
Math 129: Algebraic Number Theory

Lecture 6

William Stein

Tuesday, February 24, 2004

First we will learn how, if p ∈ Z is a prime and OK is the ring of integers of
a number field, to write pOK as a product of primes of OK . Then I will sketch
the main results and definitions that we will study in detail during the next 2 or 3
lectures. We will cover discriminants and norms of ideals, define the class group of
OK and prove that it is finite and computable, and define the group of units of OK ,
determine its structure, and prove that it is also computable.

1 Factoring Primes

A diagram from [LL93].

“The obvious mathematical breakthrough would be de-
velopment of an easy way to factor large prime numbers.”

–Bill Gates, The Road Ahead, pg. 265
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Let K = Q(α) be a number field, and let OK be the ring of integers of K. To
employ our geometric intuition, as the Lenstras did on the cover of [LL93], it is
helpful to view OK as a one-dimensional scheme

X = Spec(OK) = { all prime ideals of OK }

over
Y = Spec(Z) = {(0)} ∪ {pZ : p ∈ Z is prime }.

There is a natural map π : X → Y that sends a prime ideal p ∈ X to p ∩ Z ∈ Y .
For much more on this point of view, see [EH00, Ch. 2].

Ideals were originally introduced by Kummer because, as we proved last Tuesday,
in rings of integers of number fields ideals factor uniquely as products of primes ideals,
which is something that is not true for general algebraic integers. (The failure of
unique factorization for algebraic integers was used by Liouville to destroy Lamé’s
purported 1847 “proof” of Fermat’s Last Theorem.)

If p ∈ Z is a prime number, then the ideal pOK of OK factors uniquely as
a product

∏

p
ei

i , where the pi are maximal ideals of OK . We may imagine the
decomposition of pOK into prime ideals geometrically as the fiber π−1(pZ) (with
multiplicities).

How can we compute π−1(pZ) in practice?

Example 1.1. The following Magma session shows the commands needed to compute
the factorization of pOK in Magma for K the number field defined by a root of
x5 + 7x4 + 3x2 − x + 1.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^5 + 7*x^4 + 3*x^2 - x + 1);

> OK := MaximalOrder(K);

> I := 2*OK;

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[2, 0, 0, 0, 0], 1>

]

> J := 5*OK;

> Factorization(J);

[

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 1, 0, 0, 0], 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]
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[3, 1, 0, 0, 0], 2>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0]

[2, 4, 1, 0, 0], 1>

]

> [K!OK.i : i in [1..5]];

[ 1, a, a^2, a^3, a^4 ]

Thus 2OK is already a prime ideal, and

5OK = (5, 2 + a) · (5, 3 + a)2 · (5, 2 + 4a + a2).

Notice that in this example OK = Z[a]. (Warning: There are examples of OK such
that OK 6= Z[a] for any a ∈ OK , as Example 1.6 below illustrates.) When OK = Z[a]
it is very easy to factor pOK , as we will see below. The following factorization gives
a hint as to why:

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5).

The exponent 2 of (5, 3 + a)2 in the factorization of 5OK above suggests “rami-
fication”, in the sense that the cover X → Y has less points (counting their “size”,
i.e., their residue class degree) in its fiber over 5 than it has generically. Here’s a
suggestive picture:
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PSfrag replacements

(5, 2 + 4a + a2)

(5, 3 + a)2

(5, 2 + a)

5Z

2OK

2Z
(0)

(0)

3Z 7Z 11Z

Diagram of Spec(OK) → Spec(Z)
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1.1 A Method for Factoring that Often Works

Suppose a ∈ OK is such that K = Q(a), and let g(x) be the minimal polynomial
of a. Then Z[a] ⊂ OK , and we have a diagram of schemes

(??) Â

Ä

//

²²

Spec(OK)

²²
⋃

Spec(Fp[x]/(gei

i )) Â

Ä

//

²²

Spec(Z[a])

²²

Spec(Fp)
Â

Ä

// Spec(Z)

where g =
∏

i g
ei

i is the factorization of the image of g in Fp[x].
The cover π : Spec(Z[a]) → Spec(Z) is easy to understand because it is defined

by the single equation g(x). To give a maximal ideal p of Z[a] such that π(p) = pZ is
the same as giving a homomorphism ϕ : Z[x]/(g) → Fp (up to automorphisms of the
image), which is in turn the same as giving a root of g in Fp (up to automorphism),
which is the same as giving an irreducible factor of the reduction of g modulo p.

