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We first prove a technical lemma and corollary, then use them to deduce the
strong approximation theorem, which is an extreme generalization of the Chinese
Remainder Theorem; it asserts that K+ is dense in the analogue of the adeles with
one valuation removed.

Next we introduce the ideles IK , and relate ideles to ideals, and use what we’ve
done so far to give an alternative interpretation of class groups and their finiteness,
thus linking the adelic point of view with the classical point of view of the first
part of this course.

14 The Adele Ring (continued)

The proof of Lemma 14.1 below will use in a crucial way the normalized Haar
measure on AK and the induced measure on the compact quotient A

+
K/K+. Since

I am not formally developing Haar measure on locally compact groups, and since
I didn’t explain induced measures on quotients well in the last lecture, hopefully
the following discussion will clarify what is going on.

The real numbers R+ under addition is a locally compact topological group.
Normalized Haar measure µ has the property that µ([a, b]) = b − a, where a ≤ b
are real numbers and [a, b] is the closed interval from a to b. The subset Z+ of R+

is discrete, and the quotient S1 = R+/Z+ is a compact topological group, which
thus has a Haar measure. Let µ be the Haar measure on S1 normalized so that the
natural quotient π : R+ → S1 preserves the measure, in the sense that if X ⊂ R+

is a measurable set that maps injectively into S1, then µ(X) = µ(π(X)). This
determine µ and we have µ(S1) = 1 since X = [0, 1) is a measurable set that maps
bijectively onto S1 and has measure 1. The situation for the map AK → AK/K+

is pretty much the same.
It is a general fact that a Haar measure of a compact topological group G is

finite. If U is an open set with finite measure α, then the translates of U are also
open sets with the same measure α (by definition of Haar measure). The translates
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certainly cover G, and G is compact, so there is a finite subcover. The measure of
G is then at most the sum of the measures of those finitely many translates of U ,
hence finite.

Lemma 14.1. There is a constant C > 0 that depends only on the global field K
with the following property:

Whenever x = {xv}v ∈ AK is such that

∏

v

|xv|v > C, (14.1)

then there is a nonzero principal adele a ∈ K ⊂ AK such that

|a|v ≤ |xv|v for all v.

Proof. This proof is modelled on Blichfeldt’s proof of Minkowski’s Theorem in the
Geometry of Numbers, and works in quite general circumstances.

First we show that (14.1) implies that |xv|v = 1 for almost all v. Because x
is an adele, we have |xv|v ≤ 1 for almost all v. If |xv|v < 1 for infinitely many
v, then the product in (14.1) would have to be 0. (We prove this only when K
is a finite extension of Q.) Excluding archimedean valuations, this is because
the normalized valuation |xv|v = |Norm(xv)|p, which if less than 1 is necessarily
≤ 1/p. Any infinite product of numbers 1/pi must be 0, whenever pi is a sequence
of primes.

Let c0 be the Haar measure of A
+
K/K+ induced from normalized Haar measure

on A
+
K , and let c1 be the Haar measure of the set of y = {yv}v ∈ A

+
K that satisfy

|yv|v ≤
1

2
if v is archimedean,

|yv|v ≤ 1 if v is non-archimedean.

(As we will see, any positive real number ≤ 1/2 would suffice in the definition of
c1 above. For example, in Cassels’s article he uses the mysterious 1/10.)

Then 0 < c0 < ∞ since AK/K+ is compact, and 0 < c1 < ∞ because the
number of archimedean valuations v is finite. We show that

C =
c0

c1

will do. Thus suppose x is as in (14.1).
The set T of t = {tv}v ∈ A

+
K such that

|tv|v ≤
1

2
|xv|v if v is archimedean,

|tv|v ≤ |xv|v if v is non-archimedean
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has measure
c1 ·

∏

v

|xv|v > c1 · C = c0.

