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1 The Discriminant

Suppose w1, . . . , wn are a basis for a number field K, which we view as a Q-vector
space. Let σ : K ↪→ Cn be the embedding σ(a) = (σ1(a), . . . , σn(a)), where
σ1, . . . , σn are the distinct embeddings of K into C. Let A be the matrix whose
rows are σ(w1), . . . , σ(wn). The quantity Det(A) depends on the ordering of the wi,
and need not be an integer.

If we consider Det(A)2 instead, we obtain a number that is a well-defined integer
which can be either positive or negative. Note that

Det(A)2 = Det(AA) = Det(AAt) = Det

(

∑

k=1,...,n

σk(wi)σk(wj)

)

= Det(Tr(wiwj)1≤i,j≤n),

so Det(A)2 can be defined purely in terms of the trace without mentioning the
embeddings σi. Also, changing the basis for OK is the same as left multiplying A
by an integer matrix U of determinant ±1, which does not change the squared
determinant, since Det(UA)2 = Det(U)2 Det(A)2 = Det(A)2. Thus Det(A)2 is well
defined, and does not depend on the choice of basis.

If we view K as a Q-vector space, then (x, y) 7→ Tr(xy) defines a bilinear pairing
K × K → Q on K, which we call the trace pairing. The following lemma asserts
that this pairing is nondegenerate, so Det(Tr(wiwj)) 6= 0 hence Det(A) 6= 0.

Lemma 1.1. The trace pairing is nondegenerate.

Proof. If the trace pairing is degenerate, then there exists a ∈ K such that for
every b ∈ K we have Tr(ab) = 0. In particularly, taking b = a−1 we see that
0 = Tr(aa−1) = Tr(1) = [K : Q] > 0, which is absurd.

Definition 1.2 (Discriminant). Suppose a1, . . . , an is any Q-basis of K. The
discriminant of a1, . . . , an is

Disc(a1, . . . , an) = Det(Tr(aiaj)1≤i,j≤n) ∈ Q.

The discriminant Disc(O) of an order O in OK is the discriminant of any basis for O.
The discriminant dK = Disc(K) of the number field K is the discrimimant of OK .
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Note that the discriminants defined above are all nonzero by Lemma 1.1.
Warning: In MAGMA Disc(K) is defined to be the discriminant of the polynomial

you happened to use to define K, which is (in my opinion) a poor choice and goes
against most of the literature.

The following proposition asserts that the discriminant of an order O in OK is
bigger than disc(OK) by a factor of the square of the index.

Proposition 1.3. Suppose O is an order in OK. Then

Disc(O) = Disc(OK) · [OK : O]2.

Proof. Let A be a matrix whose rows are the images via σ of a basis for OK , and let B
be a matrix whose rows are the images via σ of a basis for O. Since O ⊂ OK has finite
index, there is an integer matrix C such that CA = B, and |Det(C)| = [OK : O].
Then

Disc(O) = Det(B)2 = Det(CA)2 = Det(C)2 Det(A)2 = [OK : O]2 · Disc(OK).

This result is enough to give an algorithm for computing OK , albeit a potentially
slow one. Given K, find some order O ⊂ K, and compute d = Disc(O). Factor
d, and use the factorization to write d = s · f 2, where f 2 is the largest square that
divides d. Then the index of O in OK is a divisor of f , and we (tediously) can
enumerate all rings R with O ⊂ R ⊂ K and [R : O] | f , until we find the largest one
all of whose elements are integral.

Example 1.4. Consider the ring OK = Z[(1+
√

5)/2] of integers of K = Q(
√

5). The
discriminant of the basis 1, a = (1 +

√
5)/2 is

Disc(OK) =

∣

∣

∣

∣

(

2 1
1 3

)∣

∣

∣

∣

= 5.

Let O = Z[
√

5] be the order generated by
√

5. Then O has basis 1,
√

5, so

Disc(O) =

∣

∣

∣

∣

(

2 0
0 10

)∣

∣

∣

∣

= 20 = [OK : O]2 · 5.

2 Norms of Ideals

In this section we extend the notion of norm to ideals. This will be helpful in proving
of class groups in the next section. For example, we will prove that the group of
fractional ideals modulo principal fractional ideals of a number field is finite by
showing that every ideal is equivalent to an ideal with norm at most some a priori
bound.
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Definition 2.1 (Lattice Index). If L and M are two lattices in vector space V ,
then the lattice index [L : M ] is by definition the absolute value of the determinant
of any linear automorphism A of V such that A(L) = M .

