
Math 129: Algebraic Number Theory

Lecture 5

William Stein

Thursday, February 19, 2004

1 Dedekind Domains

First we complete the proof begun on Tuesday that the set of nonzero fractional
ideals of OK is a group. Recall that a fractional ideal I is an OK-submodule of K
that is finitely generated. We proved on Tuesday that if p is a prime ideal of I, then
there is a fractional ideal

p
−1 = {a ∈ K : ap ⊂ OK}

such that pp−1 = (1) = OK , i.e., every prime ideal has an inverse. We proved this
by noting that either pp−1 = OK or pp−1 = p. Using the fact that OK is Noetherian
and integrally closed, we deduced that pp−1 = p leads to a contradiction. It remains
to prove that every fractional ideal has an inverse, which we do now.

Completion of proof. So far we have proved that if p is a prime ideal of OK , then
p−1 = {a ∈ K : ap ⊂ OK} is the inverse of p in the monoid of nonzero fractional
ideals of OK . As mentioned after Definition ?? [on Tuesday], every nonzero fractional
ideal is of the form aI for a ∈ K and I an integral ideal, so since (a) has inverse
(1/a), it suffices to show that every integral ideal I has an inverse. If not, then there
is a nonzero integral ideal I that is maximal among all nonzero integral ideals that
do not have an inverse. Every ideal is contained in a maximal ideal, so there is a
nonzero prime ideal p such that I ⊂ p. Multiplying both sides of this inclusion by
p−1 and using that OK ⊂ p−1, we see that I ⊂ p−1I ⊂ OK . If I = p−1I, then arguing
as in the proof that p−1 is the inverse of p, we see that each element of p−1 preserves
the finitely generated Z-module I and is hence integral. But then p−1 ⊂ OK , which
implies that OK = pp−1 ⊂ p, a contradiction. Thus I 6= p−1I. Because I is maximal
among ideals that do not have an inverse, the ideal p−1I does have an inverse, call
it J . Then pJ is the inverse of I, since OK = (pJ)(p−1I) = JI.

We are now ready to deduce the crucial Theorem 1.2, which asserts that any
nonzero ideal of a Dedekind domain can be expressed uniquely as a product of primes
(up to order). Thus unique factorization holds for ideals in a Dedekind domain, and

1

it is this unique factorization that initially motivated the introduction of rings of
integers of number fields over a century ago.

Theorem 1.1. Suppose I is an integral ideal of OK. Then I can be written as a
product

I = p1 · · · pn

of prime ideals of OK, and this representation is unique up to order. (Exception: If
I = 0, then the representation is not unique.)

Proof. Suppose I is an ideal that is maximal among the set of all ideals in OK that
can not be written as a product of primes. Every ideal is contained in a maximal
ideal, so I is contained in a nonzero prime ideal p. If Ip−1 = I, then by Theorem ??

[that the fractional ideals form an abelian group] we can cancel I from both sides
of this equation to see that p−1 = OK , a contradiction. Thus I is strictly contained
in Ip−1, so by our maximality assumption on I there are maximal ideals p1, . . . , pn

such that Ip−1 = p1 · · · pn. Then I = p · p1 · · · pn, a contradiction. Thus every ideal
can be written as a product of primes.

Suppose p1 · · · pn = q1 · · · qm. If no qi is contained in p1, then for each i there is
an ai ∈ qi such that ai 6∈ p1. But the product of the ai is in the p1 · · · pn, which is
a subset of p1, which contradicts the fact that p1 is a prime ideal. Thus qi = p1 for
some i. We can thus cancel qi and p1 from both sides of the equation. Repeating
this argument finishes the proof of uniqueness.

Corollary 1.2. If I is a fractional ideal of OK then there exists prime ideals p1, . . . , pn

and q1, . . . , qm, unique up to order, such that

I = (p1 · · · pn)(q1 · · · qm)−1.

Proof. We have I = (a/b)J for some a, b ∈ OK and integral ideal J . Applying
Theorem 1.2 to (a), (b), and J gives an expression as claimed. For uniqueness, if
one has two such product expressions, multiply through by the denominators and
use the uniqueness part of Theorem 1.2

Example 1.3. The ring of integers of K = Q(
√
−6) is OK = Z[

√
−6]. In OK , we

have
6 = −

√
−6

√
−6 = 2 · 3.

