 4 (Shimura). Let f ∈ Sk(n) be a normalized eigenform. Then for each
integral ideal a, the Fourier coefficient c(a, f) is an algebraic integer which satisfies
the relation:

Taf = c(a, f)f.
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Moreover, the field Kf = Q(c(a, f), a ⊆ OF ) generated by the c(a, f) is a number
field (i.e. [Kf : Q] < ∞).

The L-series of a normalized eigenform f encodes lot of arithmetic properties
related to it. And so, by computing the Fourier expansion of the form f , one
expects to gain access to some of that arithmetic.

4. The Jacquet-Langlands correspondence and the space of Hilbert
modular forms

In this section, we will assume that k = (2, 2).

4.1. Automorphic forms on definite quaternion algebras. We choose a quater-
nion algebra B/F such that Ram(B) = JF i.e., B ⊗Q R ∼= H2 and for each finite
prime p, Bp = B ⊗F Fp

∼= M2(Fp) (this is possible thanks to the classification
theorem of quaternion algebras over global fields. See Vignéras [14, Théorème 2.2
]). We fix a maximal order R of B and for each prime p, we choose the isomorphism
Bp

∼= M2(Fp) such that R = M2(OF, p). We let ν : B → F denote the reduced
norm map on B. The local isomorphisms Bp = M2(Fp) piece together to give iden-
tifications B̂ = M2(Af ) and R̂ = M2(ÔF ), where B̂ (resp. R̂) is the finite part of
the adelization of BA (resp. RA). The reduced norm map extends to ν : B̂ → Af .

Definition 9. The space of automorphic forms of weight 2 and level n on B is
defined by

MB
2 (n) =

{
B×\B̂×/K0(n) → C

}
.

We put

I2(n) =
{

f ∈ MB
2 (n) : f factors through B̂×/K0(n) ν→ A×f /ν(K0(n))

}
,

SB
2 (c) = MB

2 (n)/I2(n).

4.2. Hecke action on automorphic forms. The space of automorphic forms
come equipped with a Hecke action that is given as follows. For any u ∈ B̂×,
u 6= 0, write the finite disjoint union K0(n)uK0(n) =

∐
i uiK0(n) and, for each

element f ∈ MB
2 (n) put

f‖[K0(n)uK0(n)](x) =
∑

i

f(xui), x ∈ B̂×.

This gives a linear operator on MB
2 (n) which preserves SB

2 (n). We call this the
Hecke operator [K0(n)uK0(n)]. They generated a finite Z-subalgebra of End(SB

2 (n))
called the Hecke algebra TB

0 (n) of level n. The space SB
2 (n) equipped with the action

of TB
0 (n) is sometime called a Brandt module.

4.3. The Jacquet-Langlands correspondence. If one wishes to experiment on
Hilbert modular forms, one needs to be able to explicitly compute them. In order
to do so, one must strip them of their purely analytic nature which, a priori, seems
very rigid. This is somewhat achieved via the following theorem which is due to
several people including Eichler, Shimizu, Jacquet and Langlands. The theorem is
stated in this form in Hida [?].

Theorem 5 (Eichler-Shimizu). There is an isomorphism of Hecke modules

SB
2 (n) ∼−→ S2(n).
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From its definition, we see that the space SB
2 (n) is purely combinatorial in na-

ture, thus is relatively simple and reasonably computable. However, that relative
simplicity is in sharp constrast with the content of Theorem 5 which says that
it encodes lots of the arithmetic of Hilbert modular forms via its Hecke module
structure.

4.4. Expliciting the Brandt module SB
2 (n). In this section, we describe the

Brandt module SB
2 (n) in a way that lends itself better to computation. This will

provide us with an efficient algorithm to compute the space of Hilbert modular
forms. In order to simplify the exposition, we will assume that the quadratic field
F is chosen such that the quaternion algebra B has class number one (examples of
such quadratic fields are Q(

√
5), Q(

√
2), Q(

√
13) and Q(

√
17). To see how one can

relax those conditions, we refer to [4].
We start by recalling that B×\B̂×/R̂× parameterizes the set of right ideal classes

of R. Thus, since B has class number one,

B×\B̂×/R̂× = {B×R̂×}, and B̂× = B×R̂×.

