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6.3 The Integral and Comparison Tests

Midterm Exam 2: Wednesday March 1 at 7pm in PCYNH 109 (up to last lecture)
Today: §7.3–7.4: Integral and comparison tests
Next: §7.6: Absolute convergence; ratio and root tests
Quiz 4 (last quiz): Friday March 10.
Final exam: Wednesday, March 22, 7-10pm in PCYNH 109.

What is
∑∞

n=1
1

n2 ? What is
∑∞

n=1
1
n?

Recall that Section 6.2 began by asking for the sum of several series. We found the
first two sums (which were geometric series) by finding an exact formula for the sum
sN of the first N terms. The third series was

A =
∞
∑

n=1

1

n2
=

1

1
+

1

4
+

1

9
+

1

16
+

1

25
+ . . . . (6.3.1)

It is difficult to find a nice formula for the sum of the first n terms of this series (i.e., I
don’t know how to do it).

Remark 6.3.1. Since I’m a number theorist, I can’t help but make some further re-
marks about sums of the form (6.3.1). In general, for any s > 1 one can consider the
sum

ζ(s) =
∞
∑

n=1

1

ns
.

The number A that we are interested in above is thus ζ(2). The function ζ(s) is called
the Riemann zeta function. There is a natural (but complicated) way of extending ζ(s)
to a (differentiable) function on all complex numbers with a pole at s = 1. The Riemann
Hypothesis asserts that if s is a complex number and ζ(s) = 0 then either s is an even
negative integer or s = 1

2 + bi for some real number b. This is probably the most famous
unsolved problems in mathematics (e.g., it’s one of the Clay Math Institute million
dollar prize problems). Another famous open problem is to show that ζ(3) is not a root
of any polynomial with integer coefficients (it is a theorem of Apeéry that zeta(3) is not
a fraction).

The function ζ(s) is incredibly important in mathematics because it governs the
properties of prime numbers. The Euler product representation of ζ(s) gives a hint as
to why this is the case:

ζ(s) =

∞
∑

n=1

1

ns
=

∏

primes p

(

1

1 − p−s

)

.

To see that this product equality holds when s is real with Re(s) > 1, use Example 6.2.2
with r = p−s and a = 1 from the previous lecture. We have

1

1 − p−s
= 1 + p−s + p−2s + · · · .
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Thus

∏

primes p

(

1

1 − p−s

)

=
∏

primes p

(

1 +
1

ps
+

1

p2s
+ · · ·

)

=

(

1 +
1

2s
+

1

22s
+ · · ·

)

·
(

1 +
1

3s
+

1

32s
+ · · ·

)

· · ·

=

(

1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

)

=
∞
∑

n=1

1

ns
,

where the last line uses the distributive law and that integers factor uniquely as a
product of primes.

Finally, Figure 6.3.1 is a graph ζ(x) as a function of a real variable x, and Figure 6.3.2
is a graph of |ζ(s)| for complex s.

Figure 6.3.1: Riemann Zeta Function: f(x) =
∑∞

n=1
1

nx

This section is how to leverage what you’ve learned so far in this book to say some-
thing about sums that are hard (or even “impossibly difficult”) to evaluate exactly. For
example, notice (by considering a graph of a step function) that if f(x) = 1/x2, then
for positive integer t we have

t
∑

n=1

1

n2
≤ 1

12
+

∫ t

1

1

x2
dx.
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Figure 6.3.2: Absolute Value of Riemann Zeta Function

Thus

∞
∑

n=1

1

n2
≤ 1

12
+

∫ ∞

1

1

x2
dx

= 1 + lim
t→∞

∫ t

1

1

x2
dx

= 1 + lim
t→∞

[

− 1

x

]t

1

= 1 + lim
t→∞

[

−1

t
+

1

1

]

= 2

We conclude that
∑∞

n=1 converges, since the sequence of partial sums is getting bigger
and bigger and is always ≤ 2. And of course we also know something about

∑∞
n=1

1
n2

even though we do not know the exact value:
∑∞

n=1
1

n2 ≤ 2. Using a computer we find
that

t
∑t

n=1
1

n2

1 1
2 5

4 = 1.25
5 5269

3600 = 1.46361
10 1968329

1270080 = 1.54976773117
100 1.63498390018
1000 1.64393456668
10000 1.64483407185
100000 1.6449240669

The table is consistent with the fact that
∑∞

n=1
1

n2 converges to a number ≤ 2. In fact
Euler was the first to compute

∑∞
n=1 exactly; he found that the exact value is

π2

6
= 1.644934066848226436472415166646025189218949901206798437735557 . . .

There are many proofs of this fact, but they don’t belong in this book; you can find
them on the internet, and are likely to see one if you take more math classes.
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We next consider the harmonic series

∞
∑

n=1

1

n
. (6.3.2)

Does it converge? Again by inspecting a graph and viewing an infinite sum as the area
under a step function, we have

∞
∑

n=1

1

n
≥
∫ ∞

1

1

x
dx

= lim
t→∞

[ln(x)]
t
1

= lim
t→∞

ln(t) − 0 = +∞.

