
Math 129: Algebraic Number Theory

Lecture 22: Properties of the Adeles

William Stein (based closely on Cassels’s Global Fields article in Cassels-Fröhlich)

Thursday, April 29, 2004

The final project and the short take-home final will both be due on Monday, May
24, at NOON. You should turn your final projects in to me via email, since I will be
posting all final projects on a web page. Do a good job on your final project, since a
few years from now it will probably still be on that web page :-).

You should not worry too much about the final exam, which is worth only 20%
of your grade. It will be take home, and you will be able to use all resources except
communication with other people. Thus you can search in the library and online for
ideas and answer. It will not be something you can really study for, and will probably
take several hours.

What is a “final project”? How long should it be? This depends on you. Your goal
for the final project should be to write something that you think other people in the
course or people browsing the Math 129 web page would find an interesting and rea-
sonably accessible read. Explore a topic, try to understand something interesting about
it, and write it up so that somebody with an advanced undergraduate background in
mathematics can understand it. A bad project would be one with nothing “interesting”
in it that is riddled with errors. In contrast, a good project would be something that
people with some interest in algebraic number theory would actually want to read, and
is technically correct. Don’t aim so much to impress me with how much you were able
to learn, but aim to produce a document that will add some variety to the Math 129
web page.

———

14 The Adele Ring

Let K be a global field. For each normalization | · |v of K, let Kv denote the completion
of K. If | · |v is non-archimedean, let Ov denote the ring of integers of Kv.

Definition 14.1 (Adele Ring). The adele ring AK of K is the topological ring whose
underlying topological space is the restricted topological product of the Kv with respect
to the Ov, and where addition and multiplication are defined componentwise:

(xy)v = xvyv (x + y)v = xv + yv for x,y ∈ AK . (14.1)

It is readily verified that (i) this definition makes sense, i.e., if x,y ∈ AK , then xy
and x+y, whose components are given by (14.1), are also in AK , and (ii) that addition
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and multiplication are continuous in the AK-topology, so AK is a topological ring, as
asserted. Also, AK is locally compact because the Kv are locally compact, and the Ov

are compact.
There is a natural continuous ring inclusion

K ↪→ AK (14.2)

that sends x ∈ K to the adele every one of whose components is x. This is an adele
because x ∈ Ov for almost all v, by the lemma we proved last time. . The map is
injective because each map K → Kv is an inclusion.

Definition 14.2 (Principal Adeles). The image of (14.2) is the ring of principal
adeles.

It will cause no trouble to identify K with the principal adeles, so we shall speak
of K as a subring of AK .

Formation of the adeles is compatibility with base change, in the following sense.

Lemma 14.3. Suppose L is a finite (separable) extension of the global field K. Then

AK ⊗K L ∼= AL (14.3)

both algebraically and topologically. Under this isomorphism, L ∼= K ⊗K L ⊂ AK ⊗K L
maps isomorphically onto L ⊂ AL.

Proof. We first establish an isomorphism of the two sides of (14.3) as topological spaces.
Let ω1, . . . , ωn be a basis for L/K and let v run through the normalized valuations on K.
The left hand side of (14.3), with the tensor product topology, is the restricted product
of the tensor products

Kv ⊗K L ∼= Kv · ω1 ⊕ · · · ⊕ Kv · ωn

with respect to the integers
Ov · ω1 ⊕ · · · ⊕ Ov · ωn. (14.4)

(An element of the left hand side is a finite linear combination
∑

xi ⊗ ai of adeles
xi ∈ AK and coefficients ai ∈ L, and there is a natural isomorphism from the ring of
such formal sums to the restricted product of the Kv ⊗K L.)

