# Math 129: Algebraic Number Theory Lecture 15: Valuations 

William Stein

Thursday, March 25, 2004

I don't know about you, but Swinnerton-Dyer's book is getting on my nerves (I will avoid more passionate words), so we're switching to the venerable and famous book by Cassels-Frohlich. In particular, we're going to systematically go through the article Global Fields by Cassels, which is chapter 2 of the book. The topics are similar to the ones in chapter 2 of Swinnerton-Dyer, but Cassels's article is amazingly well written. Also, you are well prepared to read and appreciate it given what you've learned so far in this course.

A scan of the article is available on the web page for the course, and you can get a photocopy from me.

The notes for the rest of the course will be a rewrite of Global Fields meant to make it more accessible. I will copy Cassels's article closely, except I will fix any typos found, reword things in a way consistent with the rest of these notes, and add exercises and comments you might have. I will also add the details of the implicit exercises and remarks that are left to the reader.

## 1 Valuations

Definition 1.1 (Valuation). A valuation $|\mid$ on a field $K$ is a function defined on $K$ with values in $\mathbf{R}_{\geq 0}$ satisfying the following axioms:
(1) $|a|=0$ if and only if $a=0$,
(2) $|a b|=|a||b|$, and
(3) there is a constant $C \geq 1$ such that $|1+a| \leq C$ whenever $|a| \leq 1$.

The trivial valuation is the valuation for which $|a|=1$ for all $a \neq 0$. We will often tacitly exclude the trivial valuation from consideration.

From (2) we have

$$
|1|=|1| \cdot|1|,
$$

so $|1|=1$ by (1). If $w \in K$ and $w^{n}=1$, then $|w|=1$ by (2). In particular, the only valuation of a finite field is the trivial one. The same argument shows that $|-1|=|1|$, so

$$
|-a|=|a| \quad \text { all } a \in K .
$$

Definition 1.2 (Equivalent). Two valuations $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ on the same field are equivalent if there exists $c>0$ such that

$$
|a|_{2}=|a|_{1}^{c}
$$

for all $a \in K$.
Note that if $\left.\left|\left.\right|_{1}\right.$ is a valuation, then $|\right|_{2}=| |_{1}^{c}$ is also a valuation. Also, equivalence of valuations is an equivalence relation.

If $\|$ is a valuation and $C$ is the constant from Axiom (3), then there is a $c>0$ such that $C^{c}=2$ (i.e., $c=\log (C) / \log (2)$ ). Then we can take 2 as constant for the equivalent valuation $\left|\left.\right|^{c}\right.$. Thus every valuation is equivalent to a valuation with $C=2$. Note that if $C=1$, e.g., if $\|$ is the trivial valuation, then we could simply take $C=2$ in Axiom (3).

Proposition 1.3. Suppose $|\mid$ is a valuation with $C=2$. Then for all $a, b \in K$ we have

$$
\begin{equation*}
|a+b| \leq|a|+|b| \quad \text { (triangle inequality). } \tag{1.1}
\end{equation*}
$$

Proof. Suppose $a_{1}, a_{2} \in K$ with $\left|a_{1}\right| \geq\left|a_{2}\right|$. Then $a=a_{2} / a_{1}$ satisfies $|a| \leq 1$. By Axiom (3) we have $|1+a| \leq 2$, so multiplying by $a_{1}$ we see that

$$
\left|a_{1}+a_{2}\right| \leq 2\left|a_{1}\right|=2 \cdot \max \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\} .
$$

Also we have

$$
\left|a_{1}+a_{2}+a_{3}+a_{4}\right| \leq 2 \cdot \max \left\{\left|a_{1}+a_{2}\right|,\left|a_{3}+a_{4}\right|\right\} \leq 4 \cdot \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|,\left|a_{4}\right|\right\},
$$

and inductively we have for any $r>0$ that

$$
\left|a_{1}+a_{2}+\cdots+a_{2^{r}}\right| \leq 2^{r} \cdot \max \left|a_{j}\right| .
$$

