Math 129: Algebraic Number Theory Lecture 17: Topology, Completeness

William Stein

Thursday, April 8, 2004

Before starting Section 4, I discuss a question from last time...
Remark 2.1. This definition differs from the one on page 46 of [Cassels-Frohlich, Ch. 2] in two ways. First, we assume that $c>1$ instead of $c<1$, since otherwise $|\cdot|_{p}$ does not satisfy Axiom 3 of a valuation. Here's why: Recall that Axiom 3 for a non-archimedean valuation on K asserts that whenever $a \in K$ and $|a| \leq 1$, then $|a+1| \leq 1$. Set $a=p-1$, where $p=p(t) \in K[t]$ is an irreducible polynomial. Then $|a|=c^{0}=1$, since $\operatorname{ord}_{p}(p-1)=0$. However, $|a+1|=|p-1+1|=|p|=c^{1}<1$, since $\operatorname{ord}_{p}(p)=1$. If we take $c>1$ instead of $c<1$, as I propose, then $|p|=c^{1}>1$, as required.

4 Topology

A valuation $|\cdot|$ on a field K induces a topology in which a basis for the neighborhoods of a are the open balls

$$
B(a, d)=\{x \in K:|x-a|<d\}
$$

for $d>0$.
Lemma 4.1. Equivalent valuations induce the same topology.
Proof. If $|\cdot|_{1}=|\cdot|_{2}^{r}$, then $|x-a|_{1}<d$ if and only if $|x-a|_{2}^{r}<d$ if and only if $|x-a|_{2}<d^{1 / r}$ so $B_{1}(a, d)=B_{2}\left(a, d^{1 / r}\right)$. Thus the basis of open neighborhoods of a for $|\cdot|_{1}$ and $|\cdot|_{2}$ are identical.

A valuation satisfying the triangle inequality gives a metric for the topology on defining the distance from a to b to be $|a-b|$. Assume for the rest of this section that we only consider valuations that satisfy the triangle inequality.

Lemma 4.2. A field with the topology induced by a valuation is a topological field, i.e., the operations sum, product, and reciprocal are continuous.

Proof. For example (product) the triangle inequality implies that

$$
|(a+\varepsilon)(b+\delta)-a b| \leq|\varepsilon||\delta|+|a||\delta|+|b||\varepsilon|
$$

is small when $|\varepsilon|$ and $|\delta|$ are small (for fixed a, b).
Lemma 4.3. Suppose two valuations $|\cdot|_{1}$ and $|\cdot|_{2}$ on the same field K induce the same topology. Then for any sequence $\left\{x_{n}\right\}$ in K we have

$$
\left|x_{n}\right|_{1} \rightarrow 0 \Longleftrightarrow\left|x_{n}\right|_{2} \rightarrow 0
$$

Proof. It suffices to prove that if $\left|x_{n}\right|_{1} \rightarrow 0$ then $\left|x_{n}\right|_{2} \rightarrow 0$, since the proof of the other implication is the same. Let $\varepsilon>0$. The topologies induced by the two absolute values are the same, so $B_{2}(0, \varepsilon)$ can be covered by open balls $B_{1}\left(a_{i}, r_{i}\right)$. One of these open balls $B_{1}(a, r)$ contains 0 . There is $\varepsilon^{\prime}>0$ such that

$$
B_{1}\left(0, \varepsilon^{\prime}\right) \subset B_{1}(a, r) \subset B_{2}(0, \varepsilon)
$$

Since $\left|x_{n}\right|_{1} \rightarrow 0$, there exists N such that for $n \geq N$ we have $\left|x_{n}\right|_{1}<\varepsilon^{\prime}$. For such n, we have $x_{n} \in B_{1}\left(0, \varepsilon^{\prime}\right)$, so $x_{n} \in B_{2}(0, \varepsilon)$, so $\left|x_{n}\right|_{2}<\varepsilon$. Thus $\left|x_{n}\right|_{2} \rightarrow 0$.