If ab =
√
−6, with a, b ∈ OK and neither a unit, then Norm(a) Norm(b) = 6, so

without loss Norm(a) = 2 and Norm(b) = 3. If a = c + d
√
−6, then Norm(a) =

c2 + 6d2; since the equation c2 + 6d2 = 2 has no solution with c, d ∈ Z, there is no
element in OK with norm 2, so

√
−6 is irreducible. Also,

√
−6 is not a unit times 2

or times 3, since again the norms would not match up. Thus 6 can not be written
uniquely as a product of irreducibles in OK . Theorem 1.1, however, implies that the
principal ideal (6) can, however, be written uniquely as a product of prime ideals.
Using MAGMA we find such a decomposition:

2

> R<x> := PolynomialRing(RationalField());

> K := NumberField(x^2+6);

> OK := MaximalOrder(K);

> [K!b : b in Basis(OK)];

[

1,

K.1 // this is sqrt(-6)

]

> Factorization(6*OK);

[

<Prime Ideal of OK

Two element generators:

[2, 0]

[2, 1], 2>,

<Prime Ideal of OK

Two element generators:

[3, 0]

[3, 1], 2>

]

The output means that

(6) = (2, 2 +
√
−6)2 · (3, 3 +

√
−6)2,

where each of the ideals (2, 2 +
√
−6) and (3, 3 +

√
−6) is prime. I will discuss

algorithms for computing such a decomposition in detail, probably next week. The
first idea is to write (6) = (2)(3), and hence reduce to the case of writing the (p),
for p ∈ Z prime, as a product of primes. Next one decomposes the Artinian ring
OK ⊗ Fp as a product of local Artinian rings.

2 Algorithms for Algebraic Number Theory

The best overall reference for algorithms for doing basic algebraic number theory
computations is Henri Cohen’s book A Course in Computational Algebraic Number
Theory, Springer, GTM 138.

Our main long-term algorithmic goals for this course are to understand good
algorithms for solving the following problems in particular cases:

• Ring of integers: Given a number field K (by giving a polynomial), compute
the full ring OK of integers.

• Decomposition of primes: Given a prime number p ∈ Z, find the decom-
position of the ideal pOK as a product of prime ideals of OK .

• Class group: Compute the group of equivalence classes of nonzero ideals of
OK , where I and J are equivalent if there exists α ∈ OK such that IJ−1 = (α).

3

• Units: Compute generators for the group of units of OK .

As we will see, somewhat surprisingly it turns out that algorithmically by far
the most time-consuming step in computing the ring of integers OK seems to be
to factor the discriminant of a polynomial whose root generates the field K. The
algorithm(s) for computing OK are quite complicated to describe, but the first step
is to factor this discriminant, and it takes much longer in practice than all the other
complicated steps.

3 Using MAGMA

This section is a first introduction to MAGMA for algebraic number theory. MAGMA
is probably the best general purpose program for doing algebraic number theory com-
putations. You can use it via the web page http://modular.fas.harvard.edu/calc.
MAGMA is not free, but if you would like a copy for your personal computer, send
me an email, and I can arrange for you to obtain a legal copy for free.

Five minute tour of the MAGMA web page and documentation.

The following examples illustrate what we’ve done so far in the course using
MAGMA, and a little of where we are going. Feel free to ask questions as we go.

3.1 Smith Normal Form

On the first day of class we learned about Smith normal forms of matrices.

> A := Matrix(2,2,[1,2,3,4]);

> A;

[1 2]

[3 4]

> SmithForm(A);

[1 0]

[0 2]

[1 0]

[-1 1]

[-1 2]

[1 -1]

As you can see, MAGMA computed the Smith form, which is

(

1 0
0 2

)

. What are

the other two matrices it output? To see what any MAGMA command does, type
the command by itself with no arguments followed by a semicolon.

4

> SmithForm;

Intrinsic ’SmithForm’

Signatures:

(<Mtrx> X) -> Mtrx, AlgMatElt, AlgMatElt

[

k: RngIntElt,

NormType: MonStgElt,

Partial: BoolElt,

RightInverse: BoolElt

]

The smith form S of X, together with unimodular matrices

P and Q such that P * X * Q = S.

As you can see, SmithForm returns three arguments, a matrix and matrices P and
Q that transform the input matrix to Smith normal form. The syntax to “receive”
three return arguments is natural, but uncommon in other programming languages:

> S, P, Q := SmithForm(A);

> S;

[1 0]

[0 2]

> P;

[1 0]

[-1 1]

> Q;

[-1 2]

[1 -1]

> P*A*Q;

[1 0]

[0 2]

Next, let’s test the limits. We make a 10× 10 integer matrix with entries between 0
and 99, and compute its Smith normal form.

