# Chapter 4

# **Dirichlet Characters**

In this chapter we develop a systematic theory for computing with Dirichlet characters, which are extremely important to computations with modular forms for (at least) two reasons:

- To compute the Eisenstein subspace  $E_k(\Gamma_1(N))$  of  $M_k(\Gamma_1(N))$  we explicitly write down Eisenstein series attached to pairs of Dirichlet characters (see Chapter 5).
- To compute  $S_k(\Gamma_1(N))$ , we instead compute a decomposition

$$M_k(\Gamma_1(N)) = \bigoplus M_k(\Gamma_1(N), \varepsilon)$$

then compute each factor. Here the sum is over all Dirichlet characters  $\varepsilon$  modulo N.

**Example 4.0.1.** Expanding on the second point, the spaces  $M_k(\Gamma_1(N), \varepsilon)$  are frequently much easier to compute with than the full  $M_k(\Gamma_1(N))$ . As we will see, if  $\varepsilon = 1$  is the trivial character, then  $M_k(\Gamma_1(N), 1) = M_k(\Gamma_0(N))$ , which has much smaller dimension than  $M_k(\Gamma_1(N))$ . For example,  $M_2(\Gamma_1(100))$  has dimension 370, whereas  $M_2(\Gamma_1(100), 1)$  has dimension only 24, and  $M_2(\Gamma_1(389))$  has dimension 6499, whereas  $M_2(\Gamma_1(389), 1)$  has dimension only 33.

```
sage: dimension_modular_forms(Gamma1(100),2)
370
sage: dimension_modular_forms(Gamma0(100),2)
24
sage: dimension_modular_forms(Gamma1(389),2)
6499
sage: dimension_modular_forms(Gamma0(389),2)
33
```

### 4.1 The Definition

Fix an integral domain R and a root  $\zeta$  of unity in R.

**Definition 4.1.1** (Dirichlet Character). A Dirichlet character modulo N over R is a map  $\varepsilon : \mathbb{Z} \to R$  such that there is a homomorphism  $f : (\mathbb{Z}/N\mathbb{Z})^* \to \langle \zeta \rangle$  for which

 $\varepsilon(a) = \begin{cases} 0 & \text{if } (a, N) > 1, \\ f (a \mod N) & \text{if } (a, N) = 1. \end{cases}$ 

We denote the group of such Dirichlet characters by D(N, R). Note that elements of D(N, R) are in bijection with homomorphisms  $(\mathbb{Z}/N\mathbb{Z})^* \to \langle \zeta \rangle$ .

One familiar example of a Dirichlet characters is the Legendre symbol  $\left(\frac{a}{p}\right)$  that appears in quadratic reciprocity theory. It is a Dirichlet character modulo p that takes the value 1 on integers that are congruent to a nonzero square modulo p, the value -1 on integers that are congruent to a nonzero non-square modulo p, and 0 on integers divisible by p.

## 4.2 Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE you first create the group D(N, R) of Dirichlet characters, then obtain elements of that group. First we make  $D(11, \mathbb{Q})$ :

```
sage: G = DirichletGroup(11, RationalField())
sage: G
Group of Dirichlet characters of modulus 11 over Rational Field
```

A Dirichlet character prints as a matrix that gives the values of the character on canonical generators of  $(\mathbb{Z}/N\mathbb{Z})^*$  (as discussed below).

```
sage: list(G)
[[1], [-1]]
sage: eps = G.0  # Oth generator for Dirichlet group
sage: eps
[-1]
```

The character takes the value -1 on the unit generator.

```
sage: G.unit_gens()
[2]
sage: eps(2)
-1
sage: eps(3)
1
```

It is 0 on any integer not coprime to 11:

```
sage: eps(22)
0
```

We can also create groups of Dirichlet characters taking values in other rings or fields. For example, we create the cyclotomic field  $\mathbb{Q}(\zeta_4)$ .

```
sage: R = CyclotomicField(4)
sage: CyclotomicField(4)
Cyclotomic Field of order 4 and degree 2
```

Then we define  $G = D(15, \mathbb{Q}(\zeta_4))$ .

```
sage: G = DirichletGroup(15, R)
sage: G
Group of Dirichlet characters of modulus 15 over Cyclotomic Field
of order 4 and degree 2
```

And we list each of its elements.

```
sage: list(G)
[[1, 1], [-1, 1], [1, zeta_4], [-1, zeta_4], [1, -1], [-1, -1],
[1, -zeta_4], [-1, -zeta_4]]
```

Now lets evaluate the second generator of G on various integers:

```
sage: e = G.1
sage: e(4)
-1
sage: e(-1)
-1
sage: e(5)
0
```

Finally we make a list of all the values of e.