If $n$ is any positive integer, let $r$ be such that $2^{r-1} \leq n \leq 2^{r}$. Thenn

$$
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq 2^{r} \cdot \max \left\{\left|a_{j}\right|\right\} \leq 2 n \cdot \max \left\{\left|a_{j}\right|\right\},
$$

since $2^{r} \leq 2 n$. In particular,

$$
\begin{equation*}
|n| \leq 2 n \cdot|1|=2 n \quad(\text { for } n>0) \tag{1.2}
\end{equation*}
$$

Applying (1.2) to $\left|\binom{n}{j}\right|$ and using the binomial expansion, we have for any $a, b \in K$
that

$$
\begin{aligned}
|a+b|^{n} & =\left|\sum_{j=0}^{n}\binom{n}{j} a^{j} b^{n-j}\right| \\
& \leq 2(n+1) \max _{j}\left\{\left|\binom{n}{j}\right||a|^{j}|b|^{n-j}\right\} \\
& \leq 2(n+1) \max _{j}\left\{2\binom{n}{j}|a|^{j}|b|^{n-j}\right\} \\
& \leq 4(n+1) \max _{j}\left\{\binom{n}{j}|a|^{j}|b|^{n-j}\right\} \\
& \leq 4(n+1)(|a|+|b|)^{n} .
\end{aligned}
$$

Now take $n$th roots of both sides to obtain

$$
|a+b| \leq \sqrt[n]{4(n+1)} \cdot(|a|+|b|) .
$$

We have by elementary calculus that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{4(n+1)}=1
$$

so $|a+b| \leq|a|+|b|$. (The "elementary calculus": We instead prove that $\sqrt[n]{n} \rightarrow 1$, since the argument is the same and the notation is simpler. First, for any $n \geq 1$ we have $\sqrt[n]{n} \geq 1$, since upon taking $n$th powers this is equivalent to $n \geq 1^{n}$, which is true by hypothesis. Second, suppose there is an $\varepsilon>0$ such that $\sqrt[n]{n} \geq 1+\varepsilon$ for all $n \geq 1$. Then taking logs of boths sides we see that $\frac{1}{n} \log (n) \geq \log (1+\varepsilon)>0$. But $\log (n) / n \rightarrow 0$, so there is no such $\varepsilon$. Thus $\sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$.)

Note that Axioms (1), (2) and Equation (1.1) imply Axiom (3) with $C=2$. We take Axiom (3) instead of Equation (1.1) for the technical reason that we will want to call the square of the absolute value of the complex numbers a valuation.

Lemma 1.4. Suppose $a, b \in K$, and $|\mid$ is a valuation on $K$ with $C \leq 2$. Then

$$
||a|-|b|| \leq|a-b| .
$$

(Here the big absolute value on the outside of the left-hand side of the inequality is the usual absolute value on real numbers, but the other absolute values are a valuation on an arbitrary field $K$.)

Proof. We have

$$
|a|=|b+(a-b)| \leq|b|+|a-b|,
$$

so $|a|-|b| \leq|a-b|$. The same argument with $a$ and $b$ swapped implies that $|b|-|a| \leq|a-b|$, which proves the lemma.

## 2 Types of Valuations

We define two important properties of valuations, both of which apply to equivalence classes of valuations (i.e., the property holds for \| \| if and only if it holds for a valuation equivalent to $\|\|$.

Definition 2.1 (Discrete). A valuation $|\mid$ is discrete if there is a $\delta>0$ such that for any $a \in K$

$$
1-\delta<|a|<1+\delta \Longrightarrow|a|=1
$$

Thus the absolute values are bounded away from 1.
To say that || is discrete is the same as saying that the set

$$
G=\{\log |a|: a \in K, a \neq 0\} \subset \mathbf{R}
$$

forms a discrete subgroup of the reals under addition (because the elements of the group $G$ are bounded away from 0 ).

Proposition 2.2. A nonzero discrete subgroup $G$ of $\mathbf{R}$ is free on one generator.
Proof. Since $G$ is discrete there is a positive $m \in G$ such that for any positive $x \in G$ we have $m \leq x$. Suppose $x \in G$ is an arbitrary positive element. By subtracting off integer multiples of $m$, we find that there is a unique $n$ such that

$$
0 \leq x-n m<m .
$$

Since $x-n m \in G$ and $0<x-n m<m$, it follows that $x-n m=0$, so $x$ is a multiple of $m$.

