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6 Independence

The following theorem asserts that inequivalent valuations are in fact almost totally
indepedent. For our purposes it will be superseded by the result of Section 15.

Theorem 6.1 (Weak Approximation). Let | · |n, for 1 ≤ n ≤ N , be inequivalent
nontrivial valuations of a field K. For each n, let Kn be the topological space
consisting of the set of elements of K with the topology induced by | · |n. Let ∆ be
the image of K in the topological product

A =
∏

1≤n≤N

Kn

equipped with the product topology. Then ∆ is dense in A.

The conclusion of the theorem may be expressed in a less topological manner as
follows: given any an ∈ K, for 1 ≤ n ≤ N , and real ε > 0, there is an b ∈ K such
that simultaneously

|an − b|n < ε (1 ≤ n ≤ N).

If K = Q and the | · | are p-adic valuations, Theorem 6.1 is related to the
Chinese Remainder Theorem, but the strong approximation theorem is the real
generalization. This theorem involves adeles, so we cill not state it until later.

Proof. We note first that it will be enough to find, for each n, an element cn ∈ K
such that

|cn|n > 1 and |cn|m < 1 for n 6= m,

where 1 ≤ n, m ≤ N . For then as r → +∞, we have

cr
n

1 + cr
n

=
1

1 +
(

1

cn

)−r
→

{

1 with respect to | · |n and

0 with respect to | · |m , for m 6= n.
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It is then enough to take

b =
N

∑

n=1

cr
n

1 + cr
n

· an

By symmetry it is enough to show the existence of c = c1 with

|c|
1

> 1 and |c|n < 1 for 2 ≤ n ≤ N.

We will do this by induction on N .
First suppose N = 2. Since | · |

1
and | · |

2
are inequivalent (and all absolute

values are assumed nontrivial) there is an a ∈ K such that

|a|
1

< 1 and |a|
2
≥ 1

and similarly a b such that

|b|
1
≥ 1 and |b|

2
< 1.

Then c =
b

a
will do.

Next suppose N ≥ 3. By the case N − 1, there is an a ∈ K such that

|a|
1

> 1 and |a|n < 1 for 2 ≤ n ≤ N − 1.

By the case for N = 2 there is a b ∈ K such that

|b|
1

> 1 and |b|N < 1.

Then put

c =















a if |a|N < 1

ar · b if |a|N = 1
ar

1 + ar
· b if |a|N > 1

where r ∈ Z is sufficiently large so that |c|
1

> 1 and |c|n < 1 for 2 ≤ n ≤ N .

Example 6.2. Suppose K = Q, let | · |
1

be the archimedean absolute value and let
| · |

2
be the 2-adic absolute value. Let a1 = −1, a2 = 8, and ε = 1/10, as in the

remark right after Theorem 6.1. Then the theorem implies that there is an element
b ∈ Q such that

|−1 − b|
1

<
1

10
and |8 − b|

2
<

1

10
.

As in the proof of the theorem, we can find such a b by finding a c1, c2 ∈ Q such
that |c1|1 > 1 and |c1|2 < 1, and a |c2|1 < 1 and |c2|2 > 1. For example, c1 = 2
and c2 = 1/2 works, since |2|

1
= 2 and |2|

2
= 1/2 and |1/2|

1
= 1/2 and |1/2|

2
= 2.

Again following the proof, we see that for sufficiently large r we can take

br =
cr
1

1 + cr
1

· a1 +
cr
2

1 + cr
2

· a2

=
2r

1 + 2r
· (−1) +

(1/2)r

1 + (1/2)r
· 8.
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We have b1 = 2, b2 = 4/5, b3 = 0, b4 = −8/17, b5 = −8/11, b6 = −56/55. None of
the bi work for i < 6, but b6 works.

7 Finite Residue Field Case

Let K be a field with a non-archimedean valuation v = | · |. Recall that the set of
a ∈ K with |a| ≤ 1 forms a ring O, the ring of integers for v. The set of u ∈ K
with |u| = 1 are a group U under multiplication, the group of units for v. Finally,
the set of a ∈ K with |a| < 1 is a maximal ideal p, so the quotient ring O/p is a
field. In this section we consider the case when O/p is a finite field of order a prime
power q. For example, K could be Q and | · | could be a p-adic valuation, or K
could be a number field and | · | could be the valuation corresponding to a maximal
ideal of the ring of integers. Among other things, we will discuss in more depth the
topological and measure-theoretic nature of the completion of K at v.