Proposition 4.4. If two valuations $|\cdot|_{1}$ and $|\cdot|_{2}$ on the same field induce the same topology, then they are equivalent in the sense that there is a positive real α such that $|\cdot|_{1}=|\cdot|_{2}^{\alpha}$.

Proof. If $x \in K$ and $i=1,2$, then $\left|x^{n}\right|_{i} \rightarrow 0$ if and only if $|x|_{i}^{n} \rightarrow 0$, which is the case if and only if $|x|_{i}<1$. Thus Lemma 4.3 implies that $|x|_{1}<1$ if and only if $|x|_{2}<1$. On taking reciprocals we see that $|x|_{1}>1$ if and only if $|x|_{2}>1$, so finally $|x|_{1}=1$ if and only if $|x|_{2}=1$.

Let now $w, z \in K$ be nonzero elements with $|w|_{i} \neq 1$ and $|z|_{i} \neq 1$. On applying the foregoing to

$$
x=w^{m} z^{n} \quad(m, n \in \mathbf{Z})
$$

we see that

$$
m \log |w|_{1}+n \log |z|_{1} \geq 0
$$

if and only if

$$
m \log |w|_{2}+n \log |z|_{2} \geq 0
$$

Dividing through by $\log |z|_{i}$, and rearranging, we see that for every rational number $\alpha=-n / m$,

$$
\frac{\log |w|_{1}}{\log |z|_{1}} \geq \alpha \Longleftrightarrow \frac{\log |w|_{2}}{\log |z|_{2}} \geq \alpha
$$

Thus

$$
\frac{\log |w|_{1}}{\log |z|_{1}}=\frac{\log |w|_{2}}{\log |z|_{2}}
$$

So

$$
\frac{\log |w|_{1}}{\log |w|_{2}}=\frac{\log |z|_{1}}{\log |z|_{2}}
$$

Since this equality does not depend on the choice of z, we see that there is a constant $c\left(=\log |z|_{1} / \log |z|_{2}\right)$ such that $\log |w|_{1} / \log |w|_{2}=c$ for all w. Thus $\log |w|_{1}=c \cdot \log |w|_{2}$, so $|w|_{1}=|w|_{2}^{c}$, which implies that $|\cdot|_{1}$ is equivalent to $|\cdot|_{2}$.

5 Completeness

We recall the definition of metric on a set X.
Definition 5.1 (Metric). A metric on a set X is a map

$$
d: X \times X \rightarrow \mathbf{R}
$$

such that for all $x, y, z \in X$,

1. $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$,
2. $d(x, y)=d(y, x)$, and
3. $d(x, z) \leq d(x, y)+d(y, z)$.

A Cauchy sequence is a sequence $\left(x_{n}\right)$ in X such that for all $\varepsilon>0$ there exists M such that for all $n, m>M$ we have $d\left(x_{n}, x_{m}\right)<\varepsilon$. The completion of X is the set of Cauchy sequences $\left(x_{n}\right)$ in X modulo the equivalence relation in which two Cauchy sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are equivalent if $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. A metric space is complete if every Cauchy sequence converges, and one can show that the completion of X with respect to a metric is complete.

For example, $d(x, y)=|x-y|$ (usual archimedean absolute value) defines a metric on \mathbf{Q}. The completion of \mathbf{Q} with respect to this metric is the field \mathbf{R} of real numbers. More generally, whenever $|\cdot|$ is a valuation on a field K that satisfies the triangle inequality, then $d(x, y)=|x-y|$ defines a metric on K. Consider for the rest of this section only valuations that satisfy the triangle inequality.

Definition 5.2 (Complete). A field K is complete with respect to a valuation $|\cdot|$ if given any Cauchy sequence $a_{n},(n=1,2, \ldots)$, i.e., one for which

$$
\left|a_{m}-a_{n}\right| \rightarrow 0 \quad(m, n \rightarrow \infty, \infty),
$$

there is an $a^{*} \in K$ such that

$$
a_{n} \rightarrow a^{*} \quad \text { w.r.t. }|\cdot|
$$

(i.e., $\left|a_{n}-a^{*}\right| \rightarrow 0$).