By Proposition 2.2, the set of $\log |a|$ for nonzero $a \in K$ is free on one generator, so there is a $c<1$ such that $|a|$, for $a \neq 0$, runs precisely through the set

$$
c^{\mathbf{Z}}=\left\{c^{m}: m \in \mathbf{Z}\right\}
$$

(Note: we can replace $c$ by $c^{-1}$ to see that we can assume that $c<1$ ).
Definition 2.3 (Order). If $|a|=c^{m}$, we call $m=\operatorname{ord}(a)$ the order of $a$.
Axiom (2) of valuations translates into

$$
\operatorname{ord}(a b)=\operatorname{ord}(a)+\operatorname{ord}(b) .
$$

Definition 2.4 (Non-archimedean). A valuation || is non-archimedean if we can take $C=1$ in Axiom (3), i.e., if

$$
\begin{equation*}
|a+b| \leq \max \{|a|,|b|\} . \tag{2.1}
\end{equation*}
$$

If || is not non-archimedean then it is archimedean.

Note that if we can take $C=1$ for \| then we can take $C=1$ for any valuation equivalent to $\|$. To see that (2.1) is equivalent to Axiom (3) with $C=1$, suppose $|b| \leq|a|$. Then $|b / a| \leq 1$, so Axiom (3) asserts that $|1+b / a| \leq 1$, which implies that $|a+b| \leq|a|=\max \{|a|,|b|\}$, and conversely.

We note at once the following consequence:
Lemma 2.5. Suppose $|\mid$ is a non-archimedean valuation. If $a, b \in K$ with $| b|<|a|$, then $|a+b|=|a|$.

Proof. Note that $|a+b| \leq \max \{|a|,|b|\}=|a|$, which is true even if $|b|=|a|$. Also,

$$
|a|=|(a+b)-b| \leq \max \{|a+b|,|b|\}=|a+b|,
$$

where for the last equality we have used that $|b|<|a|$ (if $\max \{|a+b|,|b|\}=|b|$, then $|a| \leq|b|$, a contradiction).

Definition 2.6 (Ring of Integers). Suppose \| | is a non-archimedean absolute value on a field $K$. Then

$$
\mathcal{O}=\{a \in K:|a| \leq 1\}
$$

is a ring called the ring of integers of $K$ with respect to $\mid$.
Lemma 2.7. Two non-archimedean valuations $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ are equivalent if and only if they give the same $\mathcal{O}$.

We will prove this modulo the claim (to be proved next time) that valuations are equivalent if (and only if) they induce the same topology.

Proof. Suppose suppose $\left.\left|\left.\right|_{1}\right.$ is equivalent to $|\right|_{2}$, so $\left|\left.\right|_{1}=| |_{2}^{c}\right.$, for some $c>0$. Then $|c|_{1} \leq 1$ if and only if $|c|_{2}^{c} \leq 1$, i.e., if $|c|_{2} \leq 1^{1 / c}=1$. Thus $\mathcal{O}_{1}=\mathcal{O}_{2}$.

Conversely, suppose $\mathcal{O}_{1}=\mathcal{O}_{2}$. Then $|a|_{1}<|b|_{1}$ if and only if $a / b \in \mathcal{O}_{1}$ and $b / a \notin \mathcal{O}_{1}$, so

$$
\begin{equation*}
|a|_{1}<|b|_{1} \Longleftrightarrow|a|_{2}<|b|_{2} . \tag{2.2}
\end{equation*}
$$

The topology induced by $\left|\left.\right|_{1}\right.$ has as basis of open neighborhoods the set of open balls

$$
B_{1}(z, r)=\left\{x \in K:|x-z|_{1}<r\right\},
$$

for $r>0$, and likewise for $\left.\left|\left.\right|_{2}\right.$. Since the absolute values $| b\right|_{1}$ get arbitrarily close to 0 , the set $\mathcal{U}$ of open balls $B_{1}\left(z,|b|_{1}\right)$ also forms a basis of the topology induced by $\left.\left|\left.\right|_{1}\right.$ (and similarly for $|\right|_{2}$ ). By (2.2) we have

$$
B_{1}\left(z,|b|_{1}\right)=B_{2}\left(z,|b|_{2}\right),
$$

so the two topologies both have $\mathcal{U}$ as a basis, hence are equal. That equal topologies implies equivalence of the corresponding valuations will be proved later.

