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Today we prove that the class group of the ring of integers of a number field
is finite, discuss how to compute it in some examples, then introduce the group of
units. We will prove the main structure theorem for the group of units on Tuesday.
The notes about proof of finiteness of the class group are not given below, since they
are in the handout for Lecture 8.

1 Remarks on Computing the Class Group

If p is a prime of OK , then the intersection p ∩ Z = pZ is a prime ideal of Z. We
say that p lies over p ∈ Z. Note p lies over p ∈ Z if and only if p is one of the
prime factors in the factorization of the ideal pOK . Geometrically, p is a point of
Spec(OK) that lies over the point pZ of Spec(Z) under the map induced by the
inclusion Z ↪→ OK .

Lemma 1.1. Let K be a number field with ring of integers OK. Then the class
group Cl(K) is generated by the prime ideals p of OK lying over primes p ∈ Z with
p ≤ BK =

√

|dK | ·
(

4

π

)s · n!

nn , where s is the number of complex conjugate pairs of
embeddings K ↪→ C.

Proof. We proved before that every ideal class in Cl(K) is represented by an ideal I
with Norm(I) ≤ BK . Write I =

∏

m

i=1
p

ei

i
, with each ei ≥ 1. Then by multiplicativity

of the norm, each pi also satisfies Norm(pi) ≤ BK . If pi∩Z = pZ, then p | Norm(pi),
since p is the residue characteristic of OK/p, so p ≤ BK . Thus I is a product of
primes p that satisfies the norm bound of the lemma, whcih proves the lemma.

This is a sketch of how to compute Cl(K):

1. Use the “factoring primes” algorithm to list all prime ideals p of OK that
appear in the factorization of a prime p ∈ Z with p ≤ BK .

2. Find the group generated by the ideal classes [p], where the p are the prime
ideals found in step 1. (In general, one must think more carefully about how
to do this step.)
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The following three examples illustrate computation of Cl(K) for K = Q(i),Q(
√

5)
and Q(

√
−6).

Example 1.2. We compute the class group of K = Q(i). We have

n = 2, r = 0, s = 1, dK = −4,

so

BK =
√

4 ·
(

4

π

)1

·
(

2!

22

)

=
8

π
< 3.

Thus Cl(K) is generated by the prime divisors of 2. We have

2OK = (1 + i)2,

so Cl(K) is generated by the principal prime ideal p = (1 + i). Thus Cl(K) = 0 is
trivial.

Example 1.3. We compute the class group of K = Q(
√

5). We have

n = 2, r = 2, s = 0, dK = 5,

so

B =
√

5 ·
(

4

π

)0

·
(

2!

22

)

< 3.

Thus Cl(K) is generated by the primes that divide 2. We have OK = Z[γ], where

γ = 1+
√

5

2
satisfies x2 − x − 1. The polynomial x2 − x − 1 is irreducible mod 2, so

2OK is prime. Since it is principal, we see that Cl(K) = 1 is trivial.

Example 1.4. In this example, we compute the class group of K = Q(
√
−6). We

have
n = 2, r = 0, s = 1, dK = −6,

so

B =
√

6 · 4

π
∼ 3.1.

Thus Cl(K) is generated by the prime ideals lying over 2 and 3. We have OK =
Z[
√
−6], and

√
−6 satisfies x2 + 6 = 0. Factoring x2 + 6 modulo 2 and 3 we see that

the class group is generated by the prime ideals

p2 = (2,
√
−6) and p3 = (3,

√
−6).

Also, p2
2 = 2OK and p2

3 = 3OK , so p2 and p3 define elements of order dividing 2 in
Cl(K).

Is either p2 or p3 principal? Fortunately, there is an easier norm trick that allows
us to decide. Suppose p2 = (α), where α = a + b

√
−6. Then

2 = Norm(p2) = |Norm(α)| = (a + b
√
−6)(a − b

√
−6) = a2 + 6b2.
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Trying the first few values of a, b ∈ Z, we see that this equation has no solutions,
so p2 can not be principal. By a similar argument, we see that p3 is not principal
either. Thus p2 and p3 define elements of order 2 in Cl(K).

Does the class of p2 equal the class of p3? Since p2 and p3 define classes of order 2,
we can decide this by finding the class of p2 · p3. We have

p2 · p3 = (2,
√
−6) · (3,

√
−6) = (6, 2

√
−6, 3

√
−6) ⊂ (

√
−6).

The ideals on both sides of the inclusion have norm 6, so by multiplicativity of the
norm, they must be the same ideal. Thus p2 · p3 = (

√
−6) is principal, so p2 and p3

represent the same element of Cl(K). We conclude that

Cl(K) = 〈p2〉 = Z/2Z.

2 The Group of Units

Definition 2.1 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Proposition 2.2. An element a ∈ K is a unit if and only if Norm(a) = ±1.

Theorem 2.3. The group UK of units of OK is the product of a finite cyclic group
of roots of unity with a free abelian group of rank r + s− 1, where r is the number of
real embeddings of K and s is the number of complex conjugate pairs of embeddings.

Example 2.4 (Pell’s Equation). The classical Pell’s equation is, given square-free
d > 0, to find all positive integer solutions (x, y) to the equation x2 − dy2 = 1. Note
that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group
of units in the ring of integers of Q(

√
d). Theorem 2.3 implies that for any d the

solutions to Pell’s equation form an infinite cyclic group, a fact that takes substantial
work to prove using only elementary number theory (for example, using continued
fractions).
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