Suppose further for the rest of this section that | · | is discrete. Then (as we
proved before), the ideal p is a principal ideal (π), say, and every a ∈ K is of the
form a = πnε, where n ∈ Z and ε ∈ U is a unit. We call

n = ord(a) = ordπ(a) = ordp(a) = ordv(a)

the ord of a at v. (Some authors, including me (!) also call this integer the valuation
of a with respect to v.) If p = (π′), then π/π′ is a unit, and conversely, so ord(a) is
independent of the choice of π.

Let Ov and pv be defined with respect to the completion Kv of K at v.

Lemma 7.1. There is a natural isomorphism

ϕ : Ov/pv → O/p,

and pv = (π) as an Ov-ideal.

Proof. We may view Ov as the set of equivalence classes of Cauchy sequences (an)
in K such that an ∈ O for n sufficiently large. For any ε, given such a sequence
(an), there is N such that for n, m ≥ N , we have |an − am| < ε. In particular, we
can choose N such that n, m ≥ N implies that an ≡ am (mod p). Let ϕ((an)) =
aN (mod p), which is well-defined. The map ϕ is surjective because the constant
sequences are in Ov. Its kernel is the set of Cauchy sequences whose elements are
eventually all in p, which is exactly pv. This proves the first part of the lemma. The
second part is true because any element of pv is a sequence all of whose terms are
eventually in p, hence all a multiple of π (we can set to 0 a finite number of terms
of the sequence without changing the equivalence class of the sequence).

Assume for the rest of this section that K is complete with respect to | · |.
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Lemma 7.2. Then ring O is precisely the set of infinite sums

a =
∞

∑

j=0

aj · πj (7.1)

where the aj run independently through some set R of representatives of O in O/p.

By (7.1) is meant the limit of the Cauchy sequence
∑n

j=0
aj · πj as j → ∞.

Proof. There is a uniquely defined a0 ∈ R such that |a − a0| < 1. Then a′ =
π−1 · (a − a0) ∈ O. Now define a1 ∈ R by |a′ − a1| < 1. And so on.

Example 7.3. Suppose K = Q and | · | = | · |p is the p-adic valuation, for some
prime p. We can take R = {0, 1, . . . , p − 1}. The lemma asserts that

O = Zp =







∞
∑

j=0

anpn : 0 ≤ an ≤ p − 1







.

Notice that O is uncountable since there are p choices for each p-adic “digit”. We
can do arithmetic with elements of Zp, which can be thought of “backwards” as
numbers in base p. For example, with p = 3 we have

(1 + 2 · 3 + 32 + · · · ) + (2 + 2 · 3 + 32 + · · · )
= 3 + 4 · 3 + 2 · 32 + · · · not in canonical form

= 0 + 2 · 3 + 3 · 3 + 2 · 32 + · · · still not canonical

= 0 + 2 · 3 + 0 · 32 + · · ·

Basic arithmetic with the p-adics in MAGMA is really weird (even weirder
than it was a year ago... There are presumably efficiency advantages to using the
MAGMA formalization, and it’s supposed to be better for working with extension
fields. But I can’t get it to do even the calculation below in a way that is clear.) In
PARI (gp) the p-adics work as expected:

? a = 1 + 2*3 + 3^2 + O(3^3);

? b = 2 + 2*3 + 3^2 + O(3^3);

? a+b

%3 = 2*3 + O(3^3)

? sqrt(1+2*3+O(3^20))

%5 = 1 + 3 + 3^2 + 2*3^4 + 2*3^7 + 3^8 + 3^9 + 2*3^10 + 2*3^12

+ 2*3^13 + 2*3^14 + 3^15 + 2*3^17 + 3^18 + 2*3^19 + O(3^20)

? 1/sqrt(1+2*3+O(3^20))

%6 = 1 + 2*3 + 2*3^2 + 2*3^7 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13

+ 2*3^14 + 3^15 + 2*3^16 + 2*3^17 + 3^18 + 3^19 + O(3^20)

Theorem 7.4. Under the conditions of the preceding lemma, O is compact with
respect to the | · | -topology.
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Proof. Let Vλ, for λ running through some index set Λ, be some family of open sets
that cover O. We must show that there is a finite subcover. We suppose not.

