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Abstract. In this paper, we propose a generalization of the algo-
rithm developed in [4]. Along the way, we also develop a theory of
quaternionic M -symbols whose definition bears some resemblance
with the classical M -symbols, except for their combinatorial na-
ture. The theory gives a more efficient way to compute Hilbert
modular forms over totally fields, especially quadratic fields, and
we have illustrated it with several examples. Namely, we have
computed all the newforms of prime levels of norm less than 100
over the quadratic fields Q(

√
29) and Q(

√
37), and whose Fourier

coefficients are rational or are defined over a quadratic field.

Introduction

This paper is a generalization of [4] (see also the author’s thesis
[3]). It presents a new approach to the theory of Brandt matrices in
order to compute Hilbert modular forms. To give a brief discussion of
this approach, let F be a totally real number field of even degree and
narrow class number one–we will explain later how those conditions can
be relaxed–and let B be the unique (up to isomorphism) totally definite
quaternion algebra whose ramification is only at infinity. We let N be
an integral ideal in F . By the Jacquet-Langlands correspondence, we
know that any Hilbert modular form of level N and arbitrary weight k
comes from an automorphic form of the same level and weight on B (see
Section 3 and reference therein). The algorithm in Pizer [12], which has
been the most used so far when it comes to computing modular forms
on fields larger than Q is based on the knowledge of the invariants of an
Eichler order of level N in B, such as its class number, representatives
of its ideal classes, and the left or right orders of those ideals; see,
for example, Consani and Scholten [1], Pizer [12] and Socrates and
Whitehouse [15]. The main disadvantage of this approach is that one
needs to throw away almost everything and starts all over again when
the level changes. Our approach, instead, is based on using invariants
of the quaternion algebra B itself. So, the knowledge of the Eichler
order becomes rather virtual. From a computational point of view,
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this has tremendous advantages as one can store a huge amount of data
from the start, and the computations which are required for each level
amount to finding some local embeddings of a set of representatives of
the types of B.

Though, the aim of this paper was primarily computational, some
of the issues we address certainly have some theoretical interest. In-
deed, our approach to the Brandt matrices suggests that one can give
a purely algebraic description of the Hecke module SB

k (N), the space
of automorphic forms of level N and weight k on B. This leads us to
the notion of quaternionic Manin symbols. The definition of the Hecke
module of the quaternionic Manin symbols has lot of resemblance with
the one of the usual Manin symbols when F = Q (see Merel [11] or
Stein [16]). Unfortunately, the only way one can relate this module
to the holomorphic part of the cuspidal cohomology of the Hilbert
modular variety X0(N) seems to be by mean of the Jacquet-Langlands
correspondence. The similarities of the quaternionic M -symbols with
the usual M -symbols over Q suggests that one could implement them
in a package similar to the Magma package of Stein [16, 9] for a wide
range of number fields, especially real quadratic fields. One of the ap-
plications we have in mind for such an algorithm would be to gather
more numerical evidences about the Serre conjecture for totally real
fields.

As can be seen easily, the definition of the automorphic forms in
this paper is a special case of the theory of algebraic modular forms in
Gross [7]. So, we think that quaternionic M -symbols could also help
in approaching those forms, at least from a computational standpoint.

The paper is organized as follows. Sections 1 and 2 recall prelim-
inaries on Hilbert modular forms and automorphic forms on definite
quaternion algebras, together with the Jacquet-Langlands correspon-
dence which allows one to go from one side to the other. In Section
3, we describe the Brandt matrices, and in Section 4, we show how
one can add a character into that definition. In Section 5, we define
quaternionic M -symbols and give their basic properties. The final two
sections give numerical examples on the theory we have developed;
namely, we give tables of all the eigenforms of parallel weight (2, 2)
and prime level N of norm less than 100, whose coefficients are ratio-
nals or defined over a quadratic field, for the fields F = Q(

√
29) and

F = Q(
√

37).
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1. Hilbert modular forms

We fix a totally real number field F of even degree g. We assume
that the narrow class number of F is one. We let I be the set of all
real embeddings of F . For each τ ∈ I, we denote the corresponding
embedding into R by a 7→ aτ . Also, we let OF be the ring of integers
of F , and δ its different. For an integral ideal p of F , we denote by
Fp and OF, p the completions of F and OF , respectively, at p. We let
A its adèle ring. We say that an element a ∈ F is totally positive if,
for all τ ∈ I, aτ > 0. We then denote this by a � 0 and, for every
subring A of F , we let GL+

2 (A) be all the invertible 2 by 2 matrices
with coefficients in A, with totally positive determinant. We fix an
integral ideal N of F , and put

Γ0(N) =

{
γ =

(
a b
c d

)
∈ GL+

2 (OF ) : c ∈ N

}
.

Let k = (kτ )τ∈I ∈ ZI be an integer vector whose components have
the same parity, kτ ≥ 2. Let H denote the Poincaré upper half plane.
We recall that Γ0(N) acts on the set of functions f : HI → C by

f ||kγ(z) =

(∏
τ∈I

det γkτ /2
τ (cτzτ + dτ )−kτ

)
f

((
aτzτ + bτ

cτzτ + dτ

)
τ∈I

)
Definition 1. A Hilbert modular form of level N and weight k is a
holomorphic function f : HI → C such that

f ||kγ = f, for all γ ∈ Γ0(N).

Let f be a Hilbert modular form. Then

f(z + µ) = f(z), for all z ∈ HI , µ ∈ OF .