Thus the infinite sum (6.3.2) must also diverge.
We formalize the above two examples as a general test for convergence or divergence

of an infinite sum.

Theorem 6.3.2 (Integral Test and Bound). Suppose f(x) is a continuous, positive,
decreasing function on [1,∞) and let an = f(n) for integers n ≥ 1. Then the series
∑∞

n=1 an converges if and only if the integral
∫∞
1

f(x)dx converges. More generally, for
any positive integer k,

∫ ∞

k

f(x)dx ≤
∞
∑

n=k

an ≤ ak +

∫ ∞

k

f(x)dx. (6.3.3)

The proposition means that you can determine convergence of an infinite series by
determining convergence of a corresponding integral. Thus you can apply the powerful
tools you know already for integrals to understanding infinite sums. Also, you can use
integration along with computation of the first few terms of a series to approximate a
series very precisely.

Remark 6.3.3. Sometimes the first few terms of a series are “funny” or the series
doesn’t even start at n = 1, e.g.,

∞
∑

n=4

1

(n − 3)3
.

In this case use (6.3.3) with any specific k > 1.

Proposition 6.3.4 (Comparison Test). Suppose
∑

an and
∑

bn are two series with
positive terms. If

∑

bn converges and an ≤ bn for all n. then
∑

an converges. Likewise,
if
∑

bn diverges and an ≥ bn for all n. then
∑

an must also diverge.

Example 6.3.5. Does
∑∞

n=1
1√
n

converge? No. We have

∞
∑

n=1

1√
n
≥
∫ ∞

1

1√
x

dx = lim
t→∞

(2
√

t − 2
√

1) = +∞

Example 6.3.6. Does
∑∞

n=1
1

n2+1 converge? Let’s apply the comparison test: we have
1

n2+1 < 1
n2 for every n, so

∞
∑

n=1

1

n2 + 1
<

∞
∑

n=1

1

n2
.
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Alternatively, we can use the integral test, which also gives as a bonus an upper and
lower bound on the sum. Let f(x) = 1/(1 + x2). We have

∫ ∞

1

1

1 + x2
dx = lim

t→∞

∫ t

1

1

1 + x2
dx

= lim
t→∞

tan−1(t) − π

4
=

π

2
− π

4
=

π

4

Thus the sum converges. Moreover, taking k = 1 in Theorem 6.3.2 we have

π

4
≤

∞
∑

n=1

1

n2 + 1
≤ 1

2
+

π

4
.

the actual sum is 1.07 . . ., which is much different than
∑

1
n2 = 1.64 . . ..

We could prove the following proposition using methods similar to those illustrated
in the examples above. Note that this is nicely illustrated in Figure 6.3.1.

Proposition 6.3.7. The series
∑∞

n=1
1

np is convergent if p > 1 and divergent if p ≤ 1.

6.3.1 Estimating the Sum of a Series

Suppose
∑

an is a convergent sequence of positive integers. Let

Rm =
∞
∑

n=1

an −
m
∑

n=1

an =
∞
∑

n=m+1

am

which is the error if you approximate
∑

an using the first n terms. From Theorem 6.3.2
we get the following.

Proposition 6.3.8 (Remainder Bound). Suppose f is a continuous, positive, de-
creasing function on [m,∞) and

∑

an is convergent. Then

∫ ∞

m+1

f(x)dx ≤ Rm ≤
∫ ∞

m

f(x)dx.

Proof. In Theorem 6.3.2 set k = m + 1. That gives

∫ ∞

m+1

f(x)dx ≤
∞
∑

n=m+1

an ≤ am+1 +

∫ ∞

m+1

f(x)dx.

But

am+1 +

∫ ∞

m+1

f(x)dx ≤
∫ ∞

m

f(x)dx

since f is decreasing and f(m + 1) = am+1.

Example 6.3.9. Estimate ζ(3) =
∑∞

n=1
1

n3 using the first 10 terms of the series. We
have

10
∑

n=1

=
19164113947

16003008000
= 1.197531985674193 . . .
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The proposition above with m = 10 tells us that

0.00413223140495867 . . . =

∫ ∞

11

1

x3
dx ≤ ζ(3)−

10
∑

n=1

≤
∫ ∞

10

1

x3
dx =

1

2 · 102
=

1

200
= 0.005.

In fact,
ζ(3) = 1.202056903159594285399738161511449990 . . .

and we hvae

ζ(3) −
10
∑

n=1

= 0.0045249174854010 . . . ,

so the integral error bound was really good in this case.

Example 6.3.10. Determine if
∑∞

n=1
2006

117n2+41n+3 convergers or diverges. Answer: It
converges, since

2006

117n2 + 41n + 3
≤ 2006

117n2
=

2006

117
· 1

n2
,

and
∑

1
n2 converges.