We proved before that

Kv ⊗K L ∼= Lw1
⊕ · · · ⊕ Lwg

,

where w1, . . . , wg are the normalizations of the extensions of v to L. Furthermore, as we
proved using discriminants, the above identification identifies (14.4) with

OLw1
⊕ · · · ⊕ OLwg

,

for almost all v. The left hand side of (14.3) is the restricted product of the Lw1
⊕· · ·⊕Lwg

with respect to the OLw1
⊕ · · · ⊕ OLwg

. This is canonically isomorphic to the restricted
product of all completions Lw with respect to Ow, which is the right hand side of (14.3).
This establishes an isomorphism between the two sides of (14.3) as topological spaces.
The map is also a ring homomorphism, so the two sides are algebraically isomorphic, as
claimed.
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Corollary 14.4. Let A
+

K denote the topological group obtained from the additive struc-
ture on AK . Suppose L is a finite seperable extension of K. Then

A
+

L = A
+

K ⊕ · · · ⊕ A
+

K , ([L : K] summands).

In this isomorphism the additive group L+ ⊂ A
+

L of the principal adeles is mapped into
K+ ⊕ · · · ⊕ K+.

Proof. For any nonzero ω ∈ L, the subgroup ω ·A+

K of A
+

L is isomorphic as a topological
group to A

+

K (the isomorphism is multiplication by 1/ω). By Lemma 14.3, we have
isomorphisms

A
+

L = A
+

K ⊗K L ∼= ω1 · A
+

K ⊕ · · · ⊕ ωn · A+

K
∼= A

+

K ⊕ · · · ⊕ A
+

K .

If a ∈ L, write a =
∑

biωi, with bi ∈ K. Then a maps via the above map to

x = (ω1(b1), . . . , ωn(bn)),

where (bi) denotes the adele defined by bi. Under the final map, x maps to the tuple

(b1, . . . , bn) ∈ K ⊕ · · · ⊕ K ⊂ A
+

K ⊕ · · · ⊕ A
+

K .

This proves the second claim of the corollary.

Theorem 14.5. The global field K is discrete in AK and the quotient A
+

K/K+ of additive
groups is compact in the quotient topology.

At this point Cassels remarks

“It is impossible to conceive of any other uniquely defined topology on K.
This metamathematical reason is more persuasive than the argument that
follows!”

Proof. Corollary 14.4, with K for L and Q or F(t) for K, shows that it is enough to
verify the theorem for Q or F(t), and we shall do it here for Q.

To show that Q+ is discrete in A
+

Q it is enough, because of the group structure, to

find an open set U that contains 0 ∈ A
+

Q, but which contains no other elements of Q+.

(If α ∈ Q+, then U + α is an open subset of A
+

Q whose intersection with Q+ is {α}.)

We take for U the set of x = {xv} ∈ A
+

Q with

|x∞|∞ < 1 and |xp|p ≤ 1 (all p),

where | · |p and | · |∞ are respectively the p-adic and the usual archimedean absolute
values on Q. If b ∈ Q ∩ U , then in the first place b ∈ Z because |b|p ≤ for all p, and

then b = 0 because |b|∞ < 1. This proves that K+ is discrete in A
+

Q.

Next we prove that the quotient A
+

Q/Q+ is compact. Let W ⊂ A
+

Q consist of the

x = {xv} ∈ A
+

Q with

|x∞|∞ ≤
1

2
and |xp|p ≤ 1 for all primes p.
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We show that every adele y = {yv} is of the form

y = a + x, a ∈ Q, x ∈ W.

Fix an adele y = {yv} ∈ A
+

Q. For each prime p we can find a rational number

rp =
zp

pnp

(zp ∈ Z, np ∈ Z≥0)

such that
|yp − rp|p ≤ 1,

and
rp ≡ 0 (mod p) for almost all p,

since y is an adele. More precisely, for the finitely many p such that

yp =
∑

n≥−|s|

anpn 6∈ Zp,

choose rp to be a rational number that is the value of an appropriate truncation of the
p-adic expansion of yp, and when yp ∈ Zp just choose rp = 0. Hence r =

∑
p rp ∈ Q is

well defined and
|yp − r|

p
≤ 1 for all p.