> A := Matrix(10,10,[Random(100) : i in [1..100]]);

> time B := SmithForm(A);

Time: 0.000

Let’s print the first row of A, the first and last row of B, and the diagonal of B:

> A[1];

(4 48 84 3 58 61 53 26 9 5)

> B[1];

5

(1 0 0 0 0 0 0 0 0 0)

> B[10];

(0 0 0 0 0 0 0 0 0 51805501538039733)

> [B[i,i] : i in [1..10]];

[1, 1, 1, 1, 1, 1, 1, 1, 1, 51805501538039733]

Let’s see how big we have to make A in order to slow down MAGMA. These timings
below are on a 1.6Ghz Pentium 4-M laptop running Magma V2.11 under VMware
Linux. I tried exactly the same computation running Magma V2.17 natively under
Windows XP on the same machine, and it takes twice as long to do each computation,
which is strange.

> n := 50; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.050

> n := 100; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 0.800

> n := 150; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 4.900

> n := 200; A := Matrix(n,n,[Random(100) : i in [1..n^2]]);

> time B := SmithForm(A);

Time: 19.160

MAGMA can also work with finitely generated abelian groups.

> G := AbelianGroup([3,5,18]);

> G;

Abelian Group isomorphic to Z/3 + Z/90

Defined on 3 generators

Relations:

3*G.1 = 0

5*G.2 = 0

18*G.3 = 0

> #G;

270

> H := sub<G | [G.1+G.2]>;

> #H;

15

> G/H;

Abelian Group isomorphic to Z/18

Defined on 1 generator

Relations:

18*$.1 = 0

6

3.2 Q and Number Fields

MAGMA has many commands for doing basic arithmetic with Q.

> Qbar := AlgebraicClosure(RationalField());

> Qbar;

> S<x> := PolynomialRing(Qbar);

> r := Roots(x^3-2);

> r;

[

<r1, 1>,

<r2, 1>,

<r3, 1>

]

> a := r[1][1];

> MinimalPolynomial(a);

x^3 - 2

> s := Roots(x^2-7);

> b := s[1][1];

> MinimalPolynomial(b);

x^2 - 7

> a+b;

r4 + r1

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> Trace(a+b);

0

> Norm(a+b);

-339

There are few commands for general algebraic number fields, so usually we work in
specific finitely generated subfields:

> MinimalPolynomial(a+b);

x^6 - 21*x^4 - 4*x^3 + 147*x^2 - 84*x - 339

> K := NumberField($1) ; // $1 = result of previous computation.

> K;

Number Field with defining polynomial x^6 - 21*x^4 - 4*x^3 +

147*x^2 - 84*x - 339 over the Rational Field

We can also define relative extensions of number fields and pass to the corresponding
absolute extension.

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2); // a is the image of x in Q[x]/(x^3-2)

> a;

7

a

> a^3;

2

> S<y> := PolynomialRing(K);

> L := NumberField(y^2-a);

> L;

Number Field with defining polynomial y^2 - a over K

> b^2;

a

> b^6;

2

> AbsoluteField(L);

Number Field with defining polynomial x^6 - 2 over the Rational

Field

3.3 Rings of integers

MAGMA computes rings of integers of number fields.

> RingOfIntegers(K);

Maximal Equation Order with defining polynomial x^3 - 2 over ZZ

> RingOfIntegers(L);

Maximal Equation Order with defining polynomial x^2 + [0, -1, 0]

over its ground order

Sometimes the ring of integers of Q(a) isn’t just Z[a]. First a simple example, then
a more complicated one:

> K<a> := NumberField(2*x^2-3); // doesn’t have to be monic

> 2*a^2 - 3;

0

> K;

Number Field with defining polynomial x^2 - 3/2 over the Rational

Field

> O := RingOfIntegers(K);

> O;

Maximal Order of Equation Order with defining polynomial 2*x^2 -

3 over ZZ

> Basis(O);

[

O.1,

O.2

]

> [K!x : x in Basis(O)];

[

8

1,

2*a // this is Sqrt(3)

]

Here’s are some more examples:

> procedure ints(f) // (procedures don’t return anything; functions do)

K<a> := NumberField(f);