Let R be a set of representatives for O/p. Then O is the union of the finite
number of cosets a + πO, for a ∈ R. Hence for at lest one a0 ∈ R the set a0 + πO
is not covered by finitely many of the Vλ. Then similarly there is an a1 ∈ R such
that a0 + a1π + π2O is not finitely covered. And so on. Let

a = a0 + a1π + a2π
2 + · · · ∈ O.

Then a ∈ Vλ0
for some λ0 ∈ Λ. Since Vλ0

is an open set, a+πJ ·O ⊂ Vλ0
for some J

(since those are exactly the open balls that form a basis for the topology). This is
a contradiction because we constructed a so that none of the sets a + πn · O, for
each n, are not covered by any finite subset of the Vλ.

Definition 7.5 (Locally compact). A topological space X is locally compact at a
point x if there is some compact subset C of X that contains a neighborhood of x.
The space X is locally compact if it is locally compact at each point in X.

Corollary 7.6. The complete local field K is locally compact.

Proof. If x ∈ K, then x ∈ C = x + O, and C is a compact subset of K by
Theorem 7.4. Also C contains the neighborhood x + πO = B(x, 1) of x. Thus K is
locally compact at x.

Remark 7.7. The converse is also true. If K is locally compact with respect to a non-
archimedean valuation | · | , then

1. K is complete,

2. the residue field is finite, and

3. the valuation is discrete.

For there is a compact neighbourhood C of 0. Then πn · O ⊂ C for sufficiently large n, so
πn ·O is compact, being closed. Hence O is compact. Since | · | is a metric, O is sequentially
compact, i.e., every fundamental sequence in O has a limit, which implies (1). Let aλ (for
λ ∈ Λ) be a set of representatives in O of O/p. Then Oλ = {z : |z − aλ| < 1} is an open
covering of O. Thus (2) holds since O is compact. Finally, p is compact, being a closed
subset of O. Let Sn be the set of a ∈ K with |a| < 1− 1/n. Then Sn (for 1 ≤ n < ∞) is an
open covering of p, so p = Sn for some n, i.e., (3) is true.

If we allow | · | to be archimedean the only further possibilities are k = R and k = C
with | · | equivalent to the usual absolute value.

We denote by K+ the commutative topological group whose points are the
elements of K, whose group law is addition and whose topology is that induced by
| · |. General theory tells us that there is an invariant measure (the Haar measure)
defined on K+ and that this measure is unique up to a multiplicative constant. We
now deduce what any such measure µ must be.

First, since µ is invariant,

µn = µ(a + πnO)
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is independent of a. Further,

a + πnO =
⋃

1≤j≤q

a + πnaj + πn+1O, (disjoint union)

where aj (for 1 ≤ j ≤ q) is a set of representatives of O/p. Hence

µn = q · µn+1.

If we normalize µ by putting
µ(O) = 1

we have µ0 = 1, hence µ1 = q, and in general

µn = q−n.

Conversely, without the theory of Haar measure, we could define µ to be the
necessarily unique measure on K+ such that µ(O) = 1 that is translation invariant.
This would have to be the µ we just found above.

Everything so far in this section has depended not on the valuation | · | but only
on its equivalence class. The above considerations now single out one valuation in
the equivalence class as particularly important.

Definition 7.8 (Normalized valuation). Let K be a field equipped with a dis-
crete valuation | · | and residue class field with q < ∞ elements. We say that | · | is
normalized if

|π| =
1

q
,

where p = (π) is the maximal ideal of O.

Example 7.9. The normalized valuation on the p-adic numbers Qp is |u · pn| = p−n,
where u is a rational number whose numerator and denominator are coprime to p.

Next suppose K = Qp(
√

p). Then the p-adic valuation on Qp extends uniquely

to one on K such that
∣

∣

√
p
∣

∣

2
= |p| = 1/p. Since π =

√
p for K, this valuation is

not normalized. (Note that the ord of π =
√

p is 1/2.) The normalized valuation is

v = | · |′ = | · |2. Note that | · |′ p = 1/p2, or ordv(p) = 2 instead of 1.
Finally suppose that K = Qp(

√
q) where x2 − q has not root mod p. Then the

residue class field degree is 2, and the normalized valuation must satisfy
∣

∣

√
q
∣

∣ = 1/p2.

The following proposition makes clear why this is the best choice of normaliza-
tion.