Lemma 1.2. Suppose the index of Z[a] in OK is coprime to p. Then the primes pi

in the factorization of pZ[a] do not decompose further going from Z[a] to OK, so
finding the prime ideals of Z[a] that contain p yields the factorization of pOK.

Proof. The inclusion map Z[a] ↪→ OK is defined by a matrix over Z that has deter-
minant ±[OK : Z[a]], which is coprime to p. The reduction of this matrix modulo p
is invertible, so it defines an isomorphism Z[a] ⊗ Fp → OK ⊗ Fp. Any homomor-
phism OK → Fp is the composition of a homomorphism OK → OK ⊗ Fp with a
homomorphism OK ⊗ Fp → Fp. Since OK ⊗ Fp

∼= Z[a] ⊗ Fp, the homomorphisms
OK → Fp are in bijection with the homomorphisms Z[a] → Fp, which proves the
lemma.

As suggested in the proof of the lemma, we find all homomorphisms OK → Fp

by finding all homomorphism Z[a] → Fp. In terms of ideals, if p = (g(a), p)Z[a] is a
maximal ideal of Z[a], then the ideal p′ = (g(a), p)OK of OK is also maximal, since

OK/p′ ∼= (OK ⊗ Fp)/(g(ã)) ∼= (Z[a] ⊗ Fp)/(g(ã)) ⊂ Fp.

We formalize the above discussion in the following theorem:

Theorem 1.3. Let f(x) denote the minimal polynomial of a over Q. Suppose that p -
[OK : Z[a]] is a prime. Let

f =
t
∏

i=1

f
ei

i ∈ Fp[x]
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where the f i are distinct monic irreducible polynomials. Let pi = (p, fi(a)) where
fi ∈ Z[x] is a lift of f i in Fp[X]. Then

pOK =
t
∏

i=1

p
ei

i .

We return to the example from above, in which K = Q(a), where a is a root of
x5+7x4+3x2−x+1. According to MAGMA, the maximal order OK has discriminant
2945785:

> Discriminant(MaximalOrder(K));

2945785

The order Z[a] has the same discriminant as OK , so Z[a] = OK and we can apply
the above theorem.

> Discriminant(x^5 + 7*x^4 + 3*x^2 - x + 1);

2945785

We have

x5 + 7x4 + 3x2 − x + 1 ≡ (x + 2) · (x + 3)2 · (x2 + 4x + 2) (mod 5),

which yields the factorization of 5OK given before the theorem.
If we replace a by b = 7a, then the index of Z[b] in OK will be a power of 7,

which is coprime to 5, so the above method will still work.

> f:=MinimalPolynomial(7*a);

> f;

x^5 + 49*x^4 + 1029*x^2 - 2401*x + 16807

> Discriminant(f);

235050861175510968365785

> Discriminant(f)/Discriminant(MaximalOrder(K));

79792266297612001 // coprime to 5

> S<t> := PolynomialRing(GF(5));

> Factorization(S!f);

[

<t + 1, 2>,

<t + 4, 1>,

<t^2 + 3*t + 3, 1>

]

Thus 5 factors in OK as

5OK = (5, 7a + 1)2 · (5, 7a + 4) · (5, (7a)2 + 3(7a) + 3).

If we replace a by b = 5a and try the above algorithm with Z[b], then the method
fails because the index of Z[b] in OK is divisible by 5.
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> f:=MinimalPolynomial(5*a);

> f;

x^5 + 35*x^4 + 375*x^2 - 625*x + 3125

> Discriminant(f) / Discriminant(MaximalOrder(K));

95367431640625 // divisible by 5

> Factorization(S!f);

[

<t, 5>

]

1.2 A Method for Factoring that Always Works

There are numbers fields K such that OK is not of the form Z[a] for any a ∈ K.
Even worse, Dedekind found a field K such that 2 | [OK : Z[a]] for all a ∈ OK , so
there is no choice of a such that Theorem 1.3 can be used to factor 2 for K (see
Example 1.6 below).