O := MaximalOrder(K);

print [K!z : z in Basis(O)];

end procedure;

> ints(x^2-5);

[

1,

1/2*(a + 1)

]

> ints(x^2+5);

[

1,

a

]

> ints(x^3-17);

[

1,

a,

1/3*(a^2 + 2*a + 1)

]

> ints(CyclotomicPolynomial(7));

[

1,

a,

a^2,

a^3,

a^4,

a^5

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

[

1,

a,

a^2,

a^3,

a^4

]

> ints(x^5+&+[Random(10)*x^i : i in [0..4]]); // RANDOM

9

[

1,

a,

a^2,

1/2*(a^3 + a),

1/16*(a^4 + 7*a^3 + 11*a^2 + 7*a + 14)

]

Lets find out how high of a degree MAGMA can easily deal with.

> d := 10; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9

]

Time: 0.030

> d := 15; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

7*a,

7*a^2 + 4*a,

7*a^3 + 4*a^2 + 4*a,

7*a^4 + 4*a^3 + 4*a^2 + a,

7*a^5 + 4*a^4 + 4*a^3 + a^2 + a,

7*a^6 + 4*a^5 + 4*a^4 + a^3 + a^2 + 4*a,

7*a^7 + 4*a^6 + 4*a^5 + a^4 + a^3 + 4*a^2,

7*a^8 + 4*a^7 + 4*a^6 + a^5 + a^4 + 4*a^3 + 4*a,

7*a^9 + 4*a^8 + 4*a^7 + a^6 + a^5 + 4*a^4 + 4*a^2 + 5*a,

7*a^10 + 4*a^9 + 4*a^8 + a^7 + a^6 + 4*a^5 + 4*a^3 + 5*a^2 + 4*a,

...

]

Time: 0.480

> d := 20; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

[

1,

2*a,

4*a^2,

8*a^3,

8*a^4 + 2*a^2 + a,

8*a^5 + 2*a^3 + 3*a^2,

...]

Time: 3.940

> d := 25; time ints(x^10+&+[Random(10)*x^i : i in [0..d-1]]);

... I stopped it after a few minutes...

We can also define orders in rings of integers.

10

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...

3.4 Ideals

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^3-2);

> O := Order([2*a]);

> O;

Transformation of Order over

Equation Order with defining polynomial x^3 - 2 over ZZ

Transformation Matrix:

[1 0 0]

[0 2 0]

[0 0 4]

> OK := MaximalOrder(K);

> Index(OK,O);

8

> Discriminant(O);

-6912

> Discriminant(OK);

-108

> 6912/108;

64 // perfect square...

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-7);

> K<a> := NumberField(x^2-5);

11

> Discriminant(K);

20 // ????????? Yuck!

> OK := MaximalOrder(K);

> Discriminant(OK);

5 // better

> Discriminant(NumberField(x^2-20));

80

> I := 7*OK;

> I;

Principal Ideal of OK

Generator:

[7, 0]

> J := (OK!a)*OK; // the ! computes the natural image of a in OK

> J;

Principal Ideal of OK

Generator:

[-1, 2]

> I*J;

Principal Ideal of OK

Generator:

[-7, 14]

> J*I;

Principal Ideal of OK

Generator:

[-7, 14]

> I+J;

Principal Ideal of OK

Generator:

[1, 0]

>

> Factorization(I);

[

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

> Factorization(3*OK);

[

<Principal Prime Ideal of OK

Generator:

[3, 0], 1>

]

> Factorization(5*OK);

[

12

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], 2>

]

> Factorization(11*OK);

[

<Prime Ideal of OK

Two element generators:

[11, 0]

[14, 2], 1>,

<Prime Ideal of OK

Two element generators:

[11, 0]

[17, 2], 1>

]

We can even work with fractional ideals in MAGMA.

> K<a> := NumberField(x^2-5);

> OK := MaximalOrder(K);

> I := 7*OK;

> J := (OK!a)*OK;

> M := I/J;

> M;

Fractional Principal Ideal of OK

Generator:

-7/5*OK.1 + 14/5*OK.2

> Factorization(M);

[

<Prime Ideal of OK

Two element generators:

[5, 0]

[4, 2], -1>,

<Principal Prime Ideal of OK

Generator:

[7, 0], 1>

]

3.5 Next time

On Tuesday I will talk about discriminants and describe an algorithm for “factoring
primes”, that is writing an ideal pOK as a product of prime ideals of OK .

13

