
SCREMS: The Frontiers of Representation Theory,

Number Theory, and Mathematical Physics

Major Highlights

• Representation Theory: We will compute the Kazhdan-Lusztig-Vogan polynomials
for all simple Lie groups up to rank 9 and make the results of these computations readily
available to researchers worldwide. We will also continue to explore the combinatorial
infrastructure of W -graphs and relate it to representation theoretical invariants.

• Number Theory: We will carry out major computations of modular forms and L-
functions, and greatly enhance our understanding of the Birch and Swinnerton-Dyer
conjecture and the Riemann Hypothesis, two of the central problems in number theory.

• Mathematical Physics: We will complete the first major step in the classification of
off-shell representations of Supersymmetry, a problem which has remained open for three
decades.

• Broader Impact: We will produce new algorithms, data, web pages, and free open
source tools (such as Sage) for collaboration and data sharing in mathematical research.

• Unique Hardware: The two 128GB 16-core servers that we are requesting fill a unique
need that can’t be addressed any other way. They would update hardware purchased in
2005 using NSF Grant DMS-0555776 that has had a broad impact on mathematics.

• This grant would fund a talented undergraduate, who would administer the system and
learn substantial mathematics through their involvement with the project.

1 Introduction

In 2005 Stein used $34K of funds from his personal ANTC NSF grant DMS-0555776 to purchase
a computer with sixteen 1.8 GHz processing cores and 64 GB of RAM. This computer has
opened up a whole world of possibilities—the E8 computation mentioned below alone has
spawned an immense amount of interest, in addition to all the other exciting work that has
already been done on this computer.

• This computer is the so-called “Sage supercomputer” that was used by the Atlas for Lie
Groups FRG (DMS 0554278) to compute the character table of E8, which made a huge
splash in the international media in the Spring of 2007. In fact, Representative Jerry
McNerney (D. CA) addressed Congress to describe this collaborative work as a shining
example of NSF spending money wisely.

• This computer is the home for Sage (see Section 3), which is an open source mathematical
software development project. About 100 Sage developers have accounts on this machine.
Having this computer as a collaborative meeting place for work, sharing of partial results,

1

data, testing, etc., has had a tremendous positive influence on the project. Moreover,
the large memory and multiprocessor nature of the machine has been critical in pushing
algorithms to the limit and ensuring that Sage is capable of using parallel computing
resources.

• This computer has been the main computation server for prestigous NSF-funded work-
shops and conferences, e.g., the Arizona Winter School (which Stein co-organizes).

• This computer has played a central role in Jim Morrow’s successful summer REU pro-
gram at University of Washington, which Stein now helps organize.

We are requesting two identical servers, each having 16 very fast 3 GHz processing cores
and 128 GB RAM, and 1.5 terabytes of fast hard disks. We will use these machines to carry
out major computational research projects involving Lie groups, supersymmetry, and number
theory. Nothing comparable to this advanced hardware is currently available to us, even at
supercomputing centers. This hardware addresses major needs we have that are not addressed
by available university-wide or national supercomputing equipment:

1. The requested servers have much more RAM than individual nodes on supercomputers
we use. Large RAM is critical for the computations described in this proposal.

2. These computers will have a huge amount of fast disk space, which will be made immedi-
ately available over the Internet; this makes collaboration and sharing our results much
easier. Moreover, output of computations of data about L-functions, modular forms,
representations, etc., is sometimes huge. For example, David Vogan describes one of our
past calculations as follows:

He managed to gain access to a machine [at Cornell] with 128GB of RAM and
128GB of swap space. He used it to run the E8 computation to the end. [...]
Unfortunately he had no reasonable way to write the results to disk, so they
disappeared.

— David Vogan [Vo3]

3. Each machine will have 16 very fast processing cores, which will make them highly
suitable for interactive work. Such interactive exploration is of immense importance when
formulating mathematical conjectures, e.g., Stein’s forthcoming joint work with Mazur
to refine the Sato–Tate conjecture. Also, multiple fast processors may be the difference
between success and failure in the Supersymmetry classification (see Section 2.3).

4. Because each machine is fast, this hardware will also make it possible to run extremely
powerful web services, built on the unique new technology that has come out of the Sage
project (see Section 3).

2

1.1 Prior Support and Related Proposals

Stein received NSF grant DMS-0653968 from the ANTC program to support his personal
research for 2007–2010 on the Birch and Swinnerton-Dyer conjecture. Stein also received NSF
grant DMS-0703583 from the COMPMATH program to support one postdoc for three years,
who will work on developing linear algebra algorithms and implementations for Sage; his work
will be important for some of the student projects, and he will also serve as a mentor. Stein
has also applied for an NSF FRG grant jointly with Booker, Elkies, Conrey, Rubinstein, and
Sarnak to provide more postdoctoral and student support for a related project that involves
invariants of modular forms and L-functions.