We can also compute with groups of Dirichlet characters with values in a finite field.

```
sage: G = DirichletGroup(15, GF(5))
sage: G
Group of Dirichlet characters of modulus 15 over Finite field of size 5
```

We list all the elements of G, again represented by matrices that give the images of each unit generator, as an element of  $\mathbb{F}_5$ .

sage: list(G)
 [[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4], [1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

```
sage: e = G.1
sage: e(-1)
4
sage: e(2)
2
sage: e(5)
0
sage: print [e(n) for n in range(15)]
[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]
```

### 4.3 Representing Dirichlet Characters

**Lemma 4.3.1.** The groups  $(\mathbb{Z}/N\mathbb{Z})^*$  and  $D(N,\mathbb{C})$  are non-canonically isomorphic.

*Proof.* This follows from the more general fact that for any finite abelian group G, we have that  $G \approx \operatorname{Hom}(G, \mathbb{C}^*)$ . To prove that this latter non-canonical isomorphism exists, first reduce to the case when G is cyclic of order n, in which case the statement follows because  $\mathbb{C}^*$  contains the nth root of unity  $e^{2\pi i/n}$ , so  $\operatorname{Hom}(G, \mathbb{C}^*)$  is also cyclic of order n.

**Corollary 4.3.2.** We have  $\#D(N,R) | \varphi(N)$ , with equality if and only if the order of our choice of  $\zeta \in R$  is a multiple of the exponent of the group  $(\mathbb{Z}/N\mathbb{Z})^*$ .

**Example 4.3.3.** The group  $D(5, \mathbb{C})$  has elements  $\{[1], [i], [-1], [-i]\}$ , so is cyclic of order  $\varphi(5) = 4$ . In contrast, the group  $D(5, \mathbb{Q})$  has only the two elements [1] and [-1] and order 2. In SAGE the command DirichletGroup(N) with no second argument create the group of Dirichlet characters with values in the cyclotomic field  $\mathbb{Q}(\zeta_n)$ , where *n* is the exponent of the group  $(\mathbb{Z}/N\mathbb{Z})^*$ . Every element in  $D(N, \mathbb{C})$  takes values in  $\mathbb{Q}(\zeta_n)$ , so  $D(N, \mathbb{Q}(\zeta_n)) \cong D(N, \mathbb{C})$ .

```
sage: list(DirichletGroup(5))
[[1], [zeta_4], [-1], [-zeta_4]]
sage: list(DirichletGroup(5, Q))
[[1], [-1]]
```

Fix a positive integer N, and write  $N = \prod_{i=0}^{n} p_i^{e_i}$  where  $p_0 < p_1 < \cdots < p_n$  are the prime divisors of N. By Exercise 4.1, each factor  $(\mathbb{Z}/p_i^{e_i}\mathbb{Z})^*$  is a cyclic

group  $C_i = \langle g_i \rangle$ , except if  $p_0 = 2$  and  $e_0 \geq 3$ , in which case  $(\mathbb{Z}/p_0^{e_0}\mathbb{Z})^*$  is a product of the cyclic subgroup  $C_0 = \langle -1 \rangle$  of order 2 with the cyclic subgroup  $C_1 = \langle 5 \rangle$ . In all cases we have

$$(\mathbb{Z}/N\mathbb{Z})^* \cong \prod_{0 \le i \le n} C_i = \prod_{0 \le i \le n} \langle g_i \rangle.$$

For *i* such that  $p_i > 2$ , choose the generator  $g_i$  of  $C_i$  to be the element of  $\{2, 3, \ldots, p_i^{e_i} - 1\}$  that is smallest and generates. Finally, use the Chinese Remainder Theorem (see [Coh93, §1.3.3])) to lift each  $g_i$  to an element in  $(\mathbb{Z}/N\mathbb{Z})^*$ , also denoted  $g_i$ , that is 1 modulo each  $p_j^{e_j}$  for  $j \neq i$ .