Therefore, f admits a Fourier expansion which, by the Koecher prin-
ciple, is of the form

f(z) =
∑

ν∈δ−1

aνe
2πiTr(νz),



4 LASSINA DEMBÉLÉ

with ν = 0 or ν � 0. Also, since f is invariant under the action

of matrices of the form

(
ε 0
0 ε−1

)
, with ε ∈ O×

F , we see that aν =

N(ε)k/2aε2ν . For any integral ideal a of F , we choose ν � 0 such that
a = (ν)δ and put

c(a, f) = aν .

This is a well-defined coefficient. For all γ ∈ GL+
2 (F ), let aγ

0 be the
first coefficient in the Fourier expansion of f ||kγ. We say that f is a
cusp form if aγ

0 = 0, for all γ ∈ GL+
2 (F ). We denote the space of all

cusp form by Sk(N).

The Petersson inner product on the space of cusp forms is given by

〈f, g〉 :=
1

µ(Γ0(N)\HI)

∫
Γ0(N)\HI

f(z)g(z)ykdµ(z),

where

dµ(z) =
∏
τ∈I

dyτ

y2
τ

, and yk =
∏
τ∈I

ykτ
τ , for zτ = xτ + iyτ .

Hecke operators. Let p be a prime ideal of F such that (p, N) = 1,
and πp a uniformizer of p . We write the disjoint union

Γ0(N)

(
1 0
0 πp

)
Γ0(N) =

∐
Γ0(N)αi,

and define the action of the Hecke operators Tp on Sk(N) by

f ||Tp =
∑

f ||kαi.

The operators Tp generate a commutative (finite) Z-subalgebra of
End(Sk(N)). We denote it by Tk(N) and call it the Hecke algebra of
level N.

Definition 2. A Hecke eigenform f is an eigenvector of Tk(N). We
say that f is normalized if c(OF , f) = 1.

It is a result of Shimura that, when f is a normalized eigenform, its
eigenvalues are given by the c(a, f), for a running over the integral
ideals in F , and that they generate a number field ([14]).

We denote by Sold
k (N) the subspace of Sk(N) generated by all cusp

forms of the form f(dz), where d ∈ M and f ∈ Sk(NM−1), for M
a non-trivial divisor of N. We denote the orthogonal complement of
Sold

k (N), with respect to the Petersson inner product, by Snew
k (N), and
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call it the subspace of newforms. We also let Tnew
k (N) be the part of

Hecke algebra which acts on the space of newforms.

2. Automorphic forms on definite quaternion algebras and
the Jacquet-Langlands correspondence

In this section, we let B be the unique (up to isomorphism) totally
definite quaternion algebra of center F that ramifies only at infinite
places (this is possible because F has even degree). We fix a maximal
order R in B, and let RN be an Eichler order of level N contained in R.
We fix a Galois extension K of F contained in C, which splits B. We
fix also an isomorphism B⊗F K ∼= M2(K)I , and let j : B× ↪→ GL2(C)I

be the resulting embedding.

We fix a vector k ∈ ZI such that kτ ≥ 2 for all τ , with all the com-
ponents having the same parity. Set t = (1, . . . , 1) and m = k − 2t,
then choose v ∈ ZI such that each vτ ≥ 0, vτ = 0 for some τ , and
m+2v = nt for some non-negative n ∈ Z. For every non-negative inte-
gers a, b ∈ Z, we let Sa, b(C) denote the right M2(C)-module Syma(C2)
(the ath symmetric power of the standard right M2(C)-module C2) with
the M2(C) action:

x ·m := (det m)bxSyma(m).

Then, we define

Lk =
⊗
τ∈I

Smτ , vτ (C).

We let G = ResF/Q(B×) be the algebraic group obtained by restriction
of scalars. Via the obvious extension of j, G(R) acts on Lk. On the
complex space of functions f : G(Q)\G(A) → Lk, we define an action
of G(A) by

(f ||ku)(g) := f(gu)u−1
∞ , g, u ∈ G(A).

Similarly, on the space of functions f : G(Af )/R̂
×
N → Lk, we define an

action of G(Q) by

(f ||kγ)(g) := f(γg)γ, g ∈ G(A), γ ∈ G(Q).

Definition 3. The space of automorphic forms of level N and weight
k on B is

SB
k (N) :=

{
f : G(Q)\G(A) → Lk : f ||ku = f, u ∈ G(R)× R̂×

N

}
.

Equivalently, we can define the space of automorphic forms as

SB
k (N) =

{
f : G(Af )/R̂

×
N → Lk : f ||kγ = f, γ ∈ G(Q)

}
.
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Hecke operators. Take u ∈ G(Af ) and write the finite disjoint union

R̂×
NuR̂×

N =
∐

R̂×
Nui.

We define the Hecke operator [R̂×
NuR̂×

N] by

[R̂×
NuR̂×

N] : SB
k (N) → SB

k (N)

f 7→
∑

i

f ||kui.

Let p be a prime ideal of F such that (p, N) = 1, and πp a uniformizer
of p. We let

Tp :=

[
R̂×

N

(
1 0
0 πp

)
R̂×

N

]
.

The operators Tp generate a commutative (finite) Z-subalgebra of End(SB
k (N)),

we denote by TB
k (N) and call the Hecke algebra of level N.