Hence, we have the following bijections.

B×\B̂×/K0(n) ∼= R×\R̂×/K0(n) = R×\

∏
q|n

R×q /K0(qeq)


∼= R×\

∏
q|n

P1(OF,q/qeq)

 = R×\P1(OF /n),

where n =
∏

q|n qeq and

P1(A) =
{
(a, b) ∈ A2 : αa + βb = 1 for some (α, β) ∈ A2

}
/A×,

for any ring A. We now recall the action of GL2(A) on P1(A):

m · (x : y) := (ax + by : cx + dy), m =
(

a b
c d

)
.

Letting XB
0 (n) = R×\P1(OF /n), we can reinterpret the Hecke action on the free

module Z[XB
0 (n)] as follows. For each prime p, let

Θ(p) = R×\ {u ∈ R : N(u) = πp} .

Then, for each f ∈ SB
2 (n), we let

f‖Tp(x) =
∑

u∈Θ(p)

u · x, x ∈ XB
0 (n),

and extend it linearly to Z[XB
0 (n)].

4.5. Algorithm and implementation. We describe the main steps of the algo-
rithm below.

(1) Find a maximal order R = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze4 in B and compute its
group of norm 1 elements R×1 .
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(2) Let p be a prime in F , and πp a totally positive generator at p. To compute
Tp, we need to find representatives for Θ(p). This amounts to finding
quaternions

q = xe1 + ye2 + ze3 + we4 with x, y, z, w ∈ Z[ω],

which represent πp under the reduced norm map of B. We find all such
elements up to equivalence by a unit. We compute a collection of sets Θ(p)
that we store once and for all.

(3) For each prime p | n, we need to find a local isomorphism

R⊗ (OF /pep) = M2(OF /pep).

This amounts to finding a set of generators for M2(OF /pep) which satisfies
the appropriate relations corresponding to the basis we have chosen for R.

(4) Compute the space P1(OF /n) alongside with the orbits and a fundamental
domain under the action of R×1 . We have chosen to work with the product

P1(OF /n) =
∏
p|n

P1(OF /pep).

Then the coset representatives for each local factor P1(OF /pep) are taken
to be all pairs

(1, a), a ∈ p/pep , and (a, 1), a ∈ (OF /pep).

This representation of the projective line P1(OF /n) has the advantage of
facilitating look up. Also splitting R at one prime at the time is more
efficient.

(5) Compute the action of the Hecke operator Tp.

Example 3. Let F = Q(
√

5), ω = 1+
√

5
2 , and B be the standard Hamilton quater-

nion algebra over F :

B = {x + yi + zj + wk, x, y, z, w ∈ F} .

Since 2 is inert in F , B is only ramified at both infinite places. By Körner [9,
Theorem 2] or Socrates and Whitehouse [13, Theorem 6.2], the class number of B
is one. Every maximal order in B is then conjugate to the icosian ring

R = Z[ω][e1, e2, e3, e4],

with

e1 =
1
2
(1− ω̄i + ωj),

e2 =
1
2
(−ω̄i + j + ωk),

e3 =
1
2
(ωi− ω̄j + k),

e4 =
1
2
(i + ωj − ω̄k),

and ω = (1 +
√

5)/2. The group of units R× is the semi-direct product of R×1
with Z, where R×1 is the subgroup of norm 1 elements is isomorphic to the binary
icosahedral group of order 120. (Cf. [2, Chap. 8, sec. 2.1]).
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Now, let n = (5 + 2ω), so that N(n) = 31. This is the smallest norm for which
there exist Hilbert modular cusp forms of parallel weight (2, 2) on F = Q(

√
5). A

fundamental domain for the action of the icosian group on P1(OF /n) is S = {e1 =
(1 : 0), e2 = (1 : 10)}. This means that dim M2(n) = 2. The first few Brandt
matrices are:

B2 =
(

2 3
5 0

)
, B√5 =

(
3 3
5 1

)
, and B3 =

(
7 3
5 5

)
.

The space M2(n) decomposes into two one-dimensional eigenspaces given by v1 =
e1 + 3

5e2 and v2 = e1 − e2. The vector v1 corresponds to the Eisentein series,
while the vector v2 corresponds to a normalized eigenform f . We will compute the
modular elliptic curve of conductor (5 + 2ω) corresponding to f (see Section 3).

