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12 Global Fields

Definition 12.1 (Global Field). A global field is a number field or a finite separable
extension of F(t), where F is a finite field, and t is transcendental over F.

Below we will focus attention on number fields leaving the function field case to the
reader.

The following lemma essentially says that the denominator of an element of a global
field is only “nontrivial” at a finite number of valuations.

Lemma 12.2. Let a ∈ K be a nonzero element of a global field K. Then there are only
finitely many inequivalent valuations | · | of K for which

|a| > 1.

Proof. If K = Q or F(t) then the lemma follows by Ostrowski’s classification of all the
valuations on K. For example, when a = n

d ∈ Q, with n, d ∈ Z, then the valuations
where we could have |a| > 1 are the archimedean one, or the p-adic valuations | · |p for
which p | d.

Suppose now that K is a finite extension of Q, so a satisfies a monic polynomial

an + cn−1a
n−1 + · · · + c0 = 0,

for some n and c0, . . . , cn−1 ∈ Q. If | · | is a non-archimedean valuation on K, we have

|a|n =
∣

∣−(cn−1a
n−1 + · · · + c0)

∣

∣

≤ max(1, |a|n−1) · max(|c0| , . . . , |cn−1|).

Dividing each side by |a|n−1, we have that

|a| ≤ max(|c0| , . . . , |cn−1|),

so in all cases we have

|a| ≤ max(1, |c0| , . . . , |cn−1|)1/(n−1). (12.1)

We know the lemma for Q, so there are only finitely many valuations | · | on Q such that
the right hand side of (12.1) is bigger than 1. Since each valuation of Q has finitely many
extensions to K, and there are only finitely many archimedean valuations, it follows that
there are only finitely many valuations on K such that |a| > 1.
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Any valuation on a global field is either archimedean, or discrete non-archimedean
with finite residue class field, since this is true of Q and F(t) and is a property preserved
by extending a valuation to a finite extension of the base field. Hence it makes sense
to talk of normalized valuations. Recall that the normalized p-adic valuation on Q is
|x|p = p− ordp(x), and if v is a valuation on a number field K equivalent to an extension
of | · |p, then the normalization of v is the composite of the sequence of maps

K ↪→ Kv
Norm−−−→ Qp

| · |p−−→ R,

where Kv is the completion of K at v.

Example 12.3. Let K = Q(
√

2), and let p = 2. Because
√

2 6∈ Q2, there is exactly one
extension of | · |2 to K, and it sends a = 1/

√
2 to

∣

∣

∣NormQ2(
√

2)/Q2
(1/

√
2)

∣

∣

∣

1/2

2
=

√
2.

Thus the normalized valuation of a is 2.
There are two extensions of | · |7 to Q(

√
2), since Q(

√
2) ⊗Q Q7

∼= Q7 ⊕ Q7, as
x2 − 2 = (x − 3)(x − 4) (mod 7). The image of

√
2 under each embedding into Q7 is

a unit in Z7, so the normalized valuation of a = 1/
√

2 is, in both cases, equal to 1.
More generally, for any valuation of K of characteristic an odd prime p, the normalized
valuation of a is 1.

Since K = Q(
√

2) ↪→ R in two ways, there are exactly two normalized archimedean
valuations on K, and both of their values on a equal 1/

√
2. Notice that the product of

the absolute values of a with respect to all normalized valuations is

2 · 1√
2
· 1√

2
· 1 · 1 · 1 · · · = 1.

This “product formula” holds in much more generality, as we will now see.

Theorem 12.4 (Product Formula). Let a ∈ K be a nonzero element of a global
field K. Let | · |v run through the normalized valuations of K. Then |a|v = 1 for almost
all v, and

∏

all v

|a|v = 1 (the product formula).

Proof. By Lemma 12.2, we have |a|v ≤ 1 for almost all v. Likewise, 1/ |a|v = |1/a|v ≤ 1
for almost all v, so |a|v = 1 for almost all v.

Let w run through all normalized valuations of Q (or of F(t)), and write v | w if the
restriction of v to Q is equivalent to w. Then (by the previous section),

∏

v

|a|v =
∏

w





∏

v|w
|a|v



 =
∏

w

∣

∣NormK/Q(a)
∣

∣

w
,

so it suffices to prove the theorem for K = Q.
By multiplicativity of valuations, if the theorem is true for b and c then it is true

for the product bc and quotient b/c (when c 6= 0). The theorem is clearly true for −1,
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which has valuation 1 at all valuations. Thus to prove the theorem for Q it suffices to
prove it when a = p is a prime number. Then we have |p|∞ = p, |p|p = 1/p, and for
primes q 6= p that |p|q = 1. Thus

∏

v

|p|v = p · 1

p
· 1 · 1 · 1 · · · = 1,

as claimed.