Hence in the quotient map A
+
K → A

+
K/K+ there must be a pair of distinct points

of T that have the same image in A
+
K/K+, say

t′ = {t′v}v ∈ T and t′′ = {t′′v}v ∈ T

and
a = t′ − t′′ ∈ K+

is nonzero. Then

|a|v =
∣

∣t′v − t′′v
∣

∣

v
≤

{

|t′v| + |t′′v | ≤ 2 · 1
2
|xv|v ≤ |xv|v if v is archimedean, or

max(|t′v| , |t
′′
v |) ≤ |xv|v if v is non-archimedean,

for all v, as required.

Corollary 14.2. Let v0 be a normalized valuation and let δv > 0 be given for all
v 6= v0 with δv = 1 for almost all v. Then there is a nonzero a ∈ K with

|a|v ≤ δv (all v 6= v0).

Proof. This is just a degenerate case of Lemma 14.1. Choose xv ∈ Kv with
0 < |xv|v ≤ δv and |xv|v = 1 if δv = 1. We can then choose xv0

∈ Kv0
so that

∏

all v including v0

|xv|v > C.

Then Lemma 14.1 does what is required.

Remark 14.3. The character group of the locally compact group A
+
K is isomorphic

to A
+
K and K+ plays a special role. See Chapter XV (Tate’s thesis), Lang Algebraic

Numbers (Addison-Wesley), Weil Adeles and Algebraic Groups (Princeton lecture
notes) and Godement’s Bourbaki seminars 171 and 176. This duality lies behind
the functional equation of ζ and L-functions. Iwasawa has shown (Annals of Math.
57 (1953), 331–356) that the rings of adeles are characterized by certain general
topologico-algebraic properties.

15 The Strong Approximation Theorem

We proved before that K is discrete in AK . If one valuation is removed, the
situation is much different.

3



Theorem 15.1 (Strong Approximation). Let v0 be any normalized nontrivial
valuation of the global field K. Let AK,v0

be the restricted topological product of the
Kv with respect to the Ov, where v runs through all normalized valuations v 6= v0.
Then K is dense in AK,v0

.

Proof. This proof was suggested by Prof. Kneser at the Cassels-Frohlich confer-
ence.

Recall that if x = {xv}v ∈ AK,v0
then a basis of open sets about x is the

collection of products
∏

v∈S

B(xv, εv) ×
∏

v 6∈S, v 6=v0

Ov,

where B(xv, εv) is an open ball in Kv about xv, and S runs through finite sets
of normalized valuations (not including v0). Thus denseness of K in AK,v0

is
equivalent to the following statement about elements. Suppose we are given (i) a
finite set S of valuations v 6= v0, (ii) elements xv ∈ Kv for all v ∈ S, and (iii) an
ε > 0. Then there is an element b ∈ K such that |b − xv|v < ε for all v ∈ S and
|b|v ≤ 1 for all v 6∈ S with v 6= v0.

By the corollary to our proof that A
+
K/K+ is compact, there is a W ⊂ AK

that is defined by inequalities of the form |yv|v ≤ δv (where δv = 1 for almost all
v) such that ever z ∈ AK is of the form

z = y + c, y ∈ W, c ∈ K. (15.1)

By Corollary 14.2, there is a nonzero a ∈ K such that

|a|v <
1

δv

· ε for v ∈ S,

|a|v ≤
1

δv

for v 6∈ S, v 6= v0.

Hence on putting z = 1
a
· x in (15.1) and multiplying by a, we see that every

x ∈ AK is of the shape

x = w + b, w ∈ a · W, b ∈ K,

where a ·W is the set of ay for y ∈ W . If now we let x have components the given
xv at v ∈ S, and (say) 0 elsewhere, then b = x−w has the properties required.