The set of $a \in \mathcal{O}$ with $|a|<1$ forms an ideal $\mathfrak{p}$ in $\mathcal{O}$. The ideal $\mathfrak{p}$ is maximal, since if $a \in \mathcal{O}$ and $a \notin \mathfrak{p}$ then $|a|=1$, so $|1 / a|=1 /|a|=1$, hence $1 / a \in \mathcal{O}$, so $a$ is a unit.

Lemma 2.8. A non-archimedean valuation $\mid$ | is discrete if and only if $\mathfrak{p}$ is a principal ideal.

Proof. First suppose that $|\mid$ is discrete. Choose $\pi \in \mathfrak{p}$ with $| \pi \mid$ maximal, which we can do since

$$
S=\{\log |a|: a \in \mathfrak{p}\} \subset(-\infty, 1]
$$

so $S$ is discrete and bounded above. Suppose $a \in \mathfrak{p}$. Then

$$
\left|\frac{a}{\pi}\right|=\frac{|a|}{|\pi|} \leq 1
$$

so $a / \pi \in \mathcal{O}$. Thus

$$
a=\pi \cdot \frac{a}{\pi} \in \pi \mathcal{O}
$$

Conversely, suppose $\mathfrak{p}=(\pi)$ is principal. For any $a \in \mathfrak{p}$ we have $a=\pi b$ with $b \in \mathcal{O}$. Thus

$$
|a|=|\pi| \cdot|b| \leq|\pi|<1
$$

Thus $\{|a|:|a|<1\}$ is bounded away from 1, which is exactly the definition of discrete.

Example 2.9. For any prime $p$, define the $p$-adic valuation $\left|\left.\right|_{p}: \mathbf{Q} \rightarrow \mathbf{R}\right.$ as follows. Write a nonzero $\alpha \in K$ as $p^{n} \cdot \frac{a}{b}$, where $\operatorname{gcd}(a, p)=\operatorname{gcd}(b, p)=1$. Then

$$
\left|p^{n} \cdot \frac{a}{b}\right|_{p}:=p^{-n}=\left(\frac{1}{p}\right)^{n}
$$

This valuation is both discrete and non-archimedean. The ring $\mathcal{O}$ is the local ring

$$
\mathbf{Z}_{(p)}=\left\{\frac{a}{b} \in \mathbf{Q}: p \nmid b\right\}
$$

which has maximal ideal generated by $p$. Note that $\operatorname{ord}\left(p^{n} \cdot \frac{a}{b}\right)=p^{n}$.
We will need the following lemma later.
Lemma 2.10. A valuation $|\mid$ is non-archimedean if and only if $| n \mid \leq 1$ for all $n$ in the ring generated by 1 in $K$.

Note that we cannot identify the ring generated by 1 with $\mathbf{Z}$ in general, because $K$ might have characteristic $p>0$.

Proof. If $|\mid$ is non-archimedean, then $| 1 \mid \leq 1$, so by Axiom (3) with $a=1$, we have $|1+1| \leq 1$. By induction it follows that $|n| \leq 1$.

Conversely, suppose $|n| \leq 1$ for all integer multiples $n$ of 1 . This condition is also true if we replace $|\mid$ by any equivalent valuation, so replace $| \mid$ by one with $C \leq 2$, so that the triangle inequality holds. Suppose $a \in K$ with $|a| \leq 1$. Then by the triangle inequality,

$$
\begin{aligned}
|1+a|^{n} & =\left|(1+a)^{n}\right| \\
& \leq \sum_{j=0}^{n}\left|\binom{n}{j}\right||a| \\
& \leq 1+1+\cdots+1=n .
\end{aligned}
$$

Now take $n$th roots of both sides to get

$$
|1+a| \leq \sqrt[n]{n}
$$

and take the limit as $n \rightarrow \infty$ to see that $|1+a| \leq 1$. This proves that one can take $C=1$ in Axiom (3), hence that $\|$ is non-archimedean.