The co-PI Doran submitted in November 2007 a proposal to NSF on “Geometry, Periods,
and Moduli of Calabi-Yau Manifolds”. This proposal would provide summer support for two
graduate students, Ursula Whitcher and Jacob Lewis, who would make use of the proposed
hardware in their research at the interface of geometry, physics, and number theory.

Stein and Doran have also submitted an NSF proposal in October 2007 to the CSUMS
program entitled “Undergraduate Computational Research in Arithmetic Geometry”, which
would support a cadre of 6–8 undergraduates who would work on research that would use the
computational resources that we are requesting in this proposal.

Rubinstein is currently partly supported by an NSERC Discovery Grant at University of
Waterloo.

The purpose of the present proposal is to complement the above NSF-funded research
projects with an extensive computational presence. This will also have a significant positive
impact on the training of students in the use of serious computational techniques in mathe-
matical research.

2 Proposed Research

2.1 The Representation Theory of Lie Groups Project

A Lie group is a group G endowed with the structure of a differentiable manifold such that
both group multiplication and group inversion are smooth maps. The additive group R, the
group O (n) of rotations in an n-dimensional Euclidean space, the group GL (n, R) of invertible
n×n real matrices, and the Lorentz group of special relativity are all examples of Lie groups.
A representation of a Lie group is a pair (π, V) consisting of a complex vector space V and a
continuous homomorphism

π : G → Aut (V) .

A unitary representation of a Lie group G is a representation (π,H) where H is a complex
Hilbert space and the homomorphisms π (g), g ∈ G, preserve the inner product of H. A
representation (π, V) is irreducible if the vector space V contains no proper closed G-invariant
subspace. The unitary dual Ĝu of G is the set of all (of all equivalence classes) of irreducible
unitary representations of G.

Since the beginning of the last century it has been a fundamental problem to determine
the unitary dual Ĝu for an arbitrary real Lie group G ([W],[Ki], [AK], [Vo1]). There are

3

two distinct, yet equally fundamental, motivations for this problem. First of all, the uni-
tary irreducible representations of a Lie group G constitute the basic building blocks of non-
commutative harmonic analysis, the natural 20th century successor to classical Fourier analy-
sis. Secondly, by a mere change of interpretation, a unitary irreducible representation (π,H)
corresponds to an elementary quantum mechanical system carrying an action of a continuous
symmetry group G. Indeed, the parameterization of the irreducible unitary representations
of the symmetry group of space-time achieved by Wigner [Wi] in the late 1930’s was simulta-
neously the classification of all possible elementary particles in Minkowski space. During the
last century, the unitary dual problem was solved for several important general cases; and in
fact, by the 1970’s, the outstanding part of the general case had been reduced to the case of
real reductive Lie groups. However, to this day, it remains an open problem to parameterize
the set of irreducible unitary representations of a real reductive Lie group.

On the other hand, it is also known that for any fixed real reductive group G, the problem
of determining Ĝu is in principle achievable by a finite computation. Moreover, there is
a method of reduction that offers some hope for a completely general solution via a finite
computation. The simple Lie groups (the basic building blocks of reductive groups) naturally
break up into two families: the real forms of the classical Lie groups and the real forms of
five exceptional Lie groups. The classical Lie groups, SL(n), SO(n) and Sp(2n), arising as
they do as groups of linear transformations preserving certain invariant bilinear forms, are
very similar in character and lend themselves, quite naturally, to uniform, inductive methods
of analysis. On the other hand, the exceptional Lie groups, virtually by tautology, are not
amenable to uniform, inductive methodologies. Thus, a basic plan of attack for reductive
groups has been to settle the unitary dual question for the exceptional groups via a (finite)
case-by-case analysis, and then to try to finish off the rest of the (remaining classical) groups
with uniform inductive arguments. The problem, however, was that the finite computation
involved was known only in principle, and then only to a small cadre of experts in the field.
Moreover, it was not even clear that the necessary computations could be carried out within
the confines of present day computer technology.

Nevertheless, in 2002, Jeff Adams (U. Maryland) began to organize a team of representation
theorists, combinatorists, and computer scientists for a direct computational assault on the
unitary dual of at least the simple Lie groups of rank at most 8. Achieving this goal would not
only settle the unitary dual problem completely for the real forms of the exceptional groups,
it would also provide an ample supply of examples of the classical groups from which the
inductive arguments leading to general cases might be developed.