Most algebraic number theory books do not describe an algorithm for decompos-
ing primes in the general case. Fortunately, Cohen’s book [Coh93, §6.2]) describes
how to solve the general problem. The solutions are somewhat surprising, since
the algorithms are much more sophisticated than the one suggested by Theorem 1.3.
However, these complicated algorithms all run very quickly in practice, even without
assuming the maximal order is already known.

For simplicity we consider the following slightly easier problem whose solution
contains the key ideas: Let O be any order in OK and let p be a prime of Z. Find
the prime ideals of O that contain p.

To go from this special case to the general case, given a prime p that we wish
to factor in OK , we find a p-maximal order O, i.e., an order O such that [OK : O]
is coprime to p. A p-maximal order can be found very quickly in practice using the
“round 2” or “round 4” algorithms. (Remark: Later we will see that to compute OK ,
we take the sum of p-maximal orders, one for every p such that p2 divides Disc(OK).
The time-consuming part of this computation of OK is finding the primes p such
that p2 | Disc(OK), not finding the p-maximal orders. Thus a fast algorithm for
factoring integers would not only break many cryptosystems, but would massively
speed up computation of the ring of integers of a number field.)

Algorithm 1.4. Suppose O is an order in the ring OK of integers of a number
field K. For any prime p ∈ Z, the following (sketch of an) algorithm computes the
set of maximal ideals of O that contain p.

Sketch of algorithm. Let K = Q(a) be a number field given by an algebraic
integer a as a root of its minimal monic polynomial f of degree n. We assume that an
order O has been given by a basis w1, . . . , wn and that O that contains Z[a]. Each of
the following steps can be carried out efficiently using little more than linear algebra over
Fp. The details are in [Coh93, §6.2.5].

6



1. [Check if easy] If p - disc(Z[a])/ disc(O) (so p - [O : Z[a]]), then by a slight
modification of Theorem 1.3, we easily factor pO.

2. [Compute radical] Let I be the radical of pO, which is the ideal of elements x ∈ O
such that xm ∈ pO for some positive integer m. Using linear algebra over the finite
field Fp, we can quickly compute a basis for I/pO. (We never compute I ⊂ O.)

3. [Compute quotient by radical] Compute an Fp basis for

A = O/I = (O/pO)/(I/pO).

The second equality comes from the fact that pO ⊂ I, which is clear by definition.
Note that O/pO ∼= O ⊗ Fp is obtained by simply reducing the basis w1, . . . , wn

modulo p.

4. [Decompose quotient] The ring A is a finite Artin ring with no nilpotents, so it
decomposes as a product A ∼=

∏

Fp[x]/gi(x) of fields. We can quickly find such
a decomposition explicitly, as described in [Coh93, §6.2.5].

5. [Compute the maximal ideals over p] Each maximal ideal pi lying over p is the
kernel of O → A → Fp[x]/gi(x).

The algorithm finds all primes of O that contain the radical I of pO. Every such
prime clearly contains p, so to see that the algorithm is correct, we must prove that
the primes p of O that contain p also contain I. If p is a prime of O that contains p,
then pO ⊂ p. If x ∈ I then xm ∈ pO for some m, so xm ∈ p which implies that
x ∈ p by primality of p. Thus p contains I, as required.

1.3 Essential Discriminant Divisors

Definition 1.5. A prime p is an essential discriminant divisor if p | [OK : Z[a]] for
every a ∈ OK .

Since [OK : Z[a]] is the absolute value of Disc(f(x))/ Disc(OK), where f(x) is
the characteristic polynomial of f(x), an essential discriminant divisor divides the
discriminant of the characteristic polynomial of any element of OK .

Example 1.6 (Dedekind). Let K = Q(a) be the cubic field defined by a root a of the
polynomial f = x3 + x2 − 2x + 8. We will use MAGMA, which implements the algo-
rithm described in the previous section, to show that 2 is an essential discriminant
divisor for K.