**Algorithm 4.3.4** (Minimal generator for  $(\mathbb{Z}/p^r\mathbb{Z})^*$ ). Given an odd prime power  $p^r$ , this algorithm computes the minimal generator for  $(\mathbb{Z}/p^r\mathbb{Z})^*$ .

- 1. [Factor Group Order] Factor  $n = \phi(p^r) = p^{r-1} \cdot 2 \cdot ((p-1)/2)$  as a product  $\prod p_i^{e_i}$  of primes. This is equivalent in difficulty to factoring (p-1)/2. (See, e.g., [Coh93, Ch.8, 10] for integer factorization algorithms.)
- 2. [Initialize] Set g = 2.
- 3. [Generator?] Using the binary powering algorithm (see [Coh93, §1.2]), compute  $g^{n/p_i} \pmod{p^r}$ , for each prime divisor  $p_i$  of n. If any of these powers are 1, set g = g + 1 and go to Step 2. If no powers are 1, output g and terminate.

For the proof, see Exercise 4.2.

**Example 4.3.5.** A minimal generator for  $(\mathbb{Z}/49\mathbb{Z})^*$  is 3. We have  $n = \varphi(49) = 42 = 2 \cdot 3 \cdot 7$ , and

$$2^{n/2} \equiv 1, \qquad 2^{n/3} \equiv 18, \qquad 2^{n/7} \equiv 15 \pmod{49}.$$

so 2 is not a generator for  $(\mathbb{Z}/49\mathbb{Z})^*$ . (We see this just from  $2^{n/2} \equiv 1 \pmod{49}$ .) However 3 is since

$$3^{n/2} \equiv 48, \qquad 3^{n/3} \equiv 30, \qquad 3^{n/7} \equiv 43 \pmod{49}$$

**Example 4.3.6.** In this example we compute minimal generators for N = 25, 100, and 200:

- 1. The minimal generator for  $(\mathbb{Z}/25\mathbb{Z})^*$  is 2.
- 2. Minimal generators for  $(\mathbb{Z}/100\mathbb{Z})^*$ , lifted to numbers modulo 100, are  $g_0 = 51$  and  $g_1 = 77$ . Notice that  $g_0 \equiv -1 \pmod{4}$  and  $g_0 \equiv 1 \pmod{25}$ , and  $g_1 \equiv 2 \pmod{25}$  is the minimal generator modulo 25.
- 3. Minimal generators for  $(\mathbb{Z}/200\mathbb{Z})^*$ , lifted to numbers modulo 200, are  $g_0 = 151$ ,  $g_1 = 101$ , and  $g_2 = 177$ . Note that  $g_0 \equiv -1 \pmod{4}$ , that  $g_1 \equiv 5 \pmod{8}$ , and  $g_2 \equiv 2 \pmod{25}$ .

The command Integers(N) creates  $\mathbb{Z}/N\mathbb{Z}$ .

```
sage: R = Integers(49)
sage: R
Ring of integers modulo 49
```

The unit\_gens() command computes the unit generators as defined above.

```
sage: R.unit_gens()
[3]
sage: Integers(25).unit_gens()
[2]
sage: Integers(100).unit_gens()
[51, 77]
sage: Integers(200).unit_gens()
[151, 101, 177]
sage: Integers(2005).unit_gens()
[402, 1206]
sage: Integers(20000000).unit_gens()
[174218751, 51562501, 187109377]
```

Fix an element  $\zeta$  of finite multiplicative order in a ring R, and let D(N, R) denote the group of Dirichlet characters modulo N over R, with image in  $\langle \zeta \rangle \cup \{0\}$ . We specify an element  $\varepsilon \in D(N, R)$  by giving the list

$$[\varepsilon(g_0), \varepsilon(g_1), \dots, \varepsilon(g_n)] \tag{4.3.1}$$

of images of the generators of  $(\mathbb{Z}/N\mathbb{Z})^*$ . (Note if N is even, the number of elements of the list (4.3.1) does *not* depend on whether or not 8 | N—there are always two factors corresponding to 2.) This representation completely determines  $\varepsilon$  and is convenient for arithmetic operations with Dirichlet characters. It is analogous to representing a linear transformation by a matrix. See Section 4.7 for a discussion of alternative ways to represent Dirichlet characters.