If v is a valuation on a field K, recall that we let Kv denote the completion of K
with respect to v. Also when v is non-archimedean, let

Ov = OK,v = {x ∈ Kv : |x| ≤ 1}

be the ring of integers of the completion.

Definition 12.5 (Almost All). We say a condition holds for almost all elements of a
set if it holds for all but finitely many elements.

We will use the following lemma later to prove that formation of the adeles of a
global field is compatible with base change.

Lemma 12.6. Let ω1, . . . , ωn be a basis for L/K, where L is a finite separable exten-
sion of the global field K of degree n. Then for almost all normalized non-archimedean
valuations v on K we have

ω1Ov ⊕ · · · ⊕ ωnOv = Ow1
⊕ · · · ⊕ Owg

⊂ Kv ⊗K L, (12.2)

where w1, . . . , wg are the extensions of v to L. Here we have identified a ∈ L with its
canonical image in Kv ⊗K L, and the direct sum on the left is the sum taken inside the
tensor product (so directness means that the intersections are trivial).

Proof. The proof proceeds in two steps. First we deduce easily from Lemma 12.2 that
for almost all v the left hand side of (12.2) is contained in the right hand side. Then
we use a trick involving discriminants to show the opposite inclusion for all but finitely
many primes.

Since Ov ⊂ Owi
for all i, the left hand side of (12.2) is contained in the right hand

side if |ωi|wj
≤ 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ g. Thus by Lemma 12.2, for all but finitely

many v the left hand side of (12.2) is contained in the right hand side. We have just
eliminated the finitely many primes corresponding to “denominators” of some ωi, and
now only consider v such that ω1, . . . , ωn ∈ Ow for all w | v.

For any elements a1, . . . , an ∈ Kv ⊗K L, consider the discriminant

D(a1, . . . , an) = Det(Tr(aiaj)) ∈ Kv,

where the trace is induced from the L/K trace. Since each ωi is in each Ow, for w | v,
the traces lie in Ov, so

d = D(ω1, . . . , ωn) ∈ Ov.
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Also note that d ∈ K since each ωi is in L. Now suppose that

α =
n

∑

i=1

aiωi ∈ Ow1
⊕ · · · ⊕ Owg

,

with ai ∈ Kv. Then by properties of determinants for any m with 1 ≤ m ≤ n, we have

D(ω1, . . . , ωm−1, α, ωm+1, . . . , ωn) = a2
mD(ω1, . . . , ωn). (12.3)

The left hand side of (12.3) is in Ov, so the right hand side is well, i.e.,

a2
m · d ∈ Ov, (for m = 1, . . . , n),

where d ∈ K. Since ω1, . . . , ωn are a basis for L over K and the trace pairing is
nondegenerate, we have d 6= 0, so by Theorem 12.4 we have |d|v = 1 for all but finitely
many v. Then for all but finitely many v we have that a2

m ∈ Ov. For these v, that
a2

m ∈ Ov implies am ∈ Ov since am ∈ Kv, i.e., α is in the left hand side of (12.2).

Example 12.7. Let K = Q and L = Q(
√

2). Let ω1 = 1/3 and ω2 = 2
√

2. In the first
stage of the above proof we would eliminate | · |3 because ω2 is not integral at 3. The
discriminant is

d = D

(

1

3
, 2
√

2

)

= Det

(

2
9 0
0 16

)

=
32

9
.

As explained in the second part of the proof, as long as v 6= 2, 3, we have equality of the
left and right hand sides in (12.2).

13 Restricted Topological Products

In this section we describe a topological tool, which we need in order to define adeles
(see Definition 14.1).

Definition 13.1 (Restricted Topological Products). Let Xλ, for λ ∈ Λ, be a family
of topological spaces, and for almost all λ let Yλ ⊂ Xλ be an open subset of Xλ. Consider
the space X whose elements are sequences x = {xλ}λ∈Λ, where xλ ∈ Xλ for every λ,
and xλ ∈ Yλ for almost all λ. We give X a topology by taking as a basis of open sets the
sets

∏

Uλ, where Uλ ⊂ Xλ is open for all λ, and Uλ = Yλ for almost all λ. We call X
with this topology the restricted topological product of the Xλ with respect to the Yλ.

Corollary 13.2. Let S be a finite subset of Λ, and let XS be the set of x ∈ X with
xλ ∈ Yλ for all λ 6∈ S, i.e.,

XS =
∏

λ∈S

Xλ ×
∏

λ6∈S

Yλ ⊂ X.