The lattice index has the following properties:

• If M ⊂ L, then [L : M ] = #(L/M).

• If M,L,N are lattices then [L : N ] = [L : M ] · [M : N ].

Definition 2.2 (Norm of Fractional Ideal). Suppose I is a fractional ideal of
OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0,

or 0 if I = 0.

Note that if I is an integral ideal, then Norm(I) = #(OK/I).

Lemma 2.3. Suppose a ∈ K and I is an integral ideal. Then

Norm(aI) = |NormK/Q(a)|Norm(I).

Proof. By properties of the lattice index mentioned above we have

[OK : aI] = [OK : I] · [I : aI] = Norm(I) · |NormK/Q(a)|.

Here we have used that [I : aI] = |NormK/Q(a)|, which is because left multiplica-
tion `a is an automorphism of K that sends I onto aI, so [I : aI] = |Det(`a)| =
|NormK/Q(a)|.
Proposition 2.4. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) · Norm(J).

Proof. By Lemma 2.3, it suffices to prove this when I and J are integral ideals. If
I and J are coprime, then Theorem ?? (Chinese Remainder Theorem) implies that
Norm(IJ) = Norm(I) · Norm(J). Thus we reduce to the case when I = pm and
J = pk for some prime ideal p and integers m, k. By Proposition ?? (consequence
of CRT that OK/p ∼= pn/pn+1), the filtration of OK/pn given by powers of p has
successive quotients isomorphic to OK/p, so we see that #(OK/pn) = #(OK/p)n,
which proves that Norm(pn) = Norm(p)n.

Lemma 2.5. Fix a number field K. Let B be a positive integer. There are only

finitely many integral ideals I of OK with norm at most B.

Proof. An integral ideal I is a subgroup of OK of index equal to the norm of I. If G
is any finitely generated abelian group, then there are only finitely many subgroups
of G of index at most B, since the subgroups of index dividing an integer n are all
subgroups of G that contain nG, and the group G/nG is finite. This proves the
lemma.
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3 Finiteness of the Class Group via Geometry of

Numbers

We have seen examples in which OK is not a unique factorization domain. If OK is
a principal ideal domain, then it is a unique factorization domain, so it is of interest
to understand how badly OK fails to be a principal ideal domain. The class group
of OK measures this failure. As one sees in a course on Class Field Theory, the class
group and its generalizations also yield deep insight into the possible abelian Galois
extensions of K.

Definition 3.1 (Class Group). Let OK be the ring of integers of a number field K.
The class group CK of K is the group of nonzero fractional ideals modulo the sugroup
of principal fractional ideals (a), for a ∈ K.

Note that if we let Div(K) denote the group of nonzero fractional ideals, then
there is an exact sequence

0 → O∗
K → K∗ → Div(K) → CK → 0.

A basic theorem in algebraic number theory is that the class group CK is finite,
which follows from the first part of the following theorem and the fact that there are
only finitely many ideals of norm less than a given integer.

Theorem 3.2 (Finiteness of the Class Group). Let K be a number field. There

is a constant Cr,s that depends only on the number r, s of real and pairs of complex

conjugate embeddings of K such that every ideal class of OK contains an integral

ideal of norm at most Cr,s

√

|dK |, where dK = Disc(OK). Thus by Lemma 2.5 the

class group CK of K is finite. One can choose Cr,s such that every ideal class in CK

contains an integral ideal of norm at most

√

|dK | ·
(

4

π

)s
n!

nn
.

The explicit bound in the theorem is called the Minkowski bound, and I think it
is the best known unconditional general bound (though there are better bounds in
certain special cases).

Before proving Theorem 3.2, we prove a few lemmas. The strategy of the proof
will be to start with any nonzero ideal I, and prove that there is some nonzero
a ∈ K, with very small norm, such that aI is an integral ideal. Then Norm(aI) =
NormK/Q(a) Norm(I) will be small, since NormK/Q(a) is small. The trick is to
determine precisely how small an a we can choose subject to the condition that aI
be an integral ideal, i.e., that a ∈ I−1.

Let S be a subset of V = Rn. Then S is convex if whenever x, y ∈ S then the
line connecting x and y lies entirely in S. We say that S is symmetric about the

origin if whenever x ∈ S then −x ∈ S also. If L is a lattice in V , then the volume

of V/L is the volume of the compact real manifold V/L, which is the same thing as
the absolute value of the determinant of any matrix whose rows form a basis for L.
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Lemma 3.3. Let L be a lattice in V = Rn, and let S be a bounded closed convex

subset of V that is symmetric about the origin. Assume that Vol(S) ≥ 2n Vol(V/L).
Then S contains a nonzero element of L.