Let µB : B → Q+ be the composition of the norm map on B with the
norm map on F . We denote by µB, A : BA → R+ its natural extension
to BA. As in Taylor [17], we can find a bilinear pairing

〈 , 〉 : Lk → C
such that

〈xα, yα〉 = µB(α)n〈x, y〉, α ∈ B×.

We then define a bilinear pairing on SB
k (N) by

〈f, g〉 :=
∑

x∈XB
0 (N)

µB, A(x)n〈f(x), g(x)〉,

where
XB

0 (N) = G(Q)\G(Af )/R̂
×
N.

This bilinear pairing is not Hecke equivariant, but one can show that

〈f ||k[R̂×
NuR̂×

N], g〉 = µB, A(u)n〈f, g||k[R̂×
Nu−1R̂×

N]〉.
See Taylor [17] for more details, see also Gross [7, Proposition 1.4]
on how to obtain such a symmetric positive definite bilinear pairing
in general. Analogously to the previous section, we define the spaces
SB, old

k (N) and SB, new
k (N), and the Hecke algebra TB, new

k (N) using this

bilinear pairing. By [7, Proposition 1.4], the pairing is well-defined up
to scaling by a factor in Q×

+. So the space of newforms does not depend
on the choice of this pairing.

Since the ramification of B is only at infinite places, the Jacquet-
Langlands correspondence translates as follows.
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Theorem 1 (Jacquet-Langlands). There is an isomorphism of Z-algebras

TB, new
k (N) ∼= Tnew

k (N),

and a compatible isomorphism

SB,new
k (N) ∼= Snew

k (N)

of Hecke modules.

Proof. See Jacquet-Langlands [8, Section 16] and Gelbart [6, Chap.
9].

�

Theorem 1 asserts that one obtains all the newforms on GL2/F by
computing the ones that live on B×/F . Our next goal is to provide an
efficient algorithm which computes the latter space.

3. Brandt matrices

We will now bring the Hecke module SB
k (N) in a form that lends itself

to computation. We keep the notation of the previous section. Let h
be the class number of B, and let (gα)1≤α≤h be a set of finite idèles that
generate the right ideal classes of R. For each α, we let Iα be the right
R-ideal generated by gα and Rα its left (maximal) order. We assume,
without loss of generality, that R1 = R, and fix local isomorphisms
Rp

∼= M2(OF, p). Via the resulting isomorphism R̂×
α
∼= GL2(ÔF ), R̂×

α

acts transitively on P1(OF /N). We put R̂N, α = gαR̂Ng−1
α , and let ∞α

be the point whose stabilizer is R̂×
N, α.

We define the space of automorphic forms of level N and weight k
on the order Rα by

Sk(Rα, N) =
{
f : P1(OF /N) → Lk : f ||kγ = f, γ ∈ R×

α

}
,

with

f ||kγ(x) := f(γx)γ.

As in Definition 3, we can equivalently define the space Sk(Rα, N) as

Sk(Rα, N) =
{

f : R×
α\G(R)× R̂×

α → Lk : f ||ku = f, u ∈ G(R)× R̂×
N, α

}
.

We will be using both definitions with no distinction.

We now define Hecke operators between such spaces. For each α, β,
let Iα, β = IαI−1

β . Then, Iα, β is an ideal in B whose left order (resp.
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right order) is Rα (resp. Rβ). Now, take u ∈ R̂α(gαg−1
β ) and write the

(finite) disjoint union

R̂×
N, αuR̂×

N, β =
∐
ν

uνR̂
×
N, β,

and for each x ∈ G(R)× R̂×
α , put

N(x, α, β, u) =
{

uν : xuν = γνxν for some γν ∈ B×, xν ∈ G(R)× R̂×
β

}
.

Take f ∈ Sk(Rβ, N) and x ∈ G(R)× R̂×
α , and put

f ||k[R̂×
N, αuR̂×

N, β](x) =
∑

ν∈N(x,α, β, u)

f ||kuν(x),

where we choose γν ∈ B× and xν ∈ G(R)× R̂×
β such that xuν = γνxν ,

and put

f ||kuν(x) = f(xν).

If xuν = γνxν = γ′νx
′
ν , then γ−1

ν γ′ν ∈ R×
β . And, since f is left R×

β -
invariant, we see that f(xν) = f(x′ν). So, f ||kuν(x) is well-defined.

Furthermore, multiplication to the right of the uν ’s by elements in R̂×
N, β

does not affect their cosets, and multiplication to the left by elements
in R̂×

N, α will induce a permutation of those cosets. As a result, we get

that f ||k[R̂×
N, αuR̂×

N, β] is well-defined and belongs to Sk(Rα, N). Thus,
we have a map

[R̂×
N, αuR̂×

N, β] : Sk(Rβ, N) → Sk(Rα, N)

f 7→ f ||k[R̂×
N, αuR̂×

N, β],

which we call the Hecke operator [R̂×
N, αuR̂×

N, β]. We can now state the
following result.

Theorem 2. The map

SB
k (N) →

h⊕
α=1

Sk(Rα, N)

f 7→ (fα)α,

where

fα(x · ∞α) = f(xgα), x ∈ R̂×
α ,

is an isomorphism of Hecke modules.
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Proof. We first recall that every element in SB
k (N) is completely de-

termined by its values on the finite set

G(Q)\G(Af )/R̂
×
N = B×\B̂×/R̂×

N.