Remark 15.2. The proof gives a quantitative form of the theorem (i.e., with a
bound for |b|v0

). For an alternative approach, see K. Mahler: Inequalities for ideal
bases, J. Australian Math. Soc. 4 (1964), 425–448.
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16 The Idele Group

The set of invertible elements of any commutative topological ring R form a group
R∗ under multiplication. In general R∗ is not a topological group if it is endowed
with the subset topology because inversion need not be continuous (only multipli-
cation and addition on R are required to be continuous). It is usual therefore to
give R∗ the following topology. There is an injection

x 7→

(

x,
1

x

)

(16.1)

of R∗ into the topological product R × R. We give R∗ the corresponding subset
topology. Then R∗ with this topology is a topological group and the inclusion
map R∗ ↪→ R is continous. To see continuity of inclusion, note that this topology
is finer (has at least as many open sets) than the subset topology induced by
R∗ ⊂ R, since the projection maps R × R → R are continuous.

Example 16.1. This is a “non-example”. The inverse map on Z∗
p is continuous with

respect to the p-adic topology. If a, b ∈ Z∗
p, then |a| = |b| = 1, so if |a − b| < ε,

then
∣

∣

∣

∣

1

a
−

1

b

∣

∣

∣

∣

=

∣

∣

∣

∣

b − a

ab

∣

∣

∣

∣

=
|b − a|

|ab|
<

ε

1
= ε.

Definition 16.2 (Idele Group). The idele group IK of K is the group A
∗
K of

invertible elements of the adele ring AK .

We shall usually speak of IK as a subset of AK , and will have to distinguish
between the IK and AK-topologies.

Example 16.3. For a rational prime p, let xp be the adele whose pth component
is p and whose vth component, for v 6= p, is 1. Then xp → 1 as p → ∞ in AK .
However, there is no way that xp → 1 in IK , for the following reason. If xp → 1 in
IK , then since inversion is continuous, we have x−1

p → 1−1 = 1. However, the x−1
p

have component at p equal to p−1, which has valuation p, hence the valuation of
x−1

p − 1 goes to ∞ as p → ∞.

Lemma 16.4. The group of ideles IK is the restricted topological project of the
K∗

v with respect to the units Uv = O∗
v ⊂ Kv, with the restricted product topology.

We omit the proof of Lemma 16.4, which is a matter of thinking carefully
about the definitions. The main point is that inversion is continuous on O∗

v for
each v. (See Example 16.1.)

We have seen that K is naturally embedded in AK , so K∗ is naturally embed-
ded in IK .

Definition 16.5 (Principal Ideles). We call K∗, considered as a subgroup of
IK , the principal ideles.
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Lemma 16.6. The principal ideles K∗ are discrete as a subgroup of IK .

Proof. For K is discrete in AK , so K∗ is embedded in AK × AK by (16.1) as
a discrete subset. (Alternatively, the subgroup topology on IK is finer than the
topology coming from IK being a subset of AK , and K is already discrete in
AK .)

Definition 16.7 (Content of an Idele). The content of x = {xv}v ∈ IK is

c(x) =
∏

all v

|xv|v ∈ R>0.

Lemma 16.8. The map x → c(x) is a continuous homomorphism of the topolog-
ical group IK into R>0, where we view R>0 as a topological group under multipli-
cation. If K is a number field, then c is surjective.

Proof. That the content map c satisfies the axioms of a homomorphisms follows
from the multiplicative nature of the defining formula for c. For continuity, suppose
(a, b) is an open interval in R>0. Suppose x ∈ IK is such that c(x) ∈ (a, b). By
considering small intervals about each non-unit component of x, we find an open
neighborhood U ⊂ IK of x such that c(U) ⊂ (a, b). It follows the c−1((a, b)) is
open.

For surjectivity, use that each archimedean valuation is surjective, and choose
an idele that is 1 at all but one archimedean valuation.

Remark 16.9. Note also that the IK-topology is that appropriate to a group of
operators on A

+
K : a basis of open sets is the S(C, U), where C, U ⊂ A

+
K are,

respectively, AK-compact and AK-open, and S consists of the x ∈ IJ such that
(1 − x)C ⊂ U and (1 − x−1)C ⊂ U .

Definition 16.10 (Principal 1-Ideles). The subgroup I
1
K of 1-ideles is the sub-

group of ideles x = {xv} such that c(x) = 1. Thus I
1
K is the kernel of c, so we

have an exact sequence

1 → I
1
K → IK

c
−→ R>0 → 1,

where the surjectivity on the right is only if K is a number field.