By 2006 the Atlas team had grown to a group of nineteen specialists and its principal
programmer, Fokko du Cloux, had written software that could deftly handle the many arcane
subtleties of the structure theory of the reductive Lie groups. In particular, the software could
in principle compute the Kazhdan-Lusztig-Vogan (KLV) polynomials ([LV]) of any reductive
algebraic group. However, it is here that the Atlas group also met a frontier of computability.
For the computation of the KLV polynomials for the largest exceptional group, E8, was huge
and perhaps computationally inaccessible. Indeed, the basic object to be computed amounted
to a 453060×453060 matrix whose entries were polynomials with integer coefficients of degree
≤ 31; potentially (using 4-byte integers) 2.6 × 104 gigabytes worth of data. Nevertheless, by

4

employing a series of compression and reduction techniques the Atlas team computed the KLV
polynomials for E8 using a mere 64 GB of RAM on the Sage computer at the University of
Washington (see [Vo3]). This result was widely heralded as a major computational tour de
force.

2.1.1 Open problems and technological needs

Further KLV computations
Mathematically, the E8 computation was important because E8 is the largest of the ex-

ceptional Lie groups, and so the “hardest nut to crack” in the direct computational approach
to the unitary dual problem. For the classical Lie groups, there is no such largest group;
but, as remarked above, it is expected that uniform, inductive methodologies will provide the
best approach to the classical cases. Nevertheless, in order to develop, check, and initialize
inductive methods, it will be crucial to have an explicit computational grasp of as many low
lying cases as possible.

We also point out that interest in KLV polynomials is by no means limited to the Atlas
project. The original Kazhdan-Lusztig polynomials [KL1] were actually defined for Coxeter
groups, and so, in particular, for the Weyl groups of complex simple Lie algebras. These KL
polynomials have applications and interpretations far outside pure representation theory. For
example, the KL polynomials for the symmetric group Sn are used to compute the intersection
cohomology of Schubert varieties [KL2]. Yet while distinct from the KLV polynomials used in
the Atlas program, KL polynomials can nevertheless be computed using the Atlas software.
Suppose W is the Weyl group of a simple complex Lie algebra g. It turns out that if one regards
g as a real Lie algebra (by restriction of scalars), then the KLV polynomials for g coincide with
the KL polynomials for W . In this manner we have computed the KL polynomials for S10

(a finite group of order 3,628,800) by computing the KLV polynomials for SL(10, C). Thus,
independently of the goals of the Atlas project, it would be of great interest to compute the
KLV polynomials for as many simple complex Lie groups as possible.

The computational servers we request in this proposal would permit us to compute the
KLV polynomials for all the real and complex simple classical Lie groups at least up to rank 9.

Analysis of Atlas output
The Atlas software actually produces more than KLV polynomials. For example, as a

by-product of the KLV computation, the software can also compute the full W-graph of a
translation family of irreducible admissible representations. This W-graph is a weighted di-
rected graph whose vertices correspond to irreducible representations of a fixed infinitesimal
character and whose vertex weights correspond to the τ -invariant of the corresponding irre-
ducible representations. An edge from a vertex x to a vertex y with multiplicity m indicates
that the representation y occurs with multiplicity m in the Jordan-Hölder series for the tensor
product x⊗ g, where g is the adjoint representation.

In recent months we have made great strides in extracting from the W-graphs important
representation theoretical invariants of the corresponding representations. For example, by
grouping together the representations which can be connected in both directions by directed

5

paths in the W-graph, one obtains a partitioning of the set of irreducible admissible represen-
tations into cells. It is fairly easy to see by formal considerations alone that the annihilators
of the representations in the same cell share the same associated variety. But it also turns
out that the collection of all the tau invariants of the representations that occur in that cell
allow us to determine that associated variety completely. But what is most striking about this
result is the use of combinatorial data associated to group representations into cells in order
to determine a common geometric invariant.

We stress that to make a discovery like this it was absolutely necessary to first see the W-
graph data in toto and that that was only possible by employing computers to do the actual
looking.

Here is another example of computer-enabled discovery. Since the 1980’s tau invariants
([BJ], [D], [Vo2], [G]) have served as fundamental invariants in the theory of the primitive
ideals of the universal enveloping algebra of a Lie algebra g. However, tau invariants by
themselves fail to separate primitive ideals. Yet the Atlas software tells us not only the
tau invariant attached to (the annihilator of) an irreducible representation but also the tau
invariants of its nearest neighbors in the W-graph. This led us to introduce the notion of an
nth-order tau invariant of a representation x as the set of tau invariants of the vertices within
n-steps of π in the W-graph. Explicit computations then showed that these higher order tau
invariants actually separate the set of irreducible admissible representations of regular integral
infinitesimal character into equivalence classes with the same primitive ideal.

The development and exploitation of such combinatorial invariants of the W-graphs is
an entirely new frontier for representation theory. Indeed, arising as they do as particularly
intricate and symmetrical digraphs, the W-graphs produced by the Atlas software promise
to be fertile ground for discovery in pure combinatorics as well. However, these frontiers
are completely inaccessible without computers with a huge amount of RAM, ample storage
and rapid I/O. The machines proposed with direct access to the Atlas data would be an
indispensable tool for this purpose.