#### 4.4 Evaluation of Dirichlet Characters

This section is about how to compute  $\varepsilon(n)$ , where  $\varepsilon$  is a Dirichlet character and n is an integer. We begin with an example.

**Example 4.4.1.** If N = 200, then  $g_0 = 151$ ,  $g_1 = 101$  and  $g_2 = 177$ , as we saw in Example 4.3.6. The exponent of  $(\mathbb{Z}/200\mathbb{Z})^*$  is 20, since that is the least common multiple of the exponents of  $4 = \#(\mathbb{Z}/8\mathbb{Z})^*$  and  $20 = \#(\mathbb{Z}/25\mathbb{Z})^*$ . The orders of  $g_0$ ,  $g_1$  and  $g_2$  are 2, 2, and 20. Let  $\zeta = \zeta_{20}$  be a primitive 20th root of unity in  $\mathbb{C}$ . Then the following are generators for  $D(200, \mathbb{C})$ :

$$\varepsilon_0 = [-1, 1, 1], \qquad \varepsilon_1 = [1, -1, 1], \qquad \varepsilon_2 = [1, 1, \zeta],$$

58

and  $\varepsilon = [1, -1, \zeta^5]$  is an example element of order 4. To evaluate  $\varepsilon(3)$ , we write 3 in terms of  $g_0$ ,  $g_1$ , and  $g_2$ . First, reducing 3 modulo 8, we see that  $3 \equiv g_0 \cdot g_1 \pmod{8}$ . Next reducing 3 modulo 25, and trying powers of  $g_2 = 2$ , we find that  $e \equiv g_2^7 \pmod{25}$ . Thus

$$\begin{split} \varepsilon(3) &= \varepsilon(g_0 \cdot g_1 \cdot g_2^7) \\ &= \varepsilon(g_0)\varepsilon(g_1)\varepsilon(g_2)^7 \\ &= 1 \cdot (-1) \cdot (\zeta^5)^7 \\ &= -\zeta^{35} = -\zeta^{15}. \end{split}$$

We next illustrate the above computation of  $\varepsilon(3)$  in SAGE. First we make the group  $D(200, \mathbb{Q}(\zeta_8))$ , and list its generators.

```
sage: G = DirichletGroup(200)
sage: G
Group of Dirichlet characters of modulus 200 over Cyclotomic Field
    of order 20 and degree 8
sage: G.exponent()
20
sage: G.gens()
[[-1, 1, 1], [1, -1, 1], [1, 1, zeta_20]]
```

Next we construct  $\varepsilon$ .

```
sage: K = G.base_ring()
sage: zeta = K.gen()
sage: eps = G([1,-1,zeta^5])
sage: eps
[1, -1, zeta_20^5]
```

Finally, we evaluate  $\varepsilon$  at 3.

```
sage: eps(3)
zeta_20^5
sage: -zeta^15
zeta_20^5
```

Example 4.4.1 illustrates that if  $\varepsilon$  is represented using a list as described above, evaluation of  $\varepsilon$  on an arbitrary integer is inefficient without extra information; it requires solving the discrete log problem in  $(\mathbb{Z}/N\mathbb{Z})^*$ . In fact, for a general character  $\varepsilon$  calculation of  $\varepsilon$  will probably be at least as hard as finding discrete logarithms no matter what representation we use (quadratic characters are easier—see Algorithm 4.4.5).

# Chapter 5

# **Eisenstein Series**

We introduce generalized Bernoulli numbers attached to Dirichlet characters, and give an algorithm to enumerate the Eisenstein series in  $M_k(N, \varepsilon)$ . We will wait until Chapter 8 for an algorithm to compute all cusp forms in  $M_k(N, \varepsilon)$ .

### 5.1 Generalized Bernoulli Numbers

Suppose  $\varepsilon$  is a Dirichlet character modulo N over  $\mathbb{C}$ .

**Definition 5.1.1** (Generalized Bernoulli Number). Define the generalized Bernoulli numbers  $B_{k,\varepsilon}$  attached to  $\varepsilon$  by the following identity of infinite series:

$$\sum_{a=1}^{N-1} \frac{\varepsilon(a) \cdot x \cdot e^{ax}}{e^{Nx} - 1} = \sum_{k=0}^{\infty} B_{k,\varepsilon} \cdot \frac{x^k}{k!}$$

If  $\varepsilon$  is the trivial character of modulus 1 and  $B_k$  are as in Section 2.1, then  $B_{k,\varepsilon} = B_k$ , except when k = 1, in which case  $B_{1,\varepsilon} = -B_1 = 1/2$  (see Exercise 5.5).