Now, since B has class number h, we can write the disjoint union

B̂× =
h∐

α=1

B×gαR̂×,

hence

B×\B̂×/R̂×
N = B×\

(
h∐

α=1

B×gαR̂×

)
/R̂×

N

=
h∐

α=1

B×\
(
B×gαR̂×

)
/R̂×

N.

Now, it is not hard to verify that the map

B×\B×gαR̂×/R̂×
N → R×

α\R̂×
α/R̂×

N, α

γgαx 7→ R×
α (gαxg−1

α )R̂×
N, α

is a bijection. By recalling that R̂×
α acts transitively on P1(OF /N) with

the stabilizer of ∞α being R̂×
N, α, we can rewrite the above bijection as

B×\B×gαR̂×/R̂×
N → R×

α\P1(OF /N)

γgαx 7→ (gαxg−1
α ) · ∞α.

It then follows that f uniquely determines the vector (fα)α, and vice
versa. Therefore, the map

SB
k (N) →

h⊕
α=1

Sk(Rα, N)

f 7→ (fα)α

is an isomorphism of complex vector spaces, the inverse being obtained
as follows: for any h-tuple (fα)α, we define f by

f(γgαx) := fα((gαxg−1
α ) · ∞α)γ−1, γ ∈ G(Q), x ∈ R̂×.

It remains to prove that this isomorphism is compatible with the
Hecke action. To this end, take u ∈ R̂, with u 6= 0, and write the
disjoint union

R̂×
NuR̂×

N =
∐
ν

uνR̂
×
N.
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Then, the α-th component of the form f under the action of the Hecke
operator [R̂×

NuR̂×
N] is given by

f ||k[R̂×
NuR̂×

N]α(x) =
∑

ν

f ||kuν(xgα) =
∑

ν

f(xgαuν)

=
h∑

β=1

∑
xgαuν∈B×gβR̂×β

f(xgαuν)

=
h∑

β=1

∑
ν∈N(x, α, β, gαug−1

β )

f(x(gαuνg
−1
β )gβ)

=
h∑

β=1

∑
ν∈N(x, α, β, gαug−1

β )

fβ||k(gαuνg
−1
β )(x)

=
h∑

β=1

fβ||k[R̂×
N, αgαug−1

β R̂×
N, β](x).

This completes the proof. �

From now on, we fix a prime q such that (q, N) = 1. (We simply let
q = (1), when the class number of the quaternion algebra B is 1). By
making use of the strong approximation theorem, we choose the ideal
Iα such that N(Iα) is a power of q, for each α = 1, . . . , h. Now, let
p 6= q be a prime ideal of F such that (p, N) = 1, and πp a uniformizer
of p. For each α, β, put

N(α, β, p) :=

{
u ∈ IαI−1

β :
N(u)

N(IαI−1
β )

= πp

}
/R×

α ,

where we let R×
α act by multiplication on the left. The action of Hecke

in terms of global elements translates as follows:

Tα, β
p : Sk(Rβ, N) → Sk(Rα, N)

f 7→
∑

u∈N(α, β, p)

f ||ku.

When applying to an element x ∈ P1(OF /N), the summation must
be restricted to the u’s whose action is non-degenerate. The operators

Tα, β
p generate a (finite) Z-submodule T

Rα, Rβ

k (N) of

Hom(Sk(Rα, N), Sk(Rβ, N)). The computation of the action of TB
k (N)

amounts to the computation of the action of the collection (T
Rα, Rβ

k (N)).



HILBERT MODULAR FORMS 11

We will now describe the Brandt matrices. To this end, let us fix a
fundamental domain

Sα = {xα
i , i = 1, . . . , sα}

for the action of R×
α on P1(OF /N), where sα is the cardinality of Sα.

Recalling that each element in Sk(Rα, N) is completely determined by
its values on the set Sα, we get an isomorphism of complex vector
spaces

Sk(Rα, N) →
sα⊕
i=1

L
Γα

i
k

f 7→ (f(xα
i ))i

where Γα
i is the stabilizer of xα

i and L
Γα

i
k is the space of Γα

i -invariants.

To compute the Brandt matrix of Tα, β
p , we let N(xα

i , xβ
j , p) be the

subset of N(α, β, p) given by

N(xα
i , xβ

j , p) =
{

u : u · xα
i = γu · xβ

j for some γu ∈ R×
β

}
.

Now, take f ∈ Sk(Rα, N). Then, we have

f ||kTα, β
p (xα

i ) =
∑

u

f ||ku(xα
i ) =

∑
u

f(uxα
i )u

=

sβ∑
j=1

∑
u∈N(xα

i , xβ
j , p)

f(uxα
i )u

=

sβ∑
j=1

∑
u∈N(xα

i , xβ
j , p)

f(γux
β
j )u

=

sβ∑
j=1

f(xβ
j )

 ∑
u∈N(xα

i , xβ
j , p)

γ−1
u u

 .

So, we define the Brandt matrix of the operator Tα, β
p to be Bα, β

p = (bij),
where the entry bji is the linear operator

bji : L
Γβ

j

k → L
Γα

i
k

v 7→ v

 ∑
u∈N(xα

i , xβ
j , p)

γ−1
u u

 .
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Remark 1. On can verify that the definition of the Brandt matrices is
independent of the choice of the fundamental domains Sα, 1 ≤ α ≤ h.