Storage and Dissemination of Results
The E8 data surely comprises one of the most intricate and complex combinatorial struc-

tures ever discovered. As such, it and the results of other KLV computations should be made
readily available not only to other representation theorists, but also combinatorists, algebraic
geometers, computer scientists and others.

However, just to store the “answer” to the E8 KLV computation (in fact, a highly com-
pressed version of the “answer”) requires 60 GB of disk space. Moreover, even on a machine
with a huge amount of RAM, it still requires a high degree of programming skill in order
to tweak the code so that the computation runs within the available RAM in a reasonable
amount of time. For example, Noam Elkies suggested one of the key ideas used to squeeze the
E8 computation onto the Sage computer, which was to carry out the computations modulo
256, 255 and 253, then use the Chinese remainder theorem to reconstruct the answer over Z.
Thus, lacking exceptional computers, storage space, and expertise, for many researchers the
results of the Atlas computations are quite inaccessible.

We remark also that sometimes what might be of most interest to an outside researcher is
not the entire set of KLV data but rather the answer to a simple question about that data. For

6

example, we have been asked by algebraic geometers if it ever happened that the coefficient
of the highest possible degree of a KL polynomial is greater than one? One of the purposes
of the proposed machines would be to provide an online front end to the Atlas data, where
such questions might be posed and answered. In this regard, we note that the University of
Washington, where the proposed machines are to reside, is an ideal location for such a data
storage and retrieval center since the University of Washington is directly connected to both
the Abeline and National Lambda Rail internet backbones.

2.2 Number Theory: The Modular Forms and L-functions Database

Modular forms, L-functions, and Galois representations underlie much of twentieth century
number theory and are connected to the practical applications of number theory in physics,
geometry, and cryptography.

We propose to carry out several major computations of modular forms and their associ-
ated L-functions that go far beyond anything that has been computed before. The projects
described below would move forward the theory of modular forms, and improve fundamental
algorithms in linear algebra and parallel computation that are likely to have an impact out-
side of number theory. For example, we intend to compute extensive data about all weight 2
newforms on Γ0(N) for all levels N ≤ 10,000. So far the best that has ever been done is to
compute most forms up to level 7,000, and even then the PI (Stein) computed very little about
each form, and the data is not in an easy-to-use form. Computing data about a modular forms
means (a) computing explicit data that uniquely determines the modular form, (b) computing
a large number of coefficients of the q-expansion of the modular form, (c) computing special
values and zeros of L-functions associated to the modular form, (d) computing information
about Galois representations attached to the modular form, and (e) computing Birch and
Swinnerton-Dyer invariants of the corresponding abelian variety or motive.

The PI’s work so far has led to much beautiful synergy between explicit computation,
conjecture, and theory. An exciting example of this is Emerton’s deep proof [Eme03] of Stein’s
refined Eisenstein conjecture. This conjecture was made by the PI based on exactly the above
computations for all prime levels up to 767. Also, Stein’s joint work with Barry Mazur and
others on ranks of elliptic curves [BMSW07], the Sato-Tate conjecture, and Shafarevich-Tate
groups [DWS03] was all firmly motivated by such calculations.

Pulling this project off will require doing cutting edge research on asymptotically fast
linear algebra algorithms in order to greatly speed up code the PI has already written, then
implementing, running, and tuning the resulting algorithms. Fortunately the PI (Stein) has
extensive experience working on exactly these sorts of computation for over a decade (and
has written much relevant software), and he just hired a postdoc who is likely the world’s top
expert on applying exactly linear algebra to challenge problems in mathematical research.

Below we describe general background on modular forms and L-functions, then enumerate
several very specific important computations that we intend to do using the two proposed
servers, which were configured optimally for solving difficult exact linear algebra problems.

7

2.2.1 General Background on Modular Forms and L-Functions

A modular form of integer level N and integer weight k is a holomorphic function f(z) on the
complex upper half plane h such that for all integer 2× 2 matrices

(
a b
c d

)
with determinant 1

and
(

a b
c d

)
≡ (1 ∗

0 1) (mod N) we have

f

(
az + b

cz + d

)
= (cz + d)kf(z),

along with certain technical convergence conditions “at the cusps”. The closely related L-
functions, such as the famous Riemann Zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

1
1− p−s

,

are certain types of holomorphic functions on a subset of the complex plane attached to
arithmetic data. A famous example of the relationship between modular forms and L-functions
is Andrew Wiles’s proof of Fermat’s Last Theorem, which involves proving that certain L-
functions attached to elliptic curves arise from weight 2 modular forms.