5. An algorithm for modular elliptic curves over real quadratic fields

For simplicity, we will assume in this section that their is a fundamental unit
ω ∈ F whose norm is −1. Let f be a Hilbert eigenform whose L-series is denoted
by L(f, s). Then we have the following conjecture known as the Eichler-Shimura
construction in the classical setting.

Conjecture 2. Let f be a Hilbert eigenform with rational Fourier coefficients.
Then there exists an elliptic curve Ef such that L(Ef , s) = L(f, s).

This conjecture is known for F = Q and the proof uses the arithmetic theory of
the modular curve X0(n) and its Jacobian Jac(X0(n)). Unfortunately, the theory of
modular Jacobians does not generalized very well to higher dimension as Hilbert-
Blumenthal modular varieties prove not to be good substitutes to the modular
curve. Nonetheless, one expects this conjecture to be true and wishes to have an
explicit algorithm that constructs the curve Ef given the Fourier expansion of the
form f as in the classical setting. Our goal in this section is to provide such an
algorithm assuming that the corresponding curve has square-free conductor, i.e. is
semi-stable.

5.1. The strategy of the algorithm. In [10], Oda gives the elliptic curve Ef as
a complex curve. We intend to use the Weierstrass uniformization theorem in order
to find an equation for Ef over F . First, let ωf = (2πi)2f(z1, z2)dz1dz2 be the
differential form attached to f . The period lattice of the form f is given by

Λf = ZΩ++
f ⊕ ZΩ+−

f i⊕ ZΩ−+
f i⊕ ZΩ−−f ,

where Ωss′

f , s, s′ ∈ {−, +} are positive real numbers. This lattice is only well-
defined up to a rational multiple and, as one sees, its rank is double the one of
the elliptic curve Ef . This phenomenon illustrates the fact that the periods of
the form f are actually mixes of the periods of Ef and its Galois conjugate Ef .
Unfortunately, there is no known method to seperate the periods of Λf . So in order
to get the curve Ef , we need a way to overcome this problem. Our approach is
to compute the j-invariant of the curve Ef . The j-invariant of Ef as a modular
function is given by j(τ) where

τ =
Ω+−

f

2Ω++
f

i or τ =
1
2

(
1 +

Ω+−
f

Ω++
f

i

)
,
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depending on wether the real locus of Ef has one or two connected components.
We can assume without loss of generality that the curve E = Ef is a global minimal
Weierstrass equation. Then j(τ) = j(E) = c3

4
∆E

. Since we assume E to be semi-
stable as well, we can look for E such that

∆E = εN, where ε ∈ O×F /
(
O×F
)12

,

and N is a totally positive generator of n. So knowing j(τ) to enough precision,
we can obtain c4 and also c6 from the relation c3

4 − c2
6 = 1728∆E and reconstruct

a minimal Weierstrass equation for E from its invariants c4 and c6.

5.2. The oda periods lattice. Let χ : (OF /c)× → C× be a primitive quadratic
character of conductor c = (ν) that is prime to n, where ν � 0. Also let V ⊂ O×F

+

be a subgroup of finite index such that V ⊂ 1 + c. We extend the character χ to
non-units in the obvious way. The twisted L-series of f by χ is given by

L(f, χ, s) :=
∑

a⊆OF

χ(a)c(a, f)
N(a)−s

.

Proposition 6 (Oda). Let

Ωss′

f, χ, V = −4π2disc(F )[O×+
F : V ]G(χ)L(f, χ, 1),

where G(χ) is the Gauss sum of the character χ, and χ(ω) = s and χ(ω̄) = s′.
Then Ωss′

f, χ, V is a rational multiple of Ωss′

f when χ(−1) = ss′.

By making use of Proposition 6, it is easy to compute the period lattice Λf up
to homothety. But in analogy with the classical settting, one expects a stronger
statement to be true. Namely, we make the following conjecture.

Conjecture 3 (The period conjecture). Let χ : (OF /c)× → C× be a primitive
quadratic character of conductor c = (ν) that is prime to n, where ν � 0. Let

Ωss′

f, χ = −4π2disc(F )G(χ)L(f, χ, 1),

where G(χ) is the Gauss sum of the character χ, and χ(ω) = s and χ(ω̄) = s′.
Then Ωss′

f, χ is an integral multiple of Ωss′

f when χ(−1) = ss′.