Lemma 16.11. The subset I
1
K of AK is closed as a subset, and the AK-subset

topology on I
1
K coincides with the IK-subset topology on I

1
K .

Proof. Let x ∈ AK with x 6∈ I
1
K . To prove that I

1
K is closed in AK , we find an

AK-neighborhood W of x that does not meet I
1
K .

1st Case. Suppose that
∏

v |xv|v < 1 (possibly = 0). Then there is a finite
set S of v such that

1. S contains all the v with |xv|v > 1, and
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2.
∏

v∈S |xv|v < 1.

Then the set W can be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S

for sufficiently small ε.
2nd Case. Suppose that C :=

∏

v |xv|v > 1. Then there is a finite set S of v
such that

1. S contains all the v with |xv|v > 1, and

2. if v 6∈ S an inequality |wv|v < 1 implies |wv|v < 1
2C

. (This is because for
a non-archimedean valuation, the largest absolute value less than 1 is 1/p,
where p is the residue characteristic. Also, the upper bound in Cassels’s
article is 1

2
C instead of 1

2C
, but I think he got it wrong.)

We can choose ε so small that |wv − xv|v < ε (for v ∈ S) implies 1 <
∏

v∈S |wv|v <
2C. Then W may be defined by

|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S.

This works because if w ∈ W , then either |wv|v = 1 for all v 6∈ S, in which case
1 < c(w) < 2c, so w 6∈ I

1
K , or |wv0

|v0
< 1 for some v0 6∈ S, in which case

c(w) =

(

∏

v∈S

|wv|v

)

· |wv0
| · · · < 2C ·

1

2C
· · · < 1,

so again w 6∈ I
1
K .

We next show that the IK- and AK-topologies on I
1
K are the same. If x ∈ I

1
K ,

we must show that every AK-neighborhood of x contains an AK-neighborhood
and vice-versa.

Let W ⊂ I
1
K be an AK-neighborhood of x. Then it contains an AK-neighborhood

of the type
|wv − xv|v < ε v ∈ S

|wv|v ≤ 1 v 6∈ S
(16.2)

where S is a finite set of valuations v. This contains the IK-neighborhood in which
≤ in (16.2) is replaced by =.

Next let H ⊂ I
1
K be an IK-neighborhood. Then it contains an IK-neighborhood

of the form
|wv − xv|v < ε v ∈ S

|wv|v = 1 v 6∈ S,
(16.3)
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where the finite set S contains at least all archimedean valuations v and all valu-
ations v with |xv|v 6= 1. Since

∏

|xv|v = 1, we may also suppose that ε is so small
that (16.3) implies

∏

v

|wv|v < 2.

Then the intersection of (16.3) with I
1
K is the same as that of (16.2) with I

1
K , i.e.,

(16.3) defines an AK-neighborhood.

By the product formula we have that K∗ ⊂ I
1
K . The following result is of vital

importance in class field theory.

Theorem 16.12. The quotient I
1
K/K∗ with the quotient topology is compact.

Proof. After the preceeding lemma, it is enough to find an AK-compact set W ⊂
AK such that the map

W ∩ I
1
K → I

1
K/K∗

is surjective. We take for W the set of w = {wv}v with

|wv|v ≤ |xv|v ,

where x = {xv}v is any idele of content greater than the C of Lemma 14.1.
Let y = {yv}v ∈ I

1
K . Then the content of x/y equals the content of x, so by

Lemma 14.1 there is an a ∈ K∗ such that

|a|v ≤

∣

∣

∣

∣

xv

yv

∣

∣

∣

∣

v

all v.

Then ay ∈ W , as required.

Remark 16.13. The quotient I
1
K/K∗ is totally disconnected in the function field

case. For the structure of its connected component in the number field case,
see papers of Artin and Weil in the “Proceedings of the Tokyo Symposium on
Algebraic Number Theory, 1955” (Science Council of Japan) or Artin-Tate: “Class
Field Theory”, 1951/2 (Harvard, 1960(?)). The determination of the character
group of IK/K∗ is global class field theory.