> K<a> := NumberField(x^3 + x^2 - 2*x + 8);

> OK := MaximalOrder(K);

> Factorization(2*OK);

[

<Prime Ideal of OK
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Basis:

[2 0 0]

[0 1 0]

[0 0 1], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 0]

[0 0 2], 1>,

<Prime Ideal of OK

Basis:

[1 0 1]

[0 1 1]

[0 0 2], 1>

]

Thus 2OK = p1p2p3, with the pi distinct. Moreover, one can check that OK/pi
∼= F2.

If OK = Z[a] for some a ∈ OK with minimal polynomial g, then g(x) ∈ F2[x] must
be a product of three distinct linear factors, which is impossible.

2 The Chinese Remainder Theorem

Let OK be the ring of integers of a number field.

Theorem 2.1 (Chinese Remainder Theorem). Suppose I1, . . . , In are ideals of
OK such that Ij + Ik = (1) for any i 6= j. Then the natural map OK →

∏

OK/Ij

induces an isomorphism

OK/
(

∏

Ij

)

→
∏

OK/Ij.

Thus if we choose aj ∈ Ij then there exists a ∈ OK such that a ≡ aj (mod Ij) for
j = 1, . . . , n.

Lemma 2.2. Suppose I, J are nonzero integral ideals in OK. Then there exists a ∈ I
such that (a)/I is coprime to J .

The next proposition asserts that every ideal of the ring of integers of a number
field can be generated, as an ideal, by two elements.

Proposition 2.3. Suppose I is called an ideal in the ring OK of integers of a number
field. Then there exist a, b ∈ OK such that I = (a, b).
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3 Discriminants

Let K be a number field of degree n. Then there are n embeddings

σ1, . . . , σn : K → C.

Reorder these embeddings so the first r have image R and the remaining s = n − r
have image C. Let σ by the product map a 7→ (σ1(a), . . . , σn(a)).

Definition 3.1 (Discriminant). Suppose a1, . . . , an is a Q-basis of K. The dis-
criminant of a1, . . . , an is

Disc(a1, . . . , an) = det(Tr(aiaj)i,j=1,n).

4 Norms of Ideals

Definition 4.1 (Norm of Fractional Ideal). Suppose I is a fractional ideal of
OK . The norm of I is the lattice index

Norm(I) = [OK : I] ∈ Q≥0.

This lattice index is by definition the absolute value of the determinant of any Q-
linear automorphism of K that sends OK onto I, or 0 if I = (0).

Proposition 4.2. If I and J are fractional ideals, then

Norm(IJ) = Norm(I) Norm(J).

5 The Class Group

Definition 5.1 (Class Group). Let OK be the ring of integers of a number field K.
The class group CK of K is the group of nonzero fractional ideals modulo the sugroup
of principal fractional ideals (a), for a ∈ K.

If we let Div(K) denote the group of nonzero fractional ideals, then there is an
exact sequence

0 → O∗
K → K∗ → Div(K) → CK → 0.

Theorem 5.2 (Finiteness of the Class Group). Every ideal class in CK contains
an integral ideal of norm at most

√

|Disc(K)| ·
(

4

π

)s
n!

nn
,

where s is the number of complex conjugate embeddings of K. Thus the class group
CK of any number field K is finite.

The bound in the theorem is called the Minkowski bound, and I think it is the
best known unconditional general bound (though there are better bounds in certain
special cases).
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5.1 The Group of Units

Definition 5.3 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Proposition 5.4. An element a ∈ K is a unit if and only if Norm(a) = ±1.

Theorem 5.5. The group UK of units of OK is the product of a finite cyclic group
of roots of unity with a free abelian group of rank r + s− 1, where r is the number of
real embeddings of K and s is the number of complex conjugate pairs of embeddings.

Example 5.6 (Pell’s Equation). The classical Pell’s equation is, given square-free
d > 0, to find all positive integer solutions (x, y) to the equation x2 − dy2 = 1. Note
that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group
of units in the ring of integers of Q(

√
d). Theorem 5.5 implies that for any d the

solutions to Pell’s equation form an infinite cyclic group, a fact that takes substantial
work to prove using only elementary number theory (for example, using continued
fractions).
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