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1 Introduction

Here we will derive the structure of the p-adic complex numbers, that is,

an algebraically closed, topologically complete field containing the p-adic

numbers.

2 Valuations

We will begin by defining valuations and proving some of their simple prop-

erties.

Definition (Valuation). A valuation on a field F is a function | · | : F → R

satisfying three conditions:
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1) |x| = 0 if x = 0; otherwise |x| > 0.

2) |xy| = |x||y| for all x, y ∈ F .

3) There is a constant C such that if |x| ≤ 1, |x+ 1| ≤ C.

Two valuations | · |1, | · |2 are called equivalent if there is a constant c such

that |x|1 = |x|c2 for all x ∈ F .

Note some basic properties that this implies: |1| = | − 1| = 1, | − x| = |x|
and |x−1| = |x|−1.

An example of a valuation is the absolute value on R, with C = 2; we will

refer to this valuation as | · |∞. Such valuations, for which we may choose

C = 2, satisfy the familiar triangle inequality |a+ b| ≤ |a|+ |b|, although we

will not prove it here. This means that for any valuation, some sufficiently

small positive power of it (an equivalent valuation) will satisfy the triangle

inequality.

We we will be concerned here primarily with a special sort of valuation:

Definition. A valuation is called non-Archimedian if we can choose C = 1

in the above definition.

Non-Archimedian valuations such as | · |p are particularly nice because

they satisfy a strong triangle inequality, which is also well-known and which

we will not prove:

Lemma 1 (The Strong Triangle Inequality). If | · | is a non-Archimedian

valuation on a field F , then

|a+ b| ≤ max(|a|, |b|)

with equality whenever |a| 6= |b|, for all a, b ∈ F .
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We have two obvious but very useful corollaries of the Strong Triangle

Inequality:

Corollary. The set OK, defined as {x ∈ K : |x| ≤ 1}, is a ring. This set is

called the integers of K.

Corollary. Partial sums of a series
∑∞

n=0 an form a Cauchy sequence if and

only if an → 0 as n→∞.

A well-known fact in number theory is that the only non-Archimedian

valuations on Q up to exponentiation are the trivial valuation | · |1 such that

|x|1 = 1 for nonzero x, and the p-adic valuation | · |p defined by |pkx|p = p−k

where p divides neither the numerator nor the denominator of x. We will be

more or less ignoring the trivial valuation in this paper, and concentrating

on p-adic valuations on Q and their extensions to other fields.

A valuation | · | with C ≤ 2 defines a metric and therefore a topology

on its field K. We will be interested in the topological properties of various

extensions of Q, and we will be considering completions Q|·| of Q under

| · |. In the case that | · | = | · |p is the p-adic valuation, we will write this

completion as Qp. Here is one such topological property that we will need:

Lemma 2. Qp is locally compact, that is, OQp
is compact.

Proof. We must show that OQp
is complete and totally bounded. As a closed

ball B1(0), it is clearly complete. Furthermore, we can coverOQp
with finitely

many balls of radius p−n for any n because these balls are simply equivalence

classes of OQp
/pnOQp

, of which there are only pn.

We need one more lemma before we can extend valuations:
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Lemma 3 (Stein 15.2.10). A valuation | · | is non-Archimedian if and only

if |n| ≤ 1 for all n ∈ Z.

Proof. “Only if” is trivial by induction with the definition of non-Archimedian.

For the “if” direction, we must choose an equivalent valuation | · |1 which sat-

isfies the triangle inequality; this preserves the condition, and | · |1 is Archi-

median if and only if | · | is. Now pick any a ∈ K with |a| ≤ 1., and expand

using the Binomial Theorem:

|1 + a|n1 = |(1 + a)n|1

= |
n∑

k=0

(
n

k

)
ak|1

≤
n∑

k=0

|
(
n

k

)
|1|ak|1

≤ n+ 1

Thus |1 + a|1 ≤ n
√
n+ 1 for all positive integers n, and so it is at most 1

as desired.

3 Extension of Valuations

We would like to be able to extend valuations, that is, for some finite ex-

tension field L over K and valuation | · | : K → R, we wish to find another

valuation || · || : L → R such that |x| = ||x|| for x ∈ K. The next lemma

shows that this is possible, at least in the cases that we will need.

Lemma 4 (Stein 19.1.2). Let L = Qp(r) be an extension of Qp by the

root r of some irreducible polynomial P of degree n. Then there exists a

non-Archimedian valuation || · || : L→ R which extends | · |.
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Proof. We will show that ||x|| = |NormL/Qp
x|1/n suffices. This is clearly

positive-definite and multiplicative, and by lemma 3, it will be non-Archimedian

if it is in fact a valuation. So we need only show that there is some C such

that for ||x|| ≤ 1, ||x + 1|| ≤ C. This is obvious for x = 0, so we need only

consider nonzero x. This we will do following [4].