17 Ideals and Divisors

Suppose that K is a finite extension of Q. Let FK be the the free abelian group
on a set of symbols in bijection with the non-archimedean valuation v of K. Thus
an element of FK is a finite formal linear combination

∑

v non arch.

nv · v

where nv ∈ Z and all but finitely many nv are 0.
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Lemma 17.1. There is a natural bijection between FK and the group of nonzero
fractional ideals of OK . The correspondence is induced by

v 7→ ℘v = {x ∈ OK : v(x) < 1},

where v is a non-archimedean valuation.

Endow FK with the discrete topology. Then there is a natural continuous map
π : IK → FK given by

x = {xv}v 7→
∑

v

ordv(xv) · v.

This map is continuous since the inverse image of a valuation v (a point) is the
product

π−1(v) = πO∗
v ×

∏

w archimedean

K∗
w ×

∏

w 6=v non-arch.

O∗
w,

which is an open set in the restricted product topology on IK . Moreover, the
image of K∗ in FK is the group of nonzero principal fractional ideals.

Recall that the class group CK of the number field K is by definition the
quotient of FK by the image of K∗.

Theorem 17.2. The class group CK of a number field K is finite.

Proof. We first prove that the map I
1
K → FK is surjective. Let ∞ be an archimedean

valuation on K. If v is a non-archimedean valuation, let x ∈ I
1
K be a 1-idele such

that xw = 1 at ever valuation w except v and infinity. At v, choose xv = π
to be a generator for the maximal ideal of Ov, and choose x∞ to be such that
|x∞|∞ = 1/ |xv|v. Then x ∈ IK and

∏

w |xw|w = 1, so x ∈ I
1
K . Also x maps to

v ∈ FK .
Thus the group of ideal classes is the continuous image of the compact group

I
1
K/K∗ (see Theorem 16.12), hence compact. But a compact discrete group is

finite.

17.1 The Function Field Case

When K is a finite separable extension of F(t), we define the divisor group DK

of K to be the free abelian group on all the valuations v. For each v the number
of elements of the residue class field Fv = Ov/℘v of v is a power, say qnv , of the
number q of elements in Fv. We call nv the degree of v, and similarly define

∑

nvdv

to be the degree of the divisor
∑

nv · v. The divisors of degree 0 form a group
D0

K . As before, the principal divisor attached to a ∈ K∗ is
∑

ordv(a) · v ∈ DK .
The following theorem is proved in the same way as Theorem 17.2.

Theorem 17.3. The quotient of D0
K modulo the principal divisors is a finite

group.
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For those familiar with algebraic geometry and algebraic curves, one can prove
Theorem 17.3 from an alternative point of view. There is a bijection between
nonsingular geometrically irreducible projective curves over F and function fields
K over F (which we assume are finite separable extensions of F(t) such that
F ∩ K = F). Let X be the curve corresponding to K. The group D0

K is in
bijection with the divisors of degree 0 on X, a group typically denoted Div0(X).
The quotient of Div0(X) by principal divisors is denoted Pic0(X). The Jacobian
of X is an abelian variety J = Jac(X) over the finite field F whose dimension
is equal to the genus of X. Moreover, assuming X has an F-rational point, the
elements of Pic0(X) are in natural bijection with the F-rational points on J . In
particular, with these hypothesis, the class group of K, which is isomorphic to
Pic0(X), is in bijection with the group of F-rational points on an algebraic variety
over a finite field. This gives an alternative more complicated proof of finiteness
of the degree 0 class group of a function field.

Without the degree 0 condition, the class group won’t be finite. It is an
extension of Z by a finite group.

0 → D0
K/i(K∗) → CK

deg
−−→ nZ → 0,

where n is the greatest common divisor of the degrees of elemetns of DK , and
i(K∗) is the image of K∗ in D0

K .
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