The Delta function

∆(q) = q

(∞∏
n=1

(1− qn)

)24

=
∞∑

n=1

τ(n)qn,

is a weight 12 modular form, where q = e2πiz. Ramanujan conjectured that for all primes p,

|τ(p)| ≤ 2p11/2,

and Deligne later proved this (and more – winning a Fields Medal) in part by showing that
there are associated Galois representations

Gal(Q/Q) → GL2(Q`),

for each prime `.
Two of the seven Clay Mathematics Million Dollar Millennium Problems deal with prop-

erties of L-functions and modular forms, namely the Riemann Hypothesis and the Birch and
Swinnerton-Dyer conjecture. The Riemann Hypothesis concerns the distribution of prime
numbers; it asserts that all the zeros in the critical strip 0 < <(s) < 1 of the unique mero-
morphic continuation of ζ(s) lie on the line <(s) = 1

2 . The correctness of the fastest used
algorithms for constructing large prime numbers, which are used by the public-key cryptosys-
tems that everybody who uses the Internet relies on daily, depends on the truth of a generalized
version of this 150-year-old unsolved problem.

Virtually all branches of number theory and arithmetic geometry have been touched by L-
functions and modular forms. Besides containing deep information concerning the distribution
of prime numbers and the structure of elliptic curves and abelian varieties, they appear, for
example in Tunnell’s conjectural classification of congruent numbers, a problem first posed by

8

Arab mathematicians over one thousand years ago, which asks which integers are the area of
a right triangle with rational sides [Kob84].

The proposed projects will result in the creation of a vast amount of data about a wide
range of modular forms and L-functions, which will far surpass in range and depth anything
computed before in this area. We will generate this data in a systematic fashion and organize
it in a freely available online data archive, along with the actual programs that were used to
generate these tables. Our archive will be a rich searchable source of examples and tools for
researchers working on L-functions and modular forms for years to come, and will allow for
future updates and expansions.

Modular forms encode an extraordinary amount of deep arithmetic information. For ex-
ample, newforms play a central role in Wiles’s proof of Fermat’s Last Theorem, and much
research toward generalizing his methods to attack other Diophantine equations (see [Dar97,
Mer99, Che05, SC03]) depends on computations and tables of modular forms. The modular-
ity theorem of Wiles et al. also forges a deep link between modular forms and the Birch and
Swinnerton-Dyer conjecture.

A major conjecture of Serre, which was proved during the last 3 years (by forthcoming
work of Dieulefait, Khare, Kisin, and Wintenberger), asserts that all 2-dimensional odd rep-
resentations of the Galois group of Q arise from classical modular forms via a construction
of Deligne. Also modular forms are used to construct optimal expander graphs that arise in
information theory, construct optimal codes, are important in counting points on varieties over
finite fields, and arise as generating functions.

2.2.2 Specific Computations and Data

Below we describe several major computations of modular forms and their associated L-
functions. In each case we discuss the computation, how it could be carried out, and some
specific ways in which it would impact theoretical work.

Compute extensive data about all weight 2 newforms on Γ0(N) for all levels N ≤ 10,000,
and all weight 2 newforms with quadratic character and level N ≤ 1,000. We intend to do this
mainly using modular symbols [Cre97, Ste07]. The complexity is dominated by exact linear
algebra, computation of sparse kernels, dense characteristic polynomials and decompositions
of modules as direct sums of simple modules (rational canonical form). C. Pernet, who is a
postdoc at University of Washington 2008–2010 funded by NSF grant DMS-0713225, is doing
cutting edge research on asymptotically fast linear algebra algorithms that are critical to this
problem.

A construction of Shimura associates to each newform a modular abelian variety. Extending
much previous work of Stein, we intend to compute much about the Birch and Swinnerton-
Dyer invariants attached to these abelian varieties, then make conjectures and prove theorems
based on the resulting data.

Enumerate all weight 2 newforms with rational Fourier coefficients on Γ0(N) for N ≤
234,446. John Cremona has computed all such newforms for N ≤ 130,000 as the result of
much work using his optimized software (which is part of the Sage software) [Cre97, Cre]. This
enumeration has ground to a halt, and in collaboration with Cremona, Dembele, and others
we intend to push the calculation further using new techniques coming out of combining the

9

massive search of Stein-Watkins [SW02, BMSW07] with better algorithms for computing Hecke
operators that involve quaternion algebras and ternary quadratic forms (forthcoming work of
G. Tornaria), and sparse linear algebra techniques. The first known elliptic curve of rank 4 has
composite conductor 234,446, so this calculation would also provide a complete enumeration
of all elliptic curves up to the first of rank 4 (Stein and two undergraduates enumerated all
prime-conductor curves up to level 234,446, and none had rank 4). This computation will
involve mainly sparse exact linear algebra over Q in vector spaces of dimension up to around
60,000.