Theorem 7.10. Suppose further that K is complete with respect to the normalized
valuation | · | . Then

µ(a + bO) = |b| ,
where µ is the Haar measure on K+ normalized so that µ(O) = 1.
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Proof. Since µ is translation invariant, µ(a + bO) = µ(bO). Write b = u · πn, where
u is a unit. Then since u · O = O, we have

µ(bO) = µ(u · πn · O) = µ(πn · u · O) = µ(πn · O) = q−n = |πn| = |b| .
Here we have µ(πn · O) = q−n by the discussion before Definition 7.8.

We can express the result of the theorem in a more suggestive way. Let b ∈ K
with b 6= 0, and let µ be a Haar measure on K+ (not necessarily normalized as
in the theorem). Then we can define a new Haar measure µb on K+ by putting
µb(E) = µ(bE) for E ⊂ K+. But Haar measure is unique up to a multiplicative
constant and so µb(E) = µ(bE) = c · µ(E) for all measurable sets E, where the
factor c depends only on b. Putting E = O, shows that the theorem implies that c
is just |b|, when | · | is the normalized valuation.

Remark 7.11. The theory of locally compact topological groups leads to the consideration
of the dual (character) group of K+. It turns out that it is isomorphic to K+. We do not
need this fact for class field theory, so do not prove it here. For a proof and applications
see Tate’s thesis or Lang’s Algebraic Numbers, and for generalizations see Weil’s Adeles and
Algebraic Groups and Godement’s Bourbaki seminars 171 and 176. The determination of
the character group of K∗ is local class field theory.

The set of nonzero elements of K form a group K∗ under multiplication. Mul-
tiplication and inverses are continuous with respect to the topology induced on K∗

as a subset of K, so K∗ is a topological group with this topology. We have

U1 ⊂ U ⊂ K∗

where U is the group of units of O ⊂ K and U1 is the group of 1-units, i.e., those
units ε ∈ U with |ε − 1| < 1, so

U1 = 1 + πO.

The set U is the open ball about 0 of radius 1, so is open, and because the metric
is nonarchimedean U is also closed. Likewise, U1 is both open and closed.

The quotient K∗/U = {πn · U : n ∈ Z} is isomorphic to the additive group Z+

of integers with the discrete topology, where the map is

πn · U 7→ n for n ∈ Z.

The quotient U/U1 is isomorphic to the multiplicative group F∗ of the nonzero
elements of the residue class field, where the finite gorup F∗ has the discrete topol-
ogy. Note that F∗ is cyclic of order q − 1, and Hensel’s lemma implies that K∗

contains a primitive (q− 1)th root of unity ζ. Thus K∗ has the following structure:

K∗ = {πnζmε : n ∈ Z, m ∈ Z/(q − 1)Z, ε ∈ U1} ∼= Z × Z/(q − 1)Z × U1.

(How to apply Hensel’s lemma: Let f(x) = xq−1 − 1 and let a ∈ O be such that a
mod p generates K∗. Then |f(a)| < 1 and |f ′(a)| = 1. By Hensel’s lemma there is
a ζ ∈ K such that f(ζ) = 0 and ζ ≡ a (mod p).)

Since U is compact and the cosets of U cover K, we see that K∗ is locally
compact.
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Lemma 7.12. The additive Haar measure µ on K+, when restricted to U1 gives a
measure on U1 that is also invariant under multiplication, so gives a Haar measure
on U1.

Proof. It suffices to show that

µ(1 + πnO) = µ(u · (1 + πnO)),

for any u ∈ U1 and n > 0. Write u = 1 + a1π + a2π
2 + · · · . We have

u · (1 + πnO) = (1 + a1π + a2π
2 + · · · ) · (1 + πnO)

= 1 + a1π + a2π
2 + · · · + πnO

= a1π + a2π
2 + · · · + (1 + πnO),

which is an additive translate of 1 + πnO, hence has the same measure.

Thus µ gives a Haar measure on K∗ by translating U1 around to cover K∗.

Lemma 7.13. The topological spaces K+ and K∗ are totally disconnected (the only
connected sets are points).

Proof. The proof is the same as the proof I mentioned last time. The point is that
the non-archimedean triangle inequality forces the complement an open disc to be
open, hence any set with at least two distinct elements “falls apart” into a disjoint
union of two disjoint open subsets.

Remark 7.14. Note that K∗ and K+ are locally isomorphic if K has characteristic 0.
We have the exponential map

a 7→ exp(a) =

∞
∑

n=0

an

n!

defined for all sufficiently small a with its inverse

log(a) =
∞

∑

n=1

(−1)n−1(a − 1)n

n
,

which is defined for all a sufficiently close to 1.
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