(The rq for q 6= p do not mess up the inequality |yp − r|
p
≤ 1 since the valuation is

non-archimedean and the rq do not have any p in their denominator, by construction.)
Now choose s ∈ Z such that

|b∞ − r − s| ≤
1

2
.

Then a = r + s and x = y − a do what is required, since y − a = y − r − s has the
desired property (since s ∈ Z and the p-adic valuations are non-archimedean).

Hence the continuous map W → A
+

Q/Q+ induced by the quotient map A
+

Q →

A
+

Q/Q+ is surjective. But W is compact (being the topological product of the com-

pact spaces |x∞|∞ ≤ 1/2 and the Zp for all p), hence A
+

Q/Q+ is also compact.

As already remarked, A
+

K is a locally compact group, so it has an invariant Haar
measure. In fact one choice of this Haar measure is the product of the Haar measures
on the Kv, in the sense described in the previous section.

Corollary 14.6. There is a subset W of AK defined by inequalities of the type |xv|v ≤ δv,
where δv = 1 for almost all v, such that every y ∈ AK can be put in the form

y = a + x, a ∈ K, x ∈ W,

i.e., AK = K + W .

Proof. We constructed such a set for K = Q when proving Theorem 14.5. For general K
the W coming from the proof determines compenent-wise a subset of A

+

K
∼= A

+

Q⊕· · ·⊕A
+

Q

that is a subset of a W with the properties claimed by the corollary.
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Corollary 14.7. The quotient A
+

K/K+ has finite measure in the quotient measure in-
duced by the Haar measure on A

+

K .

Remark 14.8. This statement is independent of the particular choice of the multiplicative
constant in the Haar measure on A

+

K . We do not here go into the question of finding
the measure A

+

K/K+ in terms of our explicitly given Haar measure. (See Tate’s thesis,
Chapter XV of Cassels-Frohlich.)

Proof. This can be reduced similarly to the case of Q or F(t) which is immediate, e.g.,
the W defined above has measure 1 for our Haar measure.

Alternatively, finite measure follows from compactness. To see this, cover AK/K+

with the translates of U , where U is a nonempty open set with finite measure. The
existence of a finite subcover implies finite measure.

Remark 14.9. We give an alternative proof of the product formula
∏

|a|
v

= 1 for nonzero a ∈ K.
We have seen that if xv ∈ Kv, then multiplication by xv magnifies the Haar measure in K+

v

by a factor of |xv|v. Hence if x = {xv} ∈ AK , then multiplication by x magnifies the Haar
measure in A

+

K
by

∏
|xv|v. But now multiplication by a ∈ K takes K+ ⊂ A

+

K
into K+, so gives

a well-defined bijection of A
+

K
/K+ onto A

+

K
/K+ which magnifies the measure by the factor∏

|a|
v
. Hence

∏
|a|

v
= 1 Corollary 14.7. (The point is that if µ is the measure of A

+

K
/K+, then

µ =
∏

|a|
v
· µ, so because µ is finite we must have

∏
|a|

v
= 1.)

Lemma 14.10. There is a constant C > 0 depending only on the global field K with
the following property:

Whenever x = {xv}v ∈ AK is such that

∏

v

|xv|v > C,

then there is a nonzero principal adele a ∈ K ⊂ AK such that

|a|v ≤ |xv|v (all v).

Proof.

Corollary 14.11. Let v0 be a normalized valuation and let δv > 0 be given for all v 6= v0

with δv = 1 for almost all v. Then there is a nonzero a ∈ K with

|a|v ≤ δv (all v 6= v0).

Proof.

Next week we will prove the above two lemmas, then use them to deduce the strong
approximation theorem, which is an extreme generalization of the Chinese Remainder
Theorem; it asserts that K+ is dense (!) in the analogue of the adeles but with one
places removed. Then we’ll introduce the ideles A

∗
K . Finally on Thursday, we’ll relate

ideles to ideals, and use everything so far to give a new interpretation of class groups
and their finiteness.
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