Theorem 5.3. Every field K with valuation $v=|\cdot|$ can be embedded in a complete field K_{v} with a valuation $|\cdot|$ extending the original one in such a way that K_{v} is the closure of K with respect to $|\cdot|$. Further K_{v} is unique up to a unique isomorphism fixing K.

Proof. Define K_{v} to be the completion of K with respect to the metric defined by $|\cdot|$. Thus K_{v} is the set of equivalence classes of Cauchy sequences, and there is a natural injective map from K to K_{v} sending an element $a \in K$ to the constant Cauchy sequence (a). Because the field operations on K are continuous, they induce welldefined field operations on equivalence classes of Cauchy sequences componentwise. Also, define a valuation on K_{v} by

$$
\left|\left(a_{n}\right)_{n=1}^{\infty}\right|=\lim _{n \rightarrow \infty}\left|a_{n}\right|,
$$

and note that this is well defined and extends the valuation on K.
To see that K_{v} is unique up to a unique isomorphism fixing K, we observe that there are no nontrivial continuous automorphisms $K_{v} \rightarrow K_{v}$ that fix K. This is because, by denseness, a continuous automorphism $\sigma: K_{v} \rightarrow K_{v}$ is determined by what it does to K, and by assumption σ is the identity map on K. More precisely, suppose $a \in K_{v}$ and n is a positive integer. Then by continuity there is $\delta>0$ (with $\delta<1 / n)$ such that if $a_{n} \in K_{v}$ and $\left|a-a_{n}\right|<\delta$ then $\left|\sigma(a)-\sigma\left(a_{n}\right)\right|<1 / n$. Since K is dense in K_{v}, we can choose the a_{n} above to be an element of K. Then by hypothesis $\sigma\left(a_{n}\right)=a_{n}$, so $\left|\sigma(a)-a_{n}\right|<1 / n$. Thus $\sigma(a)=\lim _{n \rightarrow \infty} a_{n}=a$.

Corollary 5.4. The valuation $|\cdot|$ is non-archimedean on K_{v} if and only if it is so on K. If $|\cdot|$ is non-archimedean, then the set of values taken by $|\cdot|$ on K and K_{v} are the same.

Proof. The first part follows from the fact proved earlier that a valuation is nonarchimedean if and only if $|n|<1$ for all integers n. Since the valuation on K_{v} extends the valuation on K, and all n are in K, the first statement follows.

For the second, suppose that $|\cdot|$ is non-archimedean (but not necessarily discrete). Suppose $b \in K_{v}$ with $b \neq 0$. First I claim that there is $c \in K$ such that $|b-c|<|b|$. To see this, let $c^{\prime}=b-\frac{b}{a}$, where a is some element of K_{v} with $|a|>1$, note that $\left|b-c^{\prime}\right|=\left|\frac{b}{a}\right|<|b|$, and choose $c \in K$ such that $\left|c-c^{\prime}\right|<\left|b-c^{\prime}\right|$, so

$$
|b-c|=\left|b-c^{\prime}-\left(c-c^{\prime}\right)\right| \leq \max \left(\left|b-c^{\prime}\right|,\left|c-c^{\prime}\right|\right)=\left|b-c^{\prime}\right|<|b| .
$$

Since $|\cdot|$ is non-archimedean, we have

$$
|b|=|(b-c)+c| \leq \max (|b-c|,|c|)=|c|,
$$

where in the last equality we use that $|b-c|<|b|$. Also,

$$
|c|=|b+(c-b)| \leq \max (|b|,|c-b|)=|b|
$$

so $|b|=|c|$, which is in the set of values of $|\cdot|$ on K.