4. Brandt matrices with character

To develop the theory of Brandt matrices with character, let us start
with the observation that, by replacing U0(N) ∼= R̂×

N by U1(N), the the-
ory we just presented in Sections 2 and 3 will work through, especially,
Theorem 2 will still hold, and we will get the following isomorphism of
Hecke modules:

SB
k (U1(N)) ∼=

h⊕
α=1

Sk(Rα, U1(N)),

with the obvious definitions. Now, the space Sk(Rα, U1(N)) will just
be the set of functions

f : H1(N) → Lk such that f ||kγ = f,

where

H1(N) :=
{
(a, b) ∈ (O/N)2 with gcd(a, b) ∈ (O/N)×

}
.

The natural action of (O/N)× on H1(N) induces the following action
on Sk(Rα, U1(N)).

(u · f) := f(ux) u ∈ (O/N)× and x ∈ H1(N).

We would like to decompose Sk(Rα, U1(N)) under this action. To this
end, let us fix a set S of coset representatives for H1(N)/(O/N)×. We
would like to observe that, though there a bijection between S and the
projective line we considered before, we would like to make a marked
distinction between the two. We fix a character χ : (O/N)× → C×

and define the twisted projective line by χ to be

P1
χ(O/N) := H1(N)/ ker(χ),

i.e., (ua, ub) ∼ (a, b) ⇐⇒ u ∈ ker(χ). Note that, for the triv-
ial character, we get the usual projective line. Also, note that there
is a canonical map P1

χ(O/N) → P1(O/N) which is not R×
α -linear in

general. We define the space of automorphic forms of level U1(N, α),
weight k and character χ to be

Sk(Rα, N, χ) :=
{
f : P1

χ(O/N) → Lk such that f ||kγ = f
}

.

Now, take f ∈ Sk(Rα, N, χ) and put

fχ(u · x) := χ(u)f(x), u ∈ (O/N)×, x ∈ S.
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It is not hard to see that fχ is a well-defined element of Sk(Rα, U1(N))
lying in the χ-eigenspace. Conversely, any χ-eigenvector of the action of
(O/N)× on Sk(Rα, U1(N)) will determine an element of Sk(Rα, N, χ)
by the above relation. So, we just proved the following result.

Theorem 3. The map

Sk(Rα, U1(N)) →
⊕

χ

Sk(Rα, N, χ)

f 7→ (fχ)χ

is an isomorphism of complex spaces in which the χ-eigenspace corre-
sponds to Sk(Rα, N, χ).

By making use of the theorem above, one can develop the theory of
Brandt matrices with character mutatis mutandis.

5. Quaternionic M-symbols

In this section, we define quaternionic M -symbols and give their
basic properties. The content of this section was largely inspired by
Stein [16], and of course, Merel [11] and Manin [10]. We keep the
notations of the previous section, except that we put some integral
structure on Lk. We choose a generator πq of q and let OF, (q) = OF [ 1

πq
],

and OK, (q) = OK ⊗OF, (q). The integral structure on Lk is obtained by
letting Lk(OK, (q) be the OK, (q)-submodule of Lk obtained by replacing
C by OK, (q) in the definition, where OK is the ring of integers of K.
So, for each OK, (q)-algebra A, we now define

Lk(A) =
⊗
τ∈I

Smτ , vτ (A),

with the right action now restricted to M2(A)I . We fix an isomorphism
j : B⊗K ∼= M2(K)I such that j(R⊗OK) = M2(OK)I .

We consider the product of OK, (q)-modules

OK, (q)[P
1(O/N)]× Lk(OK, (q)),

and define a left action of R× on it by

γ · (x, v) := (γx, vγ−1).

We let Mk(R, N, OK, (q)) the largest torsion-free quotient

OK, (q)[P
1(O/N)]⊗ Lk(OK, (q))/〈x− γx, γ ∈ R×〉.

We see from that definition that replacing R by a conjugate order
will give an isomorphic OK, (q)-module. So, we can make the following
definition.
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Definition 4. We call Mk(R, N, OK, (q)) the OK, (q)-module of quater-
nionic M-symbols of weight k and level N attached to R.

With obvious definitions, we see that for any subring OK, (q) ⊂ A ⊂ C,

Mk(R, N, A) = Mk(R, N, OK, (q))⊗OK, (q)
A.

Let m =
∑

i xi⊗vi be an element ofMk(R, N, C), with xi ∈ P1(O/N)
and vi ∈ Lk(C). We define the support of m to be

Supp(m) =
⋃
i

R×xi.

Then, we define the map

fm : P1(O/N) → Lk

x 7→

 viγ
−1
i , x = γixi ∈ Supp(m)

0, else.

It is not hard to see that fm is an element of Sk(R, N).

Proposition 4.

Mk(R, N, OK, (q)) → Sk(R, N, OK, (q))

m 7→ fm

is an isomorphism of OK, (q)-modules.

Proof. We only need show that

Mk(R, N, C) → Sk(R, N)

m 7→ fm

is an isomorphism of complex spaces, but this is not very hard to see
from the definition. �

Definition 5. The OK, (q)-module of quaternionic M-symbols of level
N and weight k attached to B is defined by

MB
k (N, OK, (q)) :=

h⊕
α=1

Mk(Rα, N, OK, (q)).

We now define the action of Hecke on this module by

Tα, β
p : Mk(Rα, N, OK, (q)) → Mk(Rβ, N, OK, (q))

[x]α 7→
∑

u∈N(α, β, p)

[u · x]β,



HILBERT MODULAR FORMS 15

where [x]α denotes the class of x ∈ OK, (q)[P
1(O/N)] ⊗ Lk(OK, (q)) in

the module Mk(Rα, N, OK, (q)). We get the Hecke operator Tp on

MB
k (N, OK, (q)) by piecing together all the Tα, β

p ’s.