Compute all weight 2 newforms whose coefficients generate a field of degree 2 on Γ0(N)
for N ≤ 100,000. Such forms correspond to 2-dimensional abelian varieties. We hope to
pave the way for future collaborations with researchers on Q-curves, modular genus 2 curves,
and quaternionic multiplication surfaces (Bjorn Poonen, Jordan Ellenberg, Jordi Quer, Peter
Clark, etc.).

Compute all Q-curves of level N ≤ 100,000. Now that Serre’s modularity conjecture is
known, it is possible to compute every Q-curve of given conductor using modular symbols.
We intend to use modular symbols to compute the modular forms associated to each Q-curve
up to level 100,000, then in many cases find a corresponding Weierstrass equation.

Compute all weight 4 newforms on Γ0(N) with level N ≤ 1000. This computation would
involve the same techniques as the weight 2 calculation, except that the linear algebra would
involve much larger rational numbers, albeit on matrices with fewer rows and columns. This
will involve dense linear algebra over Q in spaces of dimension up to 632 with fairly small
numbers; in particular, we will have to compute and factor characteristic polynomials of dense
matrices of this size.

Compute data about modular motives. To each weight 4 newform there is a corresponding
motive (a higher weight generalization of an abelian variety), and there are conjectures about
that motive due to Beilinson, Bloch, and Kato that generalize the Birch and Swinnerton-Dyer
conjecture. Extending the work started in [DWS03], we hope to compute extensive data about
each such motive, enumerate the results in tables, formulate conjectures, compute algebraic
parts of L-values, and more.

Compute all newforms on Γ0(N) with level N ≤ 100 and weight k ≤ 100. To do this
computation we let R(N) = ⊕k≥0Mk(Γ0(N)) be the ring of modular forms of level N , and use
modular symbols to compute Mk(Γ0(N)) for the first few k, then use this low-weight data to
find explicit algebra generators for R(N) for each N ≤ 100. We then generate a q-expansion
basis to high precision for the spaces of cusp forms for each weight k ≤ 100, compute a Hecke
operator on it, and use it to write down newforms. This computation will involve explicit very
dense linear algebra over Q in vector spaces of dimension up to 1774.

We will also carry out a similar computation for Γ1(N). The resulting data will be useful
for investigating questions about images of Galois representations and properties of p-adic
modular forms. The recent exciting work of Bill Hart and David Harvey in which they have
revolutionized algorithms for univariate polynomial arithmetic, as well as Clement Pernet’s
work [DPW05] on linear algebra, will both be crucial for making this computation feasible.

10

2.3 Mathematical Physics: Mapping the Supersymmetry Genome

Supersymmetry in mathematical physics is a symmetry between the two fundamental classes
of particles found in nature: bosons and fermions. From a physics perspective, interest in
supersymmetry stems from the fact that many promising theories like superstring theory and
M-theory are supersymmetric and, if applicable to the physical world1, supersymmetry would
explain many puzzling features of known laws of nature. Furthermore, insights gained from
studying supersymmetric quantum field theories may lead to better understanding of quantum
field theories in general.

2.3.1 Background

The ultimate goal of this project is to completely classify supersymmetric theories. In many
cases, supersymmetry is understood only “on-shell”, i.e., the correspondence between bosons
and fermions becomes apparent only after restricting to the solutions of the equations of mo-
tion. Rather, we are interested in determining “off-shell” formulations of supersymmetry,
where the correspondence between bosons and fermions is manifest independently of the dy-
namics of the particles. We want to establish the mathematics of supersymmetry, how the
supersymmetry is represented algebraically, independently of the physics, which involves the
imposition of a Lagrangian. In [GLPR02], Gates asserts that this “fundamental supersymme-
try challenge” is key to any theory providing a description of our universe, and he laments
that it has gone unanswered since the early days of supersymmetry over three decades ago.

Supersymmetry is well understood in both on-shell and off-shell formulations for low di-
mensional spacetimes, but in higher dimensions, such as the 10 and 11 dimensions required
for string theory and M-theory, the supersymmetry appears only on-shell. On-shell theories
are significantly more difficult to quantize than off-shell theories, and the standard methods of
quantization work only for off-shell formulations. A complete classification and construction
of off-shell supersymmetric theories in 10 dimensions could give rise to off-shell formulations
of string theory, and a construction of 11 dimensional off-shell supersymmetry could yield a
covariant formulation of M -theory, which has thus far eluded the physics community. These
off-shell theories may turn out to be extraordinarily complicated, with thousands of degrees of
freedom and accessible only with the aid of a computer, which would explain why they have
not yet been discovered by the theoretical physics community.