$5.1 \quad p$-adic Numbers

This section is about the p-adic numbers \mathbf{Q}_{p}, which are the completion of \mathbf{Q} with respect to the p-adic valuation. Alternatively, to give a p-adic integer in \mathbf{Z}_{p} is the same as giving for every prime power p^{r} an element $a_{r} \in \mathbf{Z} / p^{r} \mathbf{Z}$ such that if $s \leq r$ then a_{s} is the reduction of a_{r} modulo p^{s}. The field \mathbf{Q}_{p} is then the field of fractions of \mathbf{Z}_{p}.

We begin with the definition of the N-adic numbers for any positive integer N. Section 5.1.2 is about the N-adics in the special case $N=10$; these are fun because they can be represented as decimal expansions that go off infinitely far to the left. Section 5.3 is about how the topology of \mathbf{Q}_{N} is nothing like the topology of \mathbf{R}. Finally, in Section 5.4 we state the Hasse-Minkowski theorem, which shows how to use p-adic numbers to decide whether or not a quadratic equation in n variables has a rational zero.

5.1.1 The N-adic Numbers

Lemma 5.5. Let N be a positive integer. Then for any nonzero rational number α there exists a unique $e \in \mathbf{Z}$ and integers a, b, with b positive, such that $\alpha=N^{e} \cdot \frac{a}{b}$ with $N \nmid a, \operatorname{gcd}(a, b)=1$, and $\operatorname{gcd}(N, b)=1$.

Proof. Write $\alpha=c / d$ with $c, d \in \mathbf{Z}$ and $d>0$. First suppose d is exactly divisible by a power of N, so for some r we have $N^{r} \mid d$ but $\operatorname{gcd}\left(N, d / N^{r}\right)=1$. Then

$$
\frac{c}{d}=N^{-r} \frac{c}{d / N^{r}} .
$$

If N^{s} is the largest power of N that divides c, then $e=s-r, a=c / N^{s}, b=d / N^{r}$ satisfy the conclusion of the lemma.

By unique factorization of integers, there is a smallest multiple f of d such that $f d$ is exactly divisible by N. Now apply the above argument with c and d replaced by $c f$ and $d f$.

Definition 5.6 (N-adic valuation). Let N be a positive integer. For any positive $\alpha \in \mathbf{Q}$, the N-adic valuation of α is e, where e is as in Lemma 5.5. The N-adic valuation of 0 is ∞.

We denote the N-adic valuation of α by $\operatorname{ord}_{N}(\alpha)$. (Note: Here we are using "valuation" in a different way than in the rest of the text. This valuation is not an absolute value, but the logarithm of one.)

Definition 5.7 (N-adic metric). For $x, y \in \mathbf{Q}$ the N-adic distance between x and y is

$$
d_{N}(x, y)=N^{-\operatorname{ord}_{N}(x-y)} .
$$

We let $d_{N}(x, x)=0, \operatorname{since}^{\operatorname{ord}_{N}}(x-x)=\operatorname{ord}_{N}(0)=\infty$.

For example, $x, y \in \mathbf{Z}$ are close in the N-adic metric if their difference is divisible by a large power of N. E.g., if $N=10$ then 93427 and 13427 are close because their difference is 80000 , which is divisible by a large power of 10 .

Proposition 5.8. The distance d_{N} on \mathbf{Q} defined above is a metric. Moreover, for all $x, y, z \in \mathbf{Q}$ we have

$$
d(x, z) \leq \max (d(x, y), d(y, z)) .
$$

(This is the "nonarchimedean" triangle inequality.)
Proof. The first two properties of Definition 5.1 are immediate. For the third, we first prove that if $\alpha, \beta \in \mathbf{Q}$ then

$$
\operatorname{ord}_{N}(\alpha+\beta) \geq \min \left(\operatorname{ord}_{N}(\alpha), \operatorname{ord}_{N}(\beta)\right) .
$$