Take a basis {bk} of L over Qp, and us it to define a max-norm || · ||m on

L; note that the unit ball under this norm, as the product of finitely many

compact spaces, is compact, and so is the unit sphere S as a closed subset

of a compact space. Therefore, the max-norm || · ||m attains a (nonzero)

minimum m and a maximum M on S.

Now, for some nonzero x with ||x||m = c, we have

||x||
||x||m

=
||x/c||
||x/c||m

= ||x/c||

∈ [m,M ]

since x/c ∈ S. Therefore if ||x|| ≤ 1, then ||x||m ≤ m−1, so ||x + 1||m ≤
m−1 + ||1||m, and finally ||x + 1|| ≤ M(m−1 + ||1||m). Thus we may take

C = M(m−1 + ||1||m).

You will further note that all these extended valuations || · || are compat-

ible. That is, if we have x ∈ L,L′, then the valuation || · ||p extended to L

and to L′ give the same value for ||x||p; this is why we do not subscript || · ||
additionally with the extension L. Therefore if we let Ωp be the algebraic

closure of Qp, we can define a valuation | · |p on Ωp simply as |z|p for z ∈ Ωp

is the same ||z||p defined on some finite extension L 3 z.
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4 Construction of Cp

We would like to extend the p-adic field Qp to a closed and complete space,

to facilitate both algebra and analysis using the p-adics. In the case of the

Archimedian | · |∞ over Q, we need merely find the algebraic closure C of

R = Qv; this field is not only algebraically closed, but also complete space

under the extension of | · |∞. For a p-adic valuation | · |p this turns out not

to be the case: Ωp is not complete.

Definition. Let pa/b ∈ Ωp denote a root of xb − pa = 0 for a, b ∈ N, chosen

so that pab/c = (pa/c)b; pa/b will of course have valuation p−a/b ∈ R.

Theorem 1. The series

s :=
∞∑

n=0

pkn , kn = 3n2

/2n2

does not converge in Ωp, although the sequence of its partial sums is Cauchy.

Proof. The sequence of partial sums is Cauchy because the summands go to

zero. Take any monic polynomial P ∈ Qp[x] of degree m; we will show that

P (s) 6= 0, specifically, that if we write

P (s) =
∑
k=0

ckp
ek

then there is a k such that ck = 1. Consider the exponents ek of the terms that

can arise when computing such a series for sm. Let e({na}) =
∑m

a=1 3n2
a/2n2

a ;

this is the form that all the ek will take. Sort the {na} in descending order

and let N = max{na}; if precisely n1 through nb are equal to N , then this

sum becomes

e({na}m
1 ) = 2−N2

(
3N2

b+
m∑

a=b+1

3n2
a2N2−n2

a

)
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The sum component of this formula is divisible by 22N−1 at least, and b ≤ m.

Therefore if 2N − 1 > m, this term’s denominator is divisible by more than

(N − 1)2 — but at most N2 — powers of 2, so it is distinct from terms with

lesser (and likewise greater) N .

Now consider the term pek whose exponent ek has the associated N >

(m + 1)/2 and an = N for all a (that is, b = m). Since 3N2
is odd, left-

multiplication by it is invertible mod 22N−1, so since no other term in the

expansion of P (s) can have the same N and b = m, none can the same

valuation as pek (even allowing multiplication by powers of p). Therefore

no other term in the expansion of P (s) can cancel pek , and so P (s) 6= 0 as

desired.

We would like Cp to be both topologically complete and algebraically

closed, like C. Since Ωp is not complete, we must complete it, producing

Ω̂p. Fortunately, the resulting space Cp := Ω̂p is closed in addition to being

complete.

Theorem 2 (Bruhat Proposition 7.5). The completion Ω̂p of Ωp is alge-

braically closed.

Proof. We must show that any polynomial f(x) ∈ Ω̂[x] of any degree n has

at least one root in Ω̂. By rescaling the variable x as well as the coefficients

of f , we may assume that f ∈ OΩ̂p
[x] and that f is monic.

Write f(x) = xn + an−1x
n−1 + . . . + a1x + a0. By the definition of Ω̂,

there is some Cauchy sequence in OΩp whose limit is ak for each k. For each

k, take some sufficiently sparse subsequence {amk} of this Cauchy sequence,

such that if l < m, |alk − amk| < p−ln, and call fm(x) = xn + am n−1x
n−1 +
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. . .+am1x+am0; notice that by the triangle inequality, |fm(x)−f(x)| < p−mn

for x ∈ OΩ̂p
.