5.3. Computing the periods lattice. All that remains in order to compute the
elliptic curve Ef is to find an efficient way to compute the period lattice Λf . This
amounts to finding a way to compute the the special values L(f, χ, 1).

Let WN be the Atkin-Lehner involution given by

WN : z = (z1, z2) 7→ (− 1
Nz1

, − 1
N̄z2

),

where N is a totally positive generator of n, and let

f(z1, z2) =
∑

µ∈O+
F

c((µ)) exp[2πi(Tr(
µωz√

D
)]

=
∑

µ∈O+
F /O×F

+

c((µ))
∑

ε∈ O×F
+

exp[2πiTr(
εµωz√

D
)]
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be the q-expansion of f . Then fχ = f ⊗ χ ∈ S2(nc2) and its q-expansion is given
by

f ⊗ χ(z1, z2) =
∑

µ∈O+
F

c((µ))χ(µ) exp[2πiTr(
µωz√

D
)]

=
∑

µ∈O+
F /O×F

+

c((µ))χ(µ)
∑

ε∈ O×F
+

exp[2πiTr(
εµωz√

D
)].

The following lemma gives an optimized way to compute the special value L(f, χ, 1)
for a given character χ.

Lemma 3. Let f ∈ S2(n) be an eigenform. If WNf = −f , then L(f, 1) = 0;
otherwise

L(f, 1) = − D

2π2

∑
µ∈O+

F

c((µ))
N(µ)

[
1− exp

(
− 2πµω√

DN

)]
×

exp
[

2π√
D

(
µ̄ω̄√
N
− µ√

N

)]
.

Remark 1. Let χ is a quadratic character of conductor c. Then, by Atkin-Lehner,
we know that fχ ∈ S2(nc2) and WNν2fχ = εNχ(−N)fχ. Therefore, by Lemma 3,
when εNχ(−N) = 1,

L(f, χ, 1) = − D

2π2

∑
µ∈O+

F

c((µ))
N(µ)

χ(µ)
[
1− exp

(
− 2πµω

ν
√

DN

)]
×

exp
[

2π√
D

(
µ̄ω̄

ν̄
√

N
− µ

νN

)]
.

By using the fact that every totally positive element is of the form ω2k, k ∈ Z, this
series can be rearranged as

L(f, χ, 1) = − D

2π2

∑
µ∈O+

F /O+
F

×

c((µ))
N(µ)

χ(µ)×
∑
k∈Z

[
1− exp

(
−2πµω2k+1

ν
√

DN

)]
×

exp
[

2π√
D

(
µ̄ω̄2k+1

ν̄
√

N
− µω2k

νN

)]
.

5.4. The algorithm. We need to solve the following problem: Given a Hilbert
eigenform f with rational Fourier coefficients, find an elliptic curve which shares
the same L-series. Assuming that we know all the possibilities for the discriminant
of Ef , we can proceed as follows in order to find Ef .

1) Try several quadratic characters in order to determine the periods Ωss′

f ,
s, s′ ∈ {−, +} for the curve Ef and its Galois conjugate Ef . We need to
try characters χ whose conductors are as small as possible since the size
of the conductor of χ affects the speed of convergence of the series that
determines L(f, χ, 1).

(2) Now choose

∆E = εN, where ε ∈ O×F /
(
O×F
)12

.
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(3) For each possible choice of (τ, τ ′) corresponding to a curve Ef and its
Galois conjugate Ef , compute (j(τ), j(τ ′)) and approximations of c4 and
its conjugate c̄4. In most cases, it will be easy to recognize c4 − c̄4 and
(c4+ c̄4)/

√
D as integers. If c4 corresponds to an elliptic curve, the equation

c3
4 − c2

6 = 1728∆E should have a solution c6 ∈ OF .
(4) For each pair (c4, c6), find a minimal Weierstrass equation for E and check

that its ap(E) agree with the Fourier coefficients of f up to a convenient
bound.

(5) Repeat Step (2).