Proof. First assume that Vol(S) > 2n · Vol(V/L). If the map π : 1
2
S → V/L is

injective, then
1

2n
Vol(S) = Vol

(

1

2
S

)

≤ Vol(V/L),

a contradiction. Thus π is not injective, so there exist P1 6= P2 ∈ 1
2
S such that

P1 − P2 ∈ L. By symmetry −P2 ∈ 1
2
S. By convexity, the average 1

2
(P1 − P2) of P1

and −P2 is also in 1
2
S. Thus 0 6= P1 − P2 ∈ S ∩ L, as claimed.

Next assume that Vol(S) = 2n · Vol(V/L). Then for all ε > 0 there is 0 6= Qε ∈
L ∩ (1 + ε)S, since Vol((1 + ε)S) > Vol(S) = 2n · Vol(V/L). If ε < 1 then the Qε

are all in L ∩ 2S, which is finite since 2S is bounded and L is discrete. Hence there
exists Q = Qε ∈ L∩(1+ε)S for arbitrarily small ε. Since S is closed, Q ∈ L∩S.

Lemma 3.4. If L1 and L2 are lattices in V , then

Vol(V/L2) = Vol(V/L1) · [L1 : L2].

Proof. Let A be an automorphism of V such that A(L1) = L2. Then A defines an
isomorphism of real manifolds V/L1 → V/L2 that changes volume by a factor of
|Det(A)| = [L1 : L2]. The claimed formula then follows.

Fix a number field K with ring of integers OK . Let σ : K → V = Rn be the
embedding

σ(x) =
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . , Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

where σ1, . . . , σr are the real embeddings of K and σr+1, . . . , σr+s are half the com-
plex embeddings of K, with one representative of each pair of complex conjugate
embeddings. Note that this σ is not exactly the same as the one at the beginning of
Section 1.

Lemma 3.5.
Vol(V/σ(OK)) = 2−s

√

|dK |.

Proof. Let L = σ(OK). From a basis w1, . . . , wn for OK we obtain a matrix A whose
ith row is

(σ1(wi), · · · , σr(wi), Re(σr+1(wi)), . . . , Re(σr+s(w1)), Im(σr+1(wi)), . . . , Im(σr+s(w1)))

and whose determinant has absolute value equal to the volume of V/L. By doing
the following three column operations, we obtain a matrix whose rows are exactly
the images of the wi under all embeddings of K into C, which is the matrix that
came up when we defined dK .
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1. Add i =
√
−1 times each column with entries Im(σr+j(wi)) to the column with

entries Re(σr+j(wi)).

2. Multiply all columns Im(σr+j(wi)) by −2i, thus changing the determinant by
(−2i)s.

3. Add each columns with entries Re(σr+j(wi)) to the the column with entries
−2iIm(σr+j(wi)).

Recalling the definition of discriminant, we see that if B is the matrix constructed
by the above three operations, then Det(B)2 = dK . Thus

Vol(V/L) = |Det(A)| = |(−2i)−s · Det(B)| = 2−s
√

|dK |.

Lemma 3.6. If I is a nonzero fractional ideal for OK, then σ(I) is a lattice in V ,

and

Vol(V/σ(I)) = 2−s
√

|dK | · Norm(I).

Proof. We know that [OK : I] = Norm(I) is a nonzero rational number. Lemma 3.5
implies that σ(OK) is a lattice in V , since σ(OK) has rank n as abelian group and
spans V , so σ(I) is also a lattice in V . For the volume formula, combine Lemmas 3.4–
3.5 to get

Vol(V/σ(I)) = Vol(V/σ(OK)) · [OK : I] = 2−s
√

|dK |Norm(I).

Proof of Theorem 3.2. Let K be a number field with ring of integers OK , let σ :
K ↪→ V ∼= Rn be as above, and let f : V → R be the function defined by

f(x1, . . . , xn) = |x1 · · · xr · (x2
r+1 + x2

(r+1)+s) · · · (x2
r+s + x2

n).