Assume, without loss, that $\operatorname{ord}_{N}(\alpha) \leq \operatorname{ord}_{N}(\beta)$ and that both α and β are nonzero. Using Lemma 5.5 write $\alpha=N^{e}(a / b)$ and $\beta=N^{f}(c / d)$ with a or c possibly negative. Then

$$
\alpha+\beta=N^{e}\left(\frac{a}{b}+N^{f-e} \frac{c}{d}\right)=N^{e}\left(\frac{a d+b c N^{f-e}}{b d}\right) .
$$

Since $\operatorname{gcd}(N, b d)=1$ it follows that $\operatorname{ord}_{N}(\alpha+\beta) \geq e$. Now suppose $x, y, z \in \mathbf{Q}$. Then

$$
x-z=(x-y)+(y-z),
$$

so

$$
\operatorname{ord}_{N}(x-z) \geq \min \left(\operatorname{ord}_{N}(x-y), \operatorname{ord}_{N}(y-z)\right),
$$

hence $d_{N}(x, z) \leq \max \left(d_{N}(x, y), d_{N}(y, z)\right)$.
We can finally define the N-adic numbers.
Definition 5.9 (The N-adic Numbers). The set of N-adic numbers, denoted \mathbf{Q}_{N}, is the completion of \mathbf{Q} with respect to the metric d_{N}.

The set \mathbf{Q}_{N} is a ring, but it need not be a field as you will show in Exercises 4 and 5. It is a field if and only if N is prime. Also, \mathbf{Q}_{N} has a "bizarre" topology, as we will see in Section 5.3.

5.1.2 The 10 -adic Numbers

It's a familiar fact that every real number can be written in the form

$$
d_{n} \ldots d_{1} d_{0} \cdot d_{-1} d_{-2} \ldots=d_{n} 10^{n}+\cdots+d_{1} 10+d_{0}+d_{-1} 10^{-1}+d_{-2} 10^{-2}+\cdots
$$

where each digit d_{i} is between 0 and 9 , and the sequence can continue indefinitely to the right.

The 10-adic numbers also have decimal expansions, but everything is backward! To get a feeling for why this might be the case, we consider Euler's nonsensical series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n!=1!-2!+3!-4!+5!-6!+\cdots
$$

You will prove in Exercise 2 that this series converges in \mathbf{Q}_{10} to some element $\alpha \in \mathbf{Q}_{10}$.

What is α ? How can we write it down? First note that for all $M \geq 5$, the terms of the sum are divisible by 10 , so the difference between α and 1 ! -2 ! +3 ! -4 ! is divisible by 10 . Thus we can compute α modulo 10 by computing $1!-2!+3!-4$! modulo 10. Likewise, we can compute α modulo 100 by compute $1!-2!+\cdots+9!-10$!, etc. We obtain the following table:

α	$\bmod 10^{r}$
1	$\bmod 10$
81	$\bmod 10^{2}$
981	$\bmod 10^{3}$
2981	$\bmod 10^{4}$
22981	$\bmod 10^{5}$
422981	$\bmod 10^{6}$

Continuing we see that

$$
1!-2!+3!-4!+\cdots=\ldots 637838364422981 \quad \text { in } \mathbf{Q}_{10}!
$$

Here's another example. Reducing $1 / 7$ modulo larger and larger powers of 10 we see that

$$
\frac{1}{7}=\ldots 857142857143 \quad \text { in } \mathbf{Q}_{10}
$$

Here's another example, but with a decimal point.

$$
\frac{1}{70}=\frac{1}{10} \cdot \frac{1}{7}=\ldots 85714285714.3
$$

We have

$$
\frac{1}{3}+\frac{1}{7}=\ldots 66667+\ldots 57143=\frac{10}{21}=\ldots 23810
$$

which illustrates that addition with carrying works as usual.