Theorem 5. The map

MB
k (N, OK, (q)) → SB

k (N, OK, (q))

(mα)α 7→ (fmα)α

is an isomorphism of Hecke modules.

Proof. This is a restatement of Theorem 2 in light of Proposition
4. �

Remark 2. 1) The analogy between our quaternionic M -symbols and
the Manin symbols, for F = Q, is clearly transparent from the defini-
tion. Further, the same way the Manin symbols give a purely algebraic
description of the holomorphic cuspidal cohomology of the modular
curve which lends itself very well to computation, so do our quater-
nionic M -symbols. In our case however, one needs to resort to the
Jacquet-Langlands correspondence in order to prove that the holomor-
phic cuspidal part of the cohomology of the Hilbert modular variety
X0(N) is given by our quaternionic M -symbols, whereas in the ratio-
nal case, one disposes of the so-called Manin trick. One of our goal
is to implement the computation of the module of quaternionic M -
symbols into a package similar to the Magma package of Stein [9] for
M -symbols, at least for a wide range of quadratic fields.

2) From a computational point of view, the module MB
k (N, OK, (q))

can also be used in approaching algebraic modular forms as defined in
Gross [7]. Indeed, let G/Q be a reductive group satisfying the condi-

tions in [7, Proposition 1.4], and U ⊂ G(Ẑ) a compact open subgroup.

In most interesting cases, the quotient G(Ẑ)/U will often have a nice
description as a flag variety over a finite artinian ring. So, knowing
the class number of G, one can give a description of the space of al-
gebraic modular forms of level U similar to ours, and get the Hecke
operators as acting on a disjoint union of such flag varieties. In fact, a
similar approach was adopted by Pollack in his thesis [13] in order to
compute coset representatives for G(Q)\G(Af )/U , except that for the
description of Hecke action, he went back to the adelic setting.

6. Algorithms for real quadratic fields

We will now explain how the discussion in the previous sections can
be used for explicit computation of Hilbert modular forms on real qua-
dratic fields. In order to do so we need some preliminary results. We
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assume for the rest of this section that F = Q(
√

D) is a real quadratic
field of narrow class number one, where D is a square-free positive in-
teger. Let v1 and v2 be the two real places of F . We assume that F
has a fundamental unit ε with v1(ε) > 0, v2(ε) < 0 and N(ε) = −1.

6.1. Choosing the definite quaternion algebra. To start our al-
gorithm, we need a totally definite quaternion algebra B of center F
with Ram(B) = {v1, v2}. The following lemma will help in that choice.

Lemma 1. Let p be a positive prime in Q that is inert or ramified in
F , and B be the quaternion algebra

B =



(−1,−1
F

)
if p = 2(−1,−p

F

)
if p = 3 mod 4(−2,−p

F

)
if p = 5 mod 8(−p,−q

F

)
if p = 1 mod 8

where q is a positive prime in Q with q = 3 mod 4 and (
p

q
) = −1.

Then B is the unique (up to isomorphism) totally definite quaternion
algebra with Ram(B) = {v1, v2}.

Proof. Let B∞, p be the unique (up to isomorphism) quaternion al-
gebra defined over Q which is ramified only at ∞ and p. By Pizer
[12, Proposition 5.1], there is a canonical embedding of B∞, p into B.
Therefore, B can only ramifies at primes that lie above ∞ and p. But
B clearly ramifies above the two primes v1 and v2. And, since p is inert
or ramified in F and Ram(B) must have even cardinality, we see that
Ram(B) can only consist of {v1, v2}. �

Remark 3. To kick start our algorithm, we need to exhibit a maxi-
mal order R in B. There is a result in Socrates and Whitehouse [15]
which does this. The proof which is valid only for quadratic field with
discriminant D ≡ 5(8) is essentially computational in nature. One
can always write an easy algorithm which searches for the basis of a
maximal order. As a starting point, if we need a quaternion algebra
B in which the prime p is inert, we can take the basis of the quater-
nion algebra B∞, p given by Pizer [12, Proposition 5.2], and look for a
maximal order in B such that the transition matrix to its basis is in
Hermite normal form. Then, we only need to do an efficient search for
coefficients in the finite field Fp2 . We see that one needs to choose p as
small as possible.
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6.2. Computing representatives for the (right) R-ideal classes.
Once we have chosen the quaternion algebra B and the maximal order
R, the steps of the algorithm follow more or less the ones in Pizer [12]
and Consani and Scholten [1]. We recall some of the results in those
two papers, which can be very useful.

Proposition 6. Let I and J be two right R-ideals. Then, I and J
belong to the same class if and only if there is an element γ ∈ IJ̄ such
that N(γ) = N(I)N(J).

Proof. See Pizer [12, Proposition 1.18], and Consani and Scholten [1,
Proposition 8.1]. �

Remark 4. We can use this proposition to search for ideals in the form
I = aR, where a is an ideal in some quadratic extension K = F [α],
where α ∈ B − F . That we can always find representatives of ideal
classes in this form follows from [15, Theorem 7.2]. The search can be
made more efficient by first comparing the theta series of the ideals.
This is discussed at length in [15, Chap. 7], see also [1, 12].