Example 4. Let n = (5 + 2ω) be one of the primes above 31 in Q(
√

5), where
ω = 1+

√
5

2 . In Example 3, we found that there is a normalized eigenform with
rational Fourier coefficients of weight 2 and level n. We want to find an elliptic
curve Ef/F of conductor n. Let c1 = (2 + ω) be the unique prime above 5 and
χ1 : (OF )/c1)

× → C× and the unique quadratic character such that χ1(ω) =
χ1(ω̄) = −1. Also, let c2 = (4) and χ2 : (OF )/c2)

× → C× be the quadratic
character given by χ2(ω) = −1 = χ2(−1). By Conjecture 3, Ω−−f, χ1

(resp. Ω−+
f, χ2

) is
an integral multiple of Ω−−f (resp. Ω−+

f ). Using all the ideals a of norm less than
300, we get

Ω−−f, χ1
≈ 16.8661486239692312162791057502

Ω−+
f, χ2

≈ 42.924484886200807466109186849.

So the j-invariant for one of the complex values

τ = 0.785852115345537601905542169713i, or
τ = 0.500000000000000000000000000000 + 0.196463028836384400476385542428i

will give an approximation of the j-invariant of Ef . Now, let us consider the unique
normalized eigenform g of weight 2 and level n̄ with rational Fourier coefficients.
We let c3 = (3 + ω) be a prime above 11 and χ3 : (OF )/c3)

× → C× the quadratic
character given by χ3(ω) = −1 = χ3(−1). Again, by Conjecture 3, Ω−−g, χ1

(resp.
Ω−+

g, χ3
) is an integral multiple of Ω−−g (resp. Ω−+

g ). We compute

Ω−−g, χ1
≈ 16.8661486239692312162791057502

Ω−+
g, χ3

≈ 45.2616150179158694617966907088.

So the j-invariant for one of the complex numbers

τ ′ = 0.745273831580827015400644954558i, or
τ ′ = 0.500000000000000000000000000000 + 0.186318457895206753850161238640i

will give an approximation of the j-invariant of Ef . For ∆E = ω3(5 + 2ω) and

τ = 0.785852115345537601905542169713i, and
τ ′ = 0.500000000000000000000000000000 + 0.186318457895206753850161238640i,

we get the j-invariants

j(τ) = 3780.04179066913837118227698528
j(τ ′) = −3883.66182805439499524399028631

+ 5.54997066847859914607241905399E − 27i.
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From this, we get that
c4 + c̄4

2
≈ 33.0062454618927078773801146693

c4 − c̄4

2
√

5
≈ 8.00278626724441377191059137715,

which implies that c4 = 25+8ω. We solve the discriminant relation for c6. The only
acceptable solution is the c6 = −125− 88ω. By applying the Tate-Kraus algorithm
to the curve y2 = x3 − c4x− c6, we obtain the minimal integral model

Ef : y2 + xy + ωy = x3 − (1 + ω)x2.

Its j-invariant is

j(E) =
−54753 + 106208ω

31
.

Example 5. Let n = (7) be the inert prime above 7. There is a unique normalized
eigenform of weight 2 and level n with rational Fourier coefficients. We want to find
a modular elliptic curve Ef that corresponds to f . If such a curve exists, it should
be isomorphic to its Galois conjugate as they share the same eigenform. So we can
look for a curve whose j-invariant is of the form ∆ = ± c3

4
7 , with c4 ∈ Q. Using the

character χ2 and χ3 of the previous example, we compute the periods

Ω−−f, χ2
≈ −34.441042163916172359753966505295

Ω−+
f, χ3

≈ −44.855133493323226425099174201646.

We need to test which one of the complex values

τ = 0.7678283282568490906825541733204421772820584428553372, or
τ = 0.5000000000000000000000000000000000000000000000000000

+ 0.38391416412842454534127708666022108864102922142i.

determines an elliptic curve that matches f . Here we get that only the first value
does. It gives the approximate j-invariant

j(τ) = 586.26066208335982138732000767831702025362931394963
− 1.79527525947094685191032251682264470750935E − 97i,

and the approximate

c4 = 16.0101818455325540375430382206961624931269468940836768667013.

We get c4 = 16 and j(E) = 163

7 . This is the j-invariant of the curve E listed as
175A1 in Cremona’s tables.
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