Let  $\mathbb{Q}(\varepsilon)$  denote the field generated by the values of the character  $\varepsilon$ , so  $\mathbb{Q}(\varepsilon)$  is the cyclotomic extension  $\mathbb{Q}(\zeta_n)$ , where *n* is the order of  $\varepsilon$ .

**Algorithm 5.1.2** (Bernoulli Numbers). Given an integer  $k \ge 0$  and any Dirichlet character  $\varepsilon$  with modulus N, this algorithm computes the generalized Bernoulli numbers  $B_{j,\varepsilon}$ , for  $j \le k$ .

1. Compute  $g = x/(e^{Nx} - 1) \in \mathbb{Q}[[x]]$  to precision  $O(x^{k+1})$  by computing  $e^{Nx} - 1 = \sum_{n \ge 1} N^n x^n / n!$  to precision  $O(x^{k+2})$ , and computing the inverse  $x/(e^{Nx} - 1)$ . For completeness, note that if  $f = a_0 + a_1x + a_2x^2 + \cdots$ , then we have the following recursive formula for the coefficients  $b_n$  of the expansion of 1/f:

$$b_n = -\frac{b_0}{a_0} \cdot (b_{n-1}a_1 + b_{n-2}a_2 + \dots + b_0a_n).$$

- 2. For each a = 1, ..., N, compute  $f_a = g \cdot e^{ax} \in \mathbb{Q}[[x]]$ , to precision  $O(x^{k+1})$ . This requires computing  $e^{ax} = \sum_{n \ge 0} a^n x^n / n!$  to precision  $O(x^{k+1})$ . (One can omit computation of  $e^{Nx}$  if N > 1.)
- 3. Then for  $j \leq k$ , we have

$$B_{j,\varepsilon} = j! \cdot \sum_{a=1}^{N} \varepsilon(a) \cdot c_j(f_a),$$

where  $c_j(f_a)$  is the coefficient of  $x^j$  in  $f_a$ .

Note that in Steps 1 and 2 we compute the power series doing arithmetic only in  $\mathbb{Q}[[x]]$ , not in  $\mathbb{Q}(\varepsilon)[[x]]$ , which could be much less efficient if  $\varepsilon$  has large order. One could also write down a recurrence formula for  $B_{j,\varepsilon}$ , but this would simply encode arithmetic in power series rings and the definitions in a formula.

**Example 5.1.3.** Let  $\varepsilon$  be the nontrivial character with modulus 4. Thus  $\varepsilon$  has order 2 and takes values in  $\mathbb{Q}$ . Then the Bernoulli numbers  $B_{k,\varepsilon}$  for k even are all 0 and for k odd they are

$$\begin{split} B_{1,\varepsilon} &= -1/2 \\ B_{3,\varepsilon} &= 3/2 \\ B_{5,\varepsilon} &= -25/2 \\ B_{7,\varepsilon} &= 427/2 \\ B_{9,\varepsilon} &= -12465/2 \\ B_{11,\varepsilon} &= 555731/2 \\ B_{13,\varepsilon} &= -35135945/2 \\ B_{15,\varepsilon} &= 2990414715/2 \\ B_{17,\varepsilon} &= -329655706465/2 \\ B_{19,\varepsilon} &= 45692713833379/2. \end{split}$$

These Bernoulli numbers can be divisible by large primes. For example,  $B_{17,\varepsilon} = 5 \cdot 17^2 \cdot 228135437/2$ .