6.3. Computing the Brandt matrices. The computation of the
global elements in Iα, β necessary for the calculation of the Hecke opera-
tors relies on the efficiency of the algorithm that represents an element
of F by the quadratic form that gives the scaled norm of an element in
B. Again, we refer to Pizer [12, sec. 6] and Consani and Scholten [1,
sec. 8], and Socrates and Whitehouse [15, Chap. 6 and 7 ]. We only
add that there are now many procedures in Magma which facilitate
working with lattices (see the pages on lattices in [9]).

6.4. Computing the local embeddings. The computation of the
local embeddings is fairly easy. This amounts to finding basis elements
in M2(O/N) satisfying the same relations as the ones by the elements
in the basis of the corresponding maximal order. Most of time, the de-
nominators of the basis elements are units in O/N, so we can just take
a basis of M2(O/N) satisfying the same relations as i, j. Otherwise, we
need to do the same work starting with a basis of the maximal order.

Remark 5. The implementation of the algorithm proceeds as in [4].
The main difference between our algorithm and the modular symbol
algorithm for classical modular forms resides in Step 1 which is not
needed when working with the matrix algebra M2(Q). The compu-
tations in Step 1 can however be performed and the results stored in
a database for each quadratic field. Our algorithm then becomes as
efficient as the modular symbols one. One of our goal is to create a
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huge database of quadratic fields that can be used in a package similar
to the Hecke package of Stein [16] in Magma.

7. Numerical examples

In this section, we present two numerical examples on real quadratic
fields. We think that the algorithm given here should be easy to rewrite
for any totally real number field of narrow class number one. In the
computations of this section, the results in Socrates and Whitehouse
[15] were very helpful, especially the one relating the type number and
the class number of certain quaternion algebras over real quadratic
fields. We have chosen two quadratic fields with the prime 2 inert in
them. So, the unique (up to isomorphism) totally definite quaternion
algebra ramified only at both infinite places is the Hamilton quaternion
algebra B. We consider its canonical basis {1, i, j, k}, with i2 = j2 =
−1, k = ij = −ji. For any quadratic field F of discriminant D, we
will let ωD be a generator of its maximal order OF .

7.1. F = Q(
√

29). From Socrates and Whitehouse [15], we know that
B has class number h = 2. We chose the maximal order whose basis is
given in Socrates and Whitehouse:

R := 〈1 + i + j + k

2
,

i + ω29j + (1 + ω29)k

2
, j, k〉.

The two representatives of the ideals classes we chose were

I1 := R and I2 := (9 + 4ω29, 19 + ω29 + 6i)R.

See Table 1 for the list of all newforms of level a prime of norm less
than 100 and whose coefficients are rational or defined over a quadratic
field. The levels and the forms are listed up to Galois conjugation.

7.2. F = Q(
√

37). Again, from Socrates and Whitehouse [15], we know
that B has class number h = 2. The chosen maximal order was:

R := 〈1 + i + j + k

2
,

i + ω37j + (1 + ω37)k

2
, j, k〉.

The two representatives of the ideals classes we chose were

I1 := R and I2 := (3 + ω37, 2− 1 + i + j + k

2
)R.

See Table 2 for the list of all newforms of level a prime of norm less
than 100 and whose coefficients are rational or defined over a quadratic
field. The levels and the forms are listed up to Galois conjugation.
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Remark 6. One very amusing and pleasant thing which confirmed
that our computations were correct was the level one forms appearing
in all subsequent levels as oldforms. Since, those forms can be found
elsewhere, this was a proof that the algorithm was working. Indeed,
the level one forms correspond to elliptic curves with everywhere good
reduction, and they can be found in several places (see, for example,
Darmon and Logan [2]). We give them below; E29 is the one defined
over Q(

√
29) and E37 is the one defined over Q

√
37.

E29 : y2 + xy + (2 + ω29)
2y = x3,

and

E37 : y2 + y = x3 + 2x2 − (19 + 8ω37)x + (28 + 11ω37).

Table 1: Hilbert modular forms of weight (2, 2) on
F = Q(

√
29).

N 1 (4, 2) (7, 0 + 1ω29) (9, 3)
N(p) p a(p, f1) a(p, f1) a(p, f1) a(p, f1)

4 2 −1 −1 −1 3− 1ω5

9 3 1 5 −4 −1
5 1 + 1ω29 −3 1 2 0 + 2ω5

5 3 + 1ω29 −3 1 2 0 + 2ω5

7 7 + 3ω29 2 −2 −1 −1− 2ω5

7 5 + 2ω29 2 −2 2 −1− 2ω5

13 4 + 1ω29 −1 −1 −6 −1
13 5− 1ω29 −1 −1 4 −1

N (13, 5− 1ω29) (29,−1 + 2ω29) (53,−2− 3ω29)
N(p) p a(p, f1) a(p, f1) a(p, f2) a(p, f1)

4 2 −1 −1− 2ω8 0 −2 + 2ω5

9 3 −4 −3− 2ω8 0 2− 2ω5

−5 1 + 1ω29 −3 −1 0 + 2ω5 0− 1ω5

5 3 + 1ω29 2 −1 2− 2ω5 2
7 7 + 3ω29 −3 0 + 2ω8 0 + 1ω5 2
7 5 + 2ω29 −3 0 + 2ω8 1− 1ω5 2
13 4 + 1ω29 4 −1 + 2ω8 4 4
13 5− 1ω29 1 −1 + 2ω8 4 −2 + 2ω5
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N (59,−4 + 3ω29) (67,−10− 3ω29)
N(p) p a(p, f1) a(p, f2) a(p, f1) a(p, f2)