Restricting to low dimensional supersymmetric theories simplifies the process of construct-
ing and classifying them. However, it also gives a glimpse into the complexity of higher
dimensional theories. Via a procedure called “dimensional reduction”, every high dimensional
theory admits a low dimensional shadow. With a complete classification of low dimensional
theories, we can study the shadows of the known high dimensional theories. Then reversing
this process, determining when and how low dimensional theories extend to higher dimensions,
can provide our desired constructive classification of high dimensional theories.

Faux and Gates have shown [FG05] that the data required to specify one-dimensional off-
shell supersymmetric theories can be encoded in directed bipartite graphs called “Adinkras.”

1The Large Hadron Collider (LHC) at CERN will begin to search for experimental evidence for superpartners
in 2008.

11

These Adinkras are analogous to weight diagrams for representations of compact Lie groups
and their Lie algebras, except that the edges of Adinkras are further decorated with signs and
height assignments (see Figure 1).

Figure 1: An irreducible 6-regular Adinkra

In [DFGHIL] the co-PI Doran and his collaborators show that every Adinkra topology is
obtained by taking the 1-skeleton of an N -dimensional cube, then taking the quotient by a
binary linear error correcting code. The relevant codes are doubly even, hence the classification
of Adinkra topologies is equivalent to the classification of doubly even binary linear error
correcting codes.

A binary code of type [n, k] is a linear subspace C ⊂ F2
n of dimension k, fixing the standard

basis for F2
n (we call n the degree of C). Linear codes are usually represented as the rowspace

of a matrix. Such a code is doubly even if every word has Hamming weight (number of ones)
divisible by four. Under the standard inner product, doubly even codes are self-orthogonal,
a valuable property in coding theory. Linear codes are typically used to provide information
redundancy when transmitting over channels with noise, thus the vectors (with respect to the
standard basis) are called words. The Hamming weight is a metric, and given a small number
of errors, the distance from the transmitted word to the original will be minimal, and the
original word can be recovered. In particular, doubly even codes are used in constructions of
exotic codes [Koc90], and when 8 | n, all self-dual binary linear codes are doubly even.

2.3.2 Specific Computations and Data

Compute all isomorphism types of doubly even binary codes with degree n ≤ 32. We intend
to carry this out using generation by canonical augmentation [McK98, KÖ06]. Codes are
generated from smaller codes by augmentation or gluing, the addition of a vector to the
basis. A computable definition of when an augmentation is canonical is given, so that using
only canonical augmentations, the isomorphism types are exhaustively enumerated without
repeats. This definition is given in terms of a canonical labeling process, in which a unique

12

representative of an isomorphism class is computed. This process dominates the complexity
of the computation.

We compute the canonical representative of the isomorphism class using partition refine-
ment [Sim71, McK81, Leo91]. A labeling of the code is an ordering of the columns, which
determines a representative of the isomorphism class. We interpret ordered partitions as
partial orderings of the columns, and a partition consisting of singletons (discrete) as a full
ordering, hence a labeling of the code. The algorithm traverses a tree consisting of progressive
refinements of ordered partitions, searching for the canonical label. It uses information about
the automorphism group as it is collected to prune the search tree; the automorphism group
is also computed by the algorithm.

The complexity of computing canonical representatives depends strongly on the combina-
torial structure of the object. The large amount of symmetry leads to larger trees to search;
however, more information about the automorphism group allows for more pruning of the tree.
Cases bearing fewer symmetries lead to smaller trees, but more of the tree must be searched.
We achieve optimum running times with codes that have “medium” amounts of symmetry.

The main bottleneck of the labeling algorithm is the refinement process itself. A super-
computer is not a valid solution to this problem because the problem is not easy to parallelize;
it consists of sorting and comparison, repeatedly on a relatively small set of data. Rather this
computation should be run in parallel with other computations on a machine with few nodes,
but very fast processors, such as the one we are asking for.

The other factor affecting total computation time is the sheer number of objects to be
generated. For example, there are at least

619,287,158,132 ≈ m

32!

distinct classes of [32, 10] doubly even codes, where m is obtained by Gaborit’s formulas for
the total number of such codes [Gab96]. The computation to generate the codes is massively
parallelizable–each code in the list that has not been augmented can be investigated indepen-
dently. Aside from the speed of computing canonical representatives, the number of processes
and the overhead between them will determine the total running time. Large amounts of RAM
are helpful in speeding up communication, allowing for fewer interactions with the hard drives.
This will give the presence of many processors even more influence over speed.

This computation has been attempted on the machine purchased under NSF Grant DMS-
0555776, by Robert Miller who is a graduate student of PIs Doran and Stein. Miller used
DSage to control the generation of codes, with Magma performing the sophisticated coding
theory computations. In the process, Miller discovered several serious bugs in Magma. The
Magma functions in question were adapted from software written by Leon [Leo91], which has
massive memory leak problems. Since Magma is closed source, it was impossible for Miller to
fix the bugs, and the computation ground to a halt. Miller has mostly finished implementing
in Sage his own new version of the algorithm, which does not leak memory and in our tests is
as much as five times faster than Magma. Moreover, the new implementation Miller is creating
is free and open source, so other researchers can improve and extend his code.