**Example 5.1.4.** This examples illustrates that the generalized Bernoulli numbers need not be rational numbers. Suppose  $\varepsilon$  is the mod 5 character such that

 $\varepsilon(2) = i = \sqrt{-1}$ . Then  $B_{k,\varepsilon} = 0$  for k even and

$$\begin{split} B_{1,\varepsilon} &= \frac{-i-3}{5} \\ B_{3,\varepsilon} &= \frac{6i+12}{5} \\ B_{5,\varepsilon} &= \frac{-86i-148}{5} \\ B_{7,\varepsilon} &= \frac{2366i+3892}{5} \\ B_{7,\varepsilon} &= \frac{2366i+3892}{5} \\ B_{9,\varepsilon} &= \frac{-108846i-176868}{5} \\ B_{11,\varepsilon} &= \frac{7599526i+12309572}{5} \\ B_{13,\varepsilon} &= \frac{-751182406i-1215768788}{5} \\ B_{15,\varepsilon} &= \frac{99909993486i+161668772052}{5} \\ B_{17,\varepsilon} &= \frac{-17209733596766i-27846408467908}{5} \end{split}$$

**Proposition 5.1.5.** If  $\varepsilon(-1) \neq (-1)^k$ , then  $B_{k,\varepsilon} = 0$ .

### 5.2 Explicit Basis for the Eisenstein Subspace

Suppose  $\chi$  and  $\psi$  are primitive Dirichlet characters with conductors L and M, respectively. Let

$$E_{k,\chi,\psi}(q) = c_0 + \sum_{m \ge 1} \left( \sum_{n|m} \psi(n) \cdot \chi(m/n) \cdot n^{k-1} \right) q^m \in \mathbb{Q}(\chi,\psi)[[q]], \quad (5.2.1)$$

where

$$c_0 = \begin{cases} 0 & \text{if } L > 1, \\ -\frac{B_{k,\psi}}{2k} & \text{if } L = 1. \end{cases}$$

Note that when  $\chi = \psi = 1$  and  $k \ge 4$ , then  $E_{k,\chi,\psi} = E_k$ , where  $E_k$  is from Chapter 1.

Miyake proves statements that imply the following theorems in [Miy89, Ch. 7]. We will not prove them in this book since developing the theory needed to prove them would take us far afield from our goal, which is to compute  $M_k(N, \varepsilon)$ .

**Theorem 5.2.1.** Suppose t is a positive integer and  $\chi$ ,  $\psi$  are as above, and that k is a positive integer such that  $\chi(-1)\psi(-1) = (-1)^k$ . Except when

k = 2 and  $\chi = \psi = 1$ , the power series  $E_{k,\chi,\psi}(q^t)$  defines an element of  $M_k(MLt,\chi/\psi)$ . If  $\chi = \psi = 1$ , k = 2, t > 1, and  $E_2 = E_{k,\chi,\psi}$ , then  $E_2(q) - tE_2(q^t)$  is a modular form in  $M_2(\Gamma_0(t))$ .

**Theorem 5.2.2.** The Eisenstein series in  $M_k(N, \varepsilon)$  coming from Theorem 5.2.1 form a basis for the Eisenstein subspace  $E_k(N, \varepsilon)$ .

**Theorem 5.2.3.** The Eisenstein series  $E_{k,\chi,\psi}(q) \in M_k(ML)$  defined above is an eigenvector for all Hecke operators  $T_n$ . Also  $E_2(q) - tE_2(q^t)$ , for t > 1, is an eigenform.

Since  $E_{k,\chi,\psi}(q)$  is normalizes so the coefficient of q is 1, the eigenvalue of  $T_m$  is

$$\sum_{n|m} \psi(n) \cdot \chi(m/n) \cdot n^{k-1}.$$

Also for  $f = E_2(q) - tE_2(q^t)$  with t > 1 prime, the coefficient of q is 1, and  $T_m(f) = \sigma_1(m) \cdot f$  for (m, t) = 1, and  $T_t(f) = ((t+1)-t)f = f$ .

**Algorithm 5.2.4** (Enumerating Eisenstein Series). Given a weight k and a Dirichlet character  $\varepsilon$  of modulus N, this algorithm computes a basis for the Eisenstein subspace  $E_k(N,\varepsilon)$  of  $M_k(N,\varepsilon)$  to precision  $O(q^r)$ .