Then XS is an open subset of X, and the topology induced on XS as a subset of X is
the same as the product topology.

The restricted topological product depends on the totality of the Yλ, but not on the
individual Yλ:
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Lemma 13.3. Let Y ′
λ ⊂ Xλ be open subsets, and suppose that Yλ = Y ′

λ for almost all λ.
Then the restricted topological product of the Xλ with respect to the Y ′

λ is canonically
isomorphic to the restricted topological product with respect to the Yλ.

Lemma 13.4. Suppose that the Xλ are locally compact and that the Yλ are compact.
Then the restricted topological product X of the Xλ is locally compact.

Proof. For any finite subset S of Λ, the open subset XS ⊂ X is locally compact, be-
cause by Lemma 13.2 it is a product of finitely many locally compact sets with an
infinite product of compact sets. (Here we are using Tychonoff’s theorem from topol-
ogy, which asserts that an arbitrary product of compact topological spaces is compact
(see Munkres’s Topology, a first course, chapter 5).) Since X = ∪SXS , and the XS are
open in X, the result follows.

Definition 13.5 (Product Measure). For all λ ∈ Λ, suppose µλ is a measure on Xλ

with µλ(Yλ) = 1 when Yλ is defined. We define the product measure µ on X to be that
for which a basis of measurable sets is

∏

λ

Mλ

where each Mλ ⊂ Xλ has finite µλ-measure and Mλ = Yλ for almost all λ, and where

µ

(

∏

λ

Mλ

)

=
∏

λ

µλ(Mλ).

14 The Adele Ring

Let K be a global field. For each normalization | · |v of K, let Kv denote the completion
of K. If | · |v is non-archimedean, let Ov denote the ring of integers of Kv.

Definition 14.1 (Adele Ring). The adele ring AK of K is the topological ring whose
underlying topological space is the restricted topological product of the Kv with respect
to the Ov, and where addition and multiplication are defined componentwise:

(xy)v = xvyv (x + y)v = xv + yv for x,y ∈ AK . (14.1)

It is readily verified that (i) this definition makes sense, i.e., if x,y ∈ AK , then xy
and x+y, whose components are given by (14.1), are also in AK , and (ii) that addition
and multiplication are continuous in the AK-topology, so AK is a topological ring, as
asserted. Also, AK is locally compact because the Kv are locally compact, and the Ov

are compact.
There is a natural continuous ring inclusion

K ↪→ AK (14.2)

that sends x ∈ K to the adele every one of whose components is x. This is an adele
because x ∈ Ov for almost all v, by Lemma 12.2. The map is injective because each
map K → Kv is an inclusion.
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Definition 14.2 (Principal Adeles). The image of (14.2) is the ring of principal
adeles.

It will cause no trouble to identify K with the principal adeles, so we shall speak
of K as a subring of AK .

Formation of the adeles is compatibility with base change, in the following sense.

Lemma 14.3. Suppose L is a finite (separable) extension of the global field K. Then

AK ⊗K L ∼= AL

both algebraically and topologically. Under this isomorphism, L ∼= K ⊗K L ⊂ AK ⊗K L
maps isomorphically onto L ⊂ AL.

* * *

Next time we will start by proving the above lemma. Here are some further highlights
of what will come in the final three lectures.

Theorem 14.4. The global field K is discrete in AK and the quotient A
+
K/K+ of additive

groups is compact in the quotient topology.

If we remove even one valuation, then the situation changes dramatically:

Theorem 14.5 (Strong Approximation). Let v0 be any valuation of the global
field K. Define A

′
K to be the restricted topological product of the Kv with respect to

the Ov, where v runs through all normalized valuations v 6= v0. Then K is dense in A
′
K .

Definition 14.6 (Idele Group). The idele group IK of K is the group A
∗
K of invertible

elements of the adele ring AK .

The subgroup I
1
K is the subgroup of ideles x = {xv} such that

∏

v

|xv|v = 1. Note

that K∗ ⊂ I
1
K .

Theorem 14.7. The quotient I
1
K/K∗ with the quotient topology is compact.

Theorem 14.8. The ideal class group of K (with the discrete topology) is canonically
isomorphic to I

1
K/K∗.

Since a discrete compact group is finite, this proves that the ideal class group of a
global field is finite.

I think we will likely stop here, and not do sections 18 and 19. This will be a
nice conclusion, because you’ll finish the class having learned the basic theorems and
objects of algebraic number theory, both from the classical and adelic points of view,
and will have seen a nontrivial result proved from both directions. You have also learned
something about the structure of local fields (completions of global fields).
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