4 2 −1 1 + 1ω8 −3 0 + 1ω5

9 3 −5 4 5 −1− 2ω5

−5 1 + 1ω29 0 0− 2ω8 −1 −1
5 3 + 1ω29 0 2 −3 2− 2ω5

7 7 + 3ω29 −1 3− 1ω8 −4 −1 + 1ω5

7 5 + 2ω29 5 0 + 2ω8 2 −1− 1ω5

13 4 + 1ω29 −1 −4 + 2ω8 −3 −5 + 3ω5

13 5− 1ω29 −4 −3− 1ω8 7 −3 + 4ω5

N (67,−10− 3ω29) (71,−9− 2ω29)
N(p) p a(p, f3) a(p, f1) a(p, f2)

4 2 −2 + 2ω5 3 −1 + 1ω5

9 3 0 + 2ω5 1 −3
−5 1 + 1ω29 2 1 3
5 3 + 1ω29 0− 1ω5 1 −1 + 1ω5

7 7 + 3ω29 0− 1ω5 −2 −1 + 3ω5

7 5 + 2ω29 −2− 2ω5 2 0 + 2ω5

13 4 + 1ω29 −2− 3ω5 3 2− 4ω5

13 5− 1ω29 −2 + 2ω5 −1 1 + 1ω5

Table 2: Hilbert modular forms of weight (2, 2) on
F = Q(

√
37).

N 1 (4, 2) (11, 5− 1ω37)
N(p) p a(p, f1) a(p, f1) a(p, f1) a(p, f2)

4 2 0 −1 1 3
3 3 + 1ω37 −1 −1 + 1ω21 1 −1
3 4− 1ω37 −1 −1 + 1ω21 2 2
25 5 6 1 + 3ω21 −1 −9
7 11− 3ω37 3 −2 3 −3
7 8 + 3ω37 3 −2 −5 3
11 4 + 1ω37 −3 2− 1ω21 4 0
11 5− 1ω37 −3 2− 1ω21 −1 −1
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N (25, 5)
N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f4)

4 2 0 0 4 −1
3 3 + 1ω37 −3 1 1 0 + 2ω5

3 4− 1ω37 1 −3 1 2− 2ω5

25 5 1 1 −1 −1
7 11− 3ω37 1 −3 1 0 + 2ω5

7 8 + 3ω37 −3 1 1 2− 2ω5

11 4 + 1ω37 1 1 −3 4− 4ω5

11 5− 1ω37 1 1 −3 0 + 4ω5

N (37,−1 + 2ω37) (41, 5 + 3ω37)
N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f1)

4 2 −4 0 0 −3
3 3 + 1ω37 1 −3 2 −1
3 4− 1ω37 1 −3 2 −1
25 5 −10 −6 −6 −3
7 11− 3ω37 −1 −1 3− 3ω5 0
7 8 + 3ω37 −1 −1 0 + 3ω5 0
11 4 + 1ω37 3 −5 0 6
11 5− 1ω37 3 −5 0 0

N (53,−7 + 3ω37) (67,−11 + 4ω37)
N(p) p a(p, f1) a(p, f2) a(p, f3) a(p, f1)

4 2 1 −3 2 0
3 3 + 1ω37 2 2 2 −1
3 4− 1ω37 −1 −1 2− 1ω5 1
25 5 −2 6 −2 + 6ω5 2
7 11− 3ω37 5 −3 0− 1ω5 −3
7 8 + 3ω37 0 0 2 + 1ω5 −1
11 4 + 1ω37 5 −3 0 + 4ω5 3
11 5− 1ω37 3 3 −5 + 1ω5 5
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N (71, 2 + 3ω37) (73, 14− 3ω37) (83, 1− 3ω37)
N(p) p a(p, f1) a(p, f2) a(p, f1) a(p, f1)

4 2 −2 −1 −2 −1 + 1ω5

3 3 + 1ω37 0 0 −3 −1
3 4− 1ω37 2 2 3 1 + 1ω5

25 5 −3 6 4 −4 + 6ω5

7 11− 3ω37 −4 4 0 2
7 8 + 3ω37 1 −4 4 −4 + 1ω5

11 4 + 1ω37 5 4 4 −1 + 4ω5

11 5− 1ω37 0 6 3 2 + 1ω5

N (83, 1− 3ω37)
N(p) p a(p, f2)

4 2 −3 + 1ω5

3 3 + 1ω37 −1
3 4− 1ω37 1 + 1ω5

25 5 4− 6ω5

7 11− 3ω37 −2
7 8 + 3ω37 0 + 1ω5

11 4 + 1ω37 3− 2ω5

11 5− 1ω37 0− 1ω5

Remark 7. Our final remark is that it could be better to implement
a variant of this algorithm if we know more about the cuspidal repre-
sentation associated to the form we are looking for. For example, if
we know that this representation is special or supercuspidal at more
than two primes, say p and q, we could choose instead the quaternion
algebra B to be ramified at both places at infinity and the two primes
p and q. This will have the tremendous advantage of cutting down
the dimension of the space we are looking for. This trick could have
been used in [1] for example. In the same way, one can implement a
variant of this algorithm over field of odd degree by adding an extra
prime to the ramification of the quaternion algebra. Using the Hamil-
ton quaternion algebra over Q, for example, would give all forms special
or supercuspidal at 2. This can be seen as a variant of Pizer [12].
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