- 1. [Weight 2 Trivial Character?] If k = 2 and  $\varepsilon = 1$ , output the Eisenstein series  $E_2(q) tE_2(q^t)$ , for each divisor  $t \mid N$  with  $t \neq 1$ , then terminate.
- 2. [Compute Dirichlet Group] Let  $G = D(N, \mathbb{Q}(\zeta_n))$  be the group of Dirichlet characters with values in  $\mathbb{Q}(\zeta_n)$ , where *n* is the exponent fo  $(\mathbb{Z}/N\mathbb{Z})^*$ .
- 3. [Compute Conductors] Compute the conductor of every element of G (which just involves computing the orders of the local components of each character).
- 4. [List Characters  $\chi$ ] Form a list V all Dirichlet characters  $\chi \in G$  such that  $\operatorname{cond}(\chi) \cdot \operatorname{cond}(\chi/\varepsilon)$  divides N.
- 5. [Compute Eisenstein Series] For each character  $\chi$  in V, let  $\psi = \chi/\varepsilon$ , and compute  $E_{k,\chi,\psi}(q^t) \pmod{q^r}$  for each divisor t of  $N/(\operatorname{cond}(\chi) \cdot \operatorname{cond}(\psi))$ . We compute  $E_{k,\chi,\psi}(q^t) \pmod{q^r}$  using (5.2.1) and Algorithm 5.1.2.

**Remark 5.2.5.** Algorithm 5.2.4 is what I currently use in my programs. It might be better to first reduce to the prime power case by writing all characters as product of local characters and combine Steps 3 and 4 into a single step that involves orders. However, this might make things more complicated and obscure.

**Example 5.2.6.** The following is a basis of Eisenstein series  $E_{2,\chi,\psi}$  for  $E_2(\Gamma_1(13))$ .

```
f1 = 1/2 + q + 3*q^{2} + 4*q^{3} + 0(q^{4})
f2 = (-7/13*zeta_{12}^{2} - 11/13) + q + (2*zeta_{12}^{2} + 1)*q^{2} + (-3*zeta_{12}^{2} + 1)*q^{3} + 0(q^{4})
f3 = q + (zeta_{12}^{2} + 2)*q^{2} + (-1*zeta_{12}^{2} + 3)*q^{3} + 0(q^{4})
f4 = (-1*zeta_{12}^{2}) + q + (2*zeta_{12}^{2} - 1)*q^{2} + (3*zeta_{12}^{2} - 2)*q^{3} + 0(q^{4})
f5 = q + (zeta_{12}^{2} + 1)*q^{2} + (zeta_{12}^{2} + 2)*q^{3} + 0(q^{4})
f6 = (-1) + q + (-1)*q^{2} + 4*q^{3} + 0(q^{4})
f7 = q + q^{2} + 4*q^{3} + 0(q^{4})
f8 = (zeta_{12}^{2} - 1) + q + (-2*zeta_{12}^{2} + 1)*q^{2} + (-3*zeta_{12}^{2} + 1)*q^{3} + 0(q^{4})
f9 = q + (-1*zeta_{12}^{2} + 2)*q^{2} + (-1*zeta_{12}^{2} + 3)*q^{3} + 0(q^{4})
f10 = (7/13*zeta_{12}^{2} - 18/13) + q + (-2*zeta_{12}^{2} + 3)*q^{2} + (3*zeta_{12}^{2} - 2)*q^{3} + 0(q^{4})
f11 = q + (-1*zeta_{12}^{2} + 3)*q^{2} + (zeta_{12}^{2} + 2)*q^{3} + 0(q^{4})
```

#### 5.3 Exercises

- 5.1 Suppose  $\gamma \in \text{SL}_2(\mathbb{Z})$  and N is a positive integer. Prove that there is a positive integer h such that  $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} \in \gamma^{-1}\Gamma_1(N)\gamma$ .
- 5.2 Prove that the map  $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$  is surjective. (Hint: There is a proof of a more general result near the beginning of Shimura's book [Shi94].)
- 5.3 Prove that  $M_k(N, 1) = M_k(\Gamma_0(N))$ .
- 5.4 Suppose A and B are diagonalizable linear transformations of a finitedimensional vector space V and that both A and B are diagonalizable. Prove there is a basis for V so that the matrices of A and B with respect to that both are simultaneously diagonal.
- 5.5 If  $\varepsilon$  is the trivial character of modulus 1 and  $B_k$  are as in Section 2.1, then  $B_{k,\varepsilon} = B_k$ , except when k = 1, in which case  $B_{1,\varepsilon} = -B_1 = 1/2$ .
- 5.6 Prove that if n > 1 is odd, then the Bernoulli number  $B_n$  is 0.