Now, since fm ∈ Ωp[x], a complete field, we can write fm =
∏n−1

k=0(x−rmk);

since fm has integer coefficients, the rmk must be integers. Pick some rmk

and compute:

fm+1(rmk) = fm+1(rmk)− f(rmk) + f(rmk)− 0

= (fm+1(rmk)− f(rmk)) + (f(rmk)− fm(rmk))

so that |fm+1(rmk)| < p−mn. Thus

n−1∏
l=0

|(rmk − rm+1 l)| < p−mn

and thus for some l, |(rmk− rm+1 l)| < p−m. This gives us a Cauchy sequence

of roots rmkm which converge to some r ∈ Ω̂p. Taking the bound we used

to construct this sequence, we have |fm(r)| < p−m, and so f(r) = 0 and we

have succeeded in finding a root of f .

5 Extension of | · |p to C

Cp and C are intimately related, as is shown by the following theorem:

Theorem 3. Assuming the Axiom of Choice, there is a field isomorphism

φ : C → Cp. Thus we can extend the p-adic valuation to C by |z|p := |φ(z)|p.

Proof. In fact, there is an isomorphism between any two extensions of a field

K if they are algebraically closed and have the same cardinality. Construct

two transcendence bases A,B for C and Cp; these must both be the same size
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as R, so we can construct a bijection ψ : A → B. Assign isomorphism φ0 :

K0 := spanQ(A) → L0 := spanQ(B) by φ0(a) = ψ(a) for a ∈ A, and sums

and products of these as sums and corresponding products of their images;

φ0 is well-defined because A and B are transcendence bases, so expressions

of elements in terms of them are unique up to polynomial identities.

Now, define a partially ordered set S of isomorphisms φI : KI → LI ,

where KI is a superfield of K0 and a subfield of C, and LI is a superfield

of L0 and a subfield of Cp. Define the ordering φI A φJ if and only if

KI ⊇ KJ and φI(z) = φJ(z) for all z ∈ KJ . Clearly φ0 ∈ S. For any

ascending chain {φI}I in S, the isomorphism φU :
⋃
KI → LI defined by

φU(x) = φI(x), x ∈ KI is maximal, so by Zorn’s lemma there is a maximal

isomorphism φM : KM → LM in S.

I claim that KM = C and LM = Cp. For suppose that C\KM contained

some element x. Since A is a full transcendence basis, this xmust be algebraic

over KM , with some minimal polynomial P (x) = 0. φM(P ) must then be

irreducible in  LM by the isomorphism φM , but have a root x̂ in Cp, so we can

assign φN(x) = x̂, and extend it to the ring KM(x) and thus find a greater

valuation φX : KM(x) → LM(x̂), contradicting maximality of φM .

Similarly, LM can lack no element z of Cp. Therefore, we have an iso-

morphism φ : C → Cp as desired.

6 Application

We will prove a simple theorem, originally from [3], using this extension of

| · |p to C. We loosely follow the exposition in [2].
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Theorem 4 (Loves Me, Loves Me Not). If we dissect a square into some

number n of triangles, all of which have the same area A, then n must be

even.

Proof. Following [2], we begin by coloring the plane based on an extension

| · | of the valuation | · |2 to R. Color a point (x, y) red if |x| < 1, |y| < 1.

Color it blue if |x| ≤ |y| and |y| ≥ 1, and color it green if |x| > |y|, and

|x| ≥ 1.

Assume that the square is the unit square with vertices at (0, 0), (1, 0),

(1, 1), and (0, 1). Call the edges of triangles which are on the boundary of

the square border edges. All the border edges with one vertex green and

the other blue are on the top right or top left, and since (0, 1) is blue and

(1, 0) green, there must be an odd number of them. Therefore by Sperner’s

lemma, there is a (possibly degenerate) triangle T inside the square with

one red, one green, and one blue vertex; let these vertices have coordinates

(xr, yr), (xg, yg), (xb, yb), respectively. The area A of T is then the absolute

value of
(xg − xr)(yb − yr)− (xb − xr)(yg − yr)

2

The valuation |(xb − xr)(yg − yr)| of the right term is |xb||yg| ≥ 1. Note

also that |xb| ≥ max(|yb|, |yr|), |yg| > max(|xg|, |xr|) by the definitions of the

colors. Therefore, by the strong triangle inequality, |A| = |1/2||xb||yg| ≥ 2.

Since A = 1/n, we have |n| ≤ 1/2, so n is even.
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7 Conclusion

Due to the complete and algebraically closed structure of Cp, p-adic analysis

— that is, analysis over Cp — has power comparable to traditional complex

analysis. Bruhat, along with many other books, provides a solid if difficult

reference for further exploration of this field.
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