5.1.3 Fermat's Last Theorem in \mathbf{Z}_{10}

An amusing observation, which people often argued about on USENET news back in the 1990s, is that Fermat's last theorem is false in \mathbf{Z}_{10}. For example, $x^{3}+y^{3}=z^{3}$ has a nontrivial solution, namely $x=1, y=2$, and $z=\ldots 60569$. Here z is a cube root of 9 in \mathbf{Z}_{10}. Note that it takes some work to prove that there is a cube root of 9 in \mathbf{Z}_{10} (see Exercise 3).

5.2 The Field of p-adic Numbers

The ring \mathbf{Q}_{10} of 10 -adic numbers is isomorphic to $\mathbf{Q}_{2} \times \mathbf{Q}_{5}$ (see Exercise 5), so it is not a field. For example, the element ... 8212890625 corresponding to $(1,0)$ under this isomorphism has no inverse. (To compute n digits of $(1,0)$ use the Chinese remainder theorem to find a number that is 1 modulo 2^{n} and 0 modulo 5^{n}.)

If p is prime then \mathbf{Q}_{p} is a field (see Exercise 4). Since $p \neq 10$ it is a little more complicated to write p-adic numbers down. People typically write p-adic numbers in the form

$$
\frac{a_{-d}}{p^{d}}+\cdots+\frac{a_{-1}}{p}+a_{0}+a_{1} p+a_{2} p^{2}+a_{3} p^{3}+\cdots
$$

where $0 \leq a_{i}<p$ for each i.

5.3 The Topology of Q_{N} (is Weird)

Definition 5.10 (Connected). Let X be a topological space. A subset S of X is disconnected if there exist open subsets $U_{1}, U_{2} \subset X$ with $U_{1} \cap U_{2} \cap S=\emptyset$ and $S=\left(S \cap U_{1}\right) \cup\left(S \cap U_{2}\right)$ with $S \cap U_{1}$ and $S \cap U_{2}$ nonempty. If S is not disconnected it is connected.

The topology on \mathbf{Q}_{N} is induced by d_{N}, so every open set is a union of open balls

$$
B(x, r)=\left\{y \in \mathbf{Q}_{N}: d_{N}(x, y)<r\right\} .
$$

Recall Proposition 5.8, which asserts that for all x, y, z,

$$
d(x, z) \leq \max (d(x, y), d(y, z)) .
$$

This translates into the following shocking and bizarre lemma:
Lemma 5.11. Suppose $x \in \mathbf{Q}_{N}$ and $r>0$. If $y \in \mathbf{Q}_{N}$ and $d_{N}(x, y) \geq r$, then $B(x, r) \cap B(y, r)=\emptyset$.

Proof. Suppose $z \in B(x, r)$ and $z \in B(y, r)$. Then

$$
r \leq d_{N}(x, y) \leq \max \left(d_{N}(x, z), d_{N}(z, y)\right)<r,
$$

a contradiction.
You should draw a picture to illustrates Lemma 5.11.
Lemma 5.12. The open ball $B(x, r)$ is also closed.
Proof. Suppose $y \notin B(x, r)$. Then $r \leq d(x, y)$ so

$$
B(y, d(x, y)) \cap B(x, r) \subset B(y, d(x, y)) \cap B(x, d(x, y))=\emptyset .
$$

Thus the complement of $B(x, r)$ is a union of open balls.

The lemmas imply that \mathbf{Q}_{N} is totally disconnected, in the following sense.
Proposition 5.13. The only connected subsets of \mathbf{Q}_{N} are the singleton sets $\{x\}$ for $x \in \mathbf{Q}_{N}$ and the empty set.

Proof. Suppose $S \subset \mathbf{Q}_{N}$ is a nonempty connected set and x, y are distinct elements of S. Let $r=d_{N}(x, y)>0$. Let $U_{1}=B(x, r)$ and U_{2} be the complement of U_{1}, which is open by Lemma 5.12. Then U_{1} and U_{2} satisfies the conditions of Definition 5.10, so S is not connected, a contradiction.