Due to the combinatorial nature of the codes, the results of this computation will require
a large amount of space to store, on the terabyte scale. By having the storage on the same

13

machine as the computation, much of the communication overhead can be eliminated, and in
addition, the whole process can be fine tuned for optimum performance.

The results of this computation will be of interest to physicists and coding theorists. Given
the astronomical size of the expected output, a lookup table will not suffice; initial estimates
using [Gab96] indicate that a lookup table would require at least 28 terabytes of disk space.
Thus instead of using a lookup table we intend to create a database that stores only recursive
instructions for building the codes, and a very fast Internet interface to quickly query for and
retrieve these codes. Thus the requested server machines would also be ideal for hosting the
results, which would include data such as weight distributions and automorphism groups.

3 Sage: Computing and Disseminating Data

Much of the computation and dissemination of data that comes out of this project will be done
in the context of Sage, which is an open source software project started by one of the PI’s
(Stein) in 2005 to support advanced mathematical research. Now that a much larger group
of people are using and contributing to Sage, the scope of Sage has broadened enormously.
The Sage software will be used in numerous ways in order to support the research described
elsewhere in this proposal:

1. Implementing Software: Sage has a very rich library of functionality that builds on
decades of work, hence provides an excellent environment for implementing the code we
will need to do the research described in this proposal. Morever, Sage has integrated
support for robust task farming (DSage).

2. Distributing Software: Many implementations of algorithms that come out of this
project will have an automated test suite and be included with Sage, so they are ex-
tremely easy for other researchers to make use of and contribute to.

3. Distributing Databases: Sage has a sophisticated web-based interface, which will
facilitate sharing and distributing results of calculations. Sage also includes relational
and object-oriented databases.

Sage is the only serious general purpose mathematics software that uses a mainstream
programing language as the user language. The programming language used for working with
Sage is Python, which is a powerful modern interpreted programming language.

“Google has made no secret of the fact they use Python a lot for a number of
internal projects. Even knowing that, once I was an employee, I was amazed at
how much Python code there actually is in the Google source code system.”, said
Guido van Rossum, Google, creator of Python.

“Python plays a key role in our production pipeline. Without it a project the size
of Star Wars: Episode II would have been very difficult to pull off. From crowd
rendering to batch processing to compositing, Python binds all things together,”
said Tommy Burnette, Senior Technical Director, Industrial Light & Magic.

14

Sage is free and open source, so it is flexible and extensible. In particular, everybody is
allowed to view and modify absolutely all of the source code of their copy of Sage, change their
copy however they want for their needs, and freely share an unlimited number of copies with
others. This makes adopting Sage for our project a good long-term investment.

Instead of reinventing the wheel, Sage combines many of the best existing open source
libraries that have been developed over the last 40 years (about 5 million lines of code) with
over 200,000 lines of new code.

In November 2007, Sage won first place in the scientific category of the Trophées du Libre,
(http://www.tropheesdulibre.org/?lang=en) which is a major international free software
competition. There are several thousand Sage users and over 100 active developers.

4 Undergraduate Impact

There are six undergraduates at the University of Washington that work with the PI’s regularly,
some funded by an NSF VIGRE grant. They would make use of the proposed hardware in
the context of research and Sage development.

The equipment requested in this proposal will also have an immediate and strong impact
on two other important undergraduate activities. Since 1988, the University of Washington
has been host to an REU program that has produced many striking results in the area of
discrete inverse problems. Students have found new phenomena (so called n-to-1 electrical
networks), have created new methods for studying inverse problems (star-K transformations),
and have developed many new algorithms. A demand has arisen for “REU software” which
will serve as an asset for researchers everywhere. For example students now have created the
currently most efficient methods for solving the inverse problem for critical circular planar
networks. They have also developed algorithms (and software) to find the medial graph of
a graph embedded in a Riemann surface. These are only a few of the examples of types of
routines that can be developed and publicized using Sage.

The University of Washington has also been prominent in the Mathematical Contest in
Modeling. This contest asks teams of students to precisely formulate and solve vaguely given
problems over a four-day period. The winning papers often draw wide attention – for example
the recent problem of fairly drawing Congressional districts (the Gerrymandering Problem).
UW teams have been declared Outstanding Winners seven times in the last six years. Even so,
some teams have been held back by not being able to produce definitive results under the four-
day limit because of slow computing times. Having large storage space and fast computation
will make a big difference to their ability to attack hard problems. They will also benefit
greatly by the central repository of the most useful algorithms. This asset would of course be
available to any university, not just the University of Washington since the software is open
source.

15