Notice that if x ∈ K then f(σ(x)) = |NormK/Q(x)|.
Let S ⊂ V be any closed, bounded, convex, subset that is symmetric with respect

to the origin and has positive volume. Since S is closed and bounded,

M = max{f(x) : x ∈ S}

exists.
Suppose I is any nonzero fractional ideal of OK . Our goal is to prove there is an

integral ideal aI with small norm. We will do this by finding an appropriate a ∈ I−1.
By Lemma 3.6,

c = Vol(V/I−1) =
2−s
√

|dK |
Norm(I)

.
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Let λ = 2 ·
(

c
v

)1/n
, where v = Vol(S). Then

Vol(λS) = λn Vol(S) = 2n c

v
· v = 2n · c = 2n Vol(V/I−1),

so by Lemma 3.3 there exists 0 6= a ∈ I−1 ∩ λS. Since M is the largest norm of an
element of S, the largest norm of an element of I−1 ∩ λS is at most λnM , so

|NormK/Q(a)| ≤ λnM.

Since a ∈ I−1, we have aI ⊂ OK , so aI is an integral ideal of OK that is equivalent
to I, and

Norm(aI) = |NormK/Q(a)| · Norm(I)

≤ λnM · Norm(I)

≤ 2n c

v
M · Norm(I)

≤ 2n · 2−s
√

|dK | · M · v−1

= 2r+s
√

|dK | · M · v−1.

Notice that the right hand side is independent of I. It depends only on r, s, |dK |, and
our choice of S. This completes the proof of the theorem, except for the assertion
that S can be chosen to give the claim at the end of the theorem, which we leave as
an exercise.

Corollary 3.7. Suppose that K 6= Q is a number field. Then |dK | > 1.

Proof. Applying Theorem 3.2 to the unit ideal, we get the bound

1 ≤
√

|dK | ·
(

4

π

)s
n!

nn
.

Thus
√

|dK | ≥
(π

4

)s nn

n!
,

and the right hand quantity is strictly bigger than 1 for any s ≤ n/2 and any n > 1
(exercise).

3.1 An Open Problem

Conjecture 3.8. There are infinitely many number fields K such that the class

group of K has order 1.

For example, if we consider real quadratic fields K = Q(
√

d), with d positive
and square free, many class numbers are probably 1, as suggested by the MAGMA
output below. It looks like 1’s will keep appearing infinitely often, and indeed Cohen
and Lenstra conjecture that they do. Nobody has found a way to prove this yet.
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> for d in [2..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2-d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, 31, 33, 37,

38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73, 77, 83,

86, 89, 93, 94, 97, 101, 103, 107, 109, 113, 118, 127, 129, 131,

133, 134, 137, 139, 141, 149, 151, 157, 158, 161, 163, 166, 167,

173, 177, 179, 181, 191, 193, 197, 199, 201, 206, 209, 211, 213,

214, 217, 227, 233, 237, 239, 241, 249, 251, 253, 262, 263, 269,

271, 277, 278, 281, 283, 293, 301, 302, 307, 309, 311, 313, 317,

329, 331, 334, 337, 341, 347, 349, 353, 358, 367, 373, 379, 381,

382, 383, 389, 393, 397, 398, 409, 413, 417, 419, 421, 422, 431,

433, 437, 446, 449, 453, 454, 457, 461, 463, 467, 478, 479, 487,

489, 491, 497, 501, 502, 503, 509, 517, 521, 523, 526, 537, 541,

542, 547, 553, 557, 563, 566, 569, 571, 573, 581, 587, 589, 593,

597, 599, 601, 607, 613, 614, 617, 619, 622, 631, 633, 641, 643,

647, 649, 653, 661, 662, 669, 673, 677, 681, 683, 691, 694, 701,

709, 713, 717, 718, 719, 721, 734, 737, 739, 743, 749, 751, 753,

757, 758, 766, 769, 773, 781, 787, 789, 797, 809, 811, 813, 821,

823, 827, 829, 838, 849, 853, 857, 859, 862, 863, 869, 877, 878,

881, 883, 886, 887, 889, 893, 907, 911, 913, 917, 919, 921, 926,

929, 933, 937, 941, 947, 953, 958, 967, 971, 973, 974, 977, 983,

989, 991, 997, 998,

In contrast, if we look at class numbers of quadratic imaginary fields, only a few
at the beginning have class number 1.

> for d in [1..1000] do

if d eq SquareFree(d) then

h := ClassNumber(NumberField(x^2+d));

if h eq 1 then

printf "%o, ", d;

end if;

end if;

end for;

1, 2, 3, 7, 11, 19, 43, 67, 163

It is a theorem that the above list of 9 fields is the complete list with class number
1. More generally, it is possible (in theory), using deep work of Gross, Zagier, and
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Goldfeld involving zeta functions and elliptic curves, to enumerate all quadratic
number fields with a given class number.
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