5.4 The Local-to-Global Principle of Hasse and Minkowski

Section 5.3 might have convinced you that \mathbf{Q}_{N} is a bizarre pathology. In fact, \mathbf{Q}_{N} is omnipresent in number theory, as the following two fundamental examples illustrate.

In the statement of the following theorem, a nontrivial solution to a homogeneous polynomial equation is a solution where not all indeterminates are 0 .

Theorem 5.14 (Hasse-Minkowski). The quadratic equation

$$
\begin{equation*}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}=0 \tag{5.1}
\end{equation*}
$$

with $a_{i} \in \mathbf{Q}^{\times}$, has a nontrivial solution with x_{1}, \ldots, x_{n} in \mathbf{Q} if and only if (5.1) has a solution in \mathbf{R} and in \mathbf{Q}_{p} for all primes p.

This theorem is very useful in practice because the p-adic condition turns out to be easy to check. For more details, including a complete proof, see [Serre, A Course in Arithmetic, IV.3.2]].

The analogue of Theorem 5.14 for cubic equations is false. For example, Selmer proved that the cubic

$$
3 x^{3}+4 y^{3}+5 z^{3}=0
$$

has a solution other than $(0,0,0)$ in \mathbf{R} and in \mathbf{Q}_{p} for all primes p but has no solution other than $(0,0,0)$ in \mathbf{Q} (for a proof see [Cassels, Lectures on Elliptic Curves, $\S 18]$).
Open Problem. Give an algorithm that decides whether or not a cubic

$$
a x^{3}+b y^{3}+c z^{3}=0
$$

has a nontrivial solution in \mathbf{Q}.
This open problem is closely related to the Birch and Swinnerton-Dyer Conjecture for elliptic curves. The truth of the conjecture would follow if we knew that "Shafarevich-Tate Groups" of elliptic curves were finite.

5.5 Exercises

The following are optional exercises, which you may want to do if you would like to familiarize yourself further with p-adic numbers. They are not part of the formal homework sets and you do not need to hand them in.

1. Compute the first 5 digits of the 10 -adic expansions of the following rational numbers:

$$
\frac{13}{2}, \quad \frac{1}{389}, \quad \frac{17}{19}, \quad \text { the } 4 \text { square roots of } 41
$$

2. Let $N>1$ be an integer. Prove that the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} n!=1!-2!+3!-4!+5!-6!+\cdots
$$

converges in \mathbf{Q}_{N}.
3. Prove that -9 has a cube root in \mathbf{Q}_{10} using the following strategy (this is a special case of "Hensel's Lemma").
(a) Show that there is $\alpha \in \mathbf{Z}$ such that $\alpha^{3} \equiv 9\left(\bmod 10^{3}\right)$.
(b) Suppose $n \geq 3$. Use induction to show that if $\alpha_{1} \in \mathbf{Z}$ and $\alpha^{3} \equiv 9$ $\left(\bmod 10^{n}\right)$, then there exists $\alpha_{2} \in \mathbf{Z}$ such that $\alpha_{2}^{3} \equiv 9\left(\bmod 10^{n+1}\right)$. (Hint: Show that there is an integer b such that $\left(\alpha_{1}+b 10^{n}\right)^{3} \equiv 9$ $\left(\bmod 10^{n+1}\right)$.)
(c) Conclude that 9 has a cube root in \mathbf{Q}_{10}.
4. Let $N>1$ be an integer.
(a) Prove that \mathbf{Q}_{N} is equipped with a natural ring structure.
(b) If N is prime, prove that \mathbf{Q}_{N} is a field.
5. (a) Let p and q be distinct primes. Prove that $\mathbf{Q}_{p q} \cong \mathbf{Q}_{p} \times \mathbf{Q}_{q}$.
(b) Is $\mathbf{Q}_{p^{2}}$ isomorphic to either of $\mathbf{Q}_{p} \times \mathbf{Q}_{p}$ or \mathbf{Q}_{p} ?

