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1 The Decomposition and Inertia Groups

Suppose K is a number field that is Galois over Q with group G = Gal(K/Q).
Fix a prime p ⊂ OK lying over p ∈ Z.

Definition 1.1 (Decomposition group). The decomposition group of p

is the subgroup
Dp = {σ ∈ G : σ(p) = p} ≤ G.

(Note: The decomposition group is called the “splitting group” in Swinnerton-
Dyer. Everybody I know calls it the decomposition group, so we will too.)
Recall that G acts on the set of primes p lying over p. Thus the decompo-
sition group is the stabilizer in G of p. The orbit-stabilizer theorem implies
that [G : Dp] equals the orbit of p, which we proved last time equals the
number g of primes lying over p, so [G : Dp] = g.

Lemma 1.2. The decomposition subgroups Dp corresponding to primes p

lying over a given p are all conjugate in G.

Proof. We have τ(σ(τ−1(p))) = p if and only if σ(τ−1(p)) = τ−1p. Thus
τστ−1 ∈ Dp if and only if σ ∈ Dτ−1p, so τ−1Dpτ = Dτ−1p. The lemma now
follows because, as we proved before, G acts transitively on the set of p lying
over p.

The decomposition group is extremely useful because it allows us to see
the extension K/Q as a tower of extensions, such that at each step in the
tower we understand well the splitting behavior of the primes lying over p.
Now might be a good time to glance ahead at Figure 1.2 on page 5.

We characterize the fixed field of D = Dp as follows.
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Proposition 1.3. The fixed field KD of D

KD = {a ∈ K : σ(a) = a for all σ ∈ D}

is the smallest subfield L ⊂ K such that p ∩ L does not split in K (i.e.,
g(K/L) = 1).

Proof. First suppose L = KD, and note that by Galois theory Gal(K/L) ∼=
D, and by the theorem we proved on Tuesday, the group D acts transitively
on the primes of K lying over p ∩ L. One of these primes is p, and D fixes
p by definition, so there is only one prime of K lying over p ∩ L, i.e., p ∩ L
does not split in K. Conversely, if L ⊂ K is such that p ∩ L does not
split in K, then Gal(K/L) fixes p (since it is the only prime over p ∩ L), so
Gal(K/L) ⊂ D, hence KD ⊂ L.

Thus p does not split in going from KD to K—it does some combination
of ramifying and staying inert. To fill in more of the picture, the following
proposition asserts that p splits completely and does not ramify in KD/Q.

Proposition 1.4. Let L = KD for our fixed prime p and Galois extension
K/Q. Let e = e(L/Q), f = f(L/Q), g = g(L/Q) be for L/Q and p. Then
e = f = 1 and g = [L : Q], i.e., p does not ramify and splits completely
in L. Also f(K/Q) = f(K/L) and e(K/Q) = e(K/L).

Proof. As mentioned right after Definition 1.1, the orbit-stabilizer theorem
implies that g(K/Q) = [G : D], and by Galois theory [G : D] = [L : Q].
Thus

e(K/L) · f(K/L) = [K : L] = [K : Q]/[L : Q]

=
e(K/Q) · f(K/Q) · g(K/Q)

[L : Q]
= e(K/Q) · f(K/Q).

Now e(K/L) ≤ e(K/Q) and f(K/L) ≤ f(K/Q), so we must have e(K/L) =
e(K/Q) and f(K/L) = f(K/Q). Since e(K/Q) = e(K/L) · e(L/Q) and
f(K/Q) = f(K/L) · f(L/Q), the proposition follows.

1.1 Galois groups of finite fields

Each σ ∈ D = Dp acts in a well-defined way on the finite field Fp = OK/p,
so we obtain a homomorphism

ϕ : Dp → Gal(Fp/Fp).
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We pause for a moment and derive a few basic properties of Gal(Fp/Fp),
which are in fact general properties of Galois groups for finite fields. Let
f = [Fp : Fp].

The group Aut(Fp/Fp) contains the element Frobp defined by

Frobp(x) = xp,

because (xy)p = xpyp and

(x + y)p = xp + pxp−1y + · · · + yp ≡ xp + yp (mod p).

By a homework problem, the group F∗

p is cyclic, so there is an element a ∈ F∗

p

of order pf − 1, and Fp = Fp(a). Then Frobn
p (a) = apn

= a if and only if

(pf − 1) | pn − 1 which is the case preciselywhen f | n, so the order of Frobp

is f . Since the order of the automorphism group of a field extension is at
most the degree of the extension, we conclude that Aut(Fp/Fp) is generated
by Frobp. Also, since Aut(Fp/Fp) has order equal to the degree, we conclude
that Fp/Fp is Galois, with group Gal(Fp/Fp) cyclic of order f generated by
Frobp. (Anther general fact: Up to isomorphism there is exactly one finite
field of each degree. Indeed, if there were two of degree f , then both could
be characterized as the set of roots in the compositum of xpf

−1, hence they
would be equal.)

1.2 The Exact Sequence

As mentioned above, there is a natural reduction homomorphism

ϕ : Dp → Gal(Fp/Fp).

Theorem 1.5. The homomorphism ϕ is surjective.

Proof. Let ã ∈ Fp be an element such that Fp = Fp(a). Lift ã to an algebraic
integer a ∈ OK , and let f =

∏

σ∈Dp
(x−σ(a)) ∈ KD[x] be the characteristic

polynomial of a over KD. Using Proposition 1.4 we see that f reduces to
the minimal polynomial f̃ =

∏

(x − ˜σ(a)) ∈ Fp[x] of ã (by the Proposition
the coefficients of f̃ are in Fp, and ã satisfies f̃ , and the degree of f̃ equals
the degree of the minimal polynomial of ã). The roots of f̃ are of the form
σ̃(a), and the element Frobp(a) is also a root of f̃ , so it is of the form ˜σ(a).
We conclude that the generator Frobp of Gal(Fp/Fp) is in the image of ϕ,
which proves the theorem.

Definition 1.6 (Inertia Group). The inertia group is the kernel Ip of
Dp → Gal(Fp/Fp).
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Combining everything so far, we find an exact sequence of groups

1 → Ip → Dp → Gal(Fp/Fp) → 1. (1.1)

The inertia group is a measure of how p ramifies in K.

Corollary 1.7. We have #Ip = e(p/p), where p is a prime of K over p.

Proof. The sequence (1.1) implies that #Ip = #Dp/f(K/Q). Applying
Propositions 1.3–1.4, we have

#Dp = [K : L] =
[K : Q]

g
=

efg

g
= ef.

Dividing both sides by f = f(K/Q) proves the corollary.

We have the following characterization of Ip.

Proposition 1.8. Let K/Q be a Galois extension with group G, let p be a
prime lying over a prime p. Then

Ip = {σ ∈ G : σ(a) = a (mod p) for all a ∈ OK}.

Proof. By definition Ip = {σ ∈ Dp : σ(a) = a (mod p) for all a ∈ OK},
so it suffices to show that if σ 6∈ Dp, then there exists a ∈ OK such that
σ(a) = a (mod p). If σ 6∈ Dp, we have σ−1(p) 6= p, so since both are
maximal ideals, there exists a ∈ p with a 6∈ σ−1(p), i.e., σ(a) 6∈ p. Thus
σ(a) 6≡ a (mod p).

Figure 1.2 is a picture of the splitting behavior of a prime p ∈ Z.

2 Frobenius Elements

Suppose that K/Q is a finite Galois extension with group G and p is a prime
such that e = 1 (i.e., an unramified prime). Then I = Ip = 1 for any p | p, so
the map ϕ of Section 1.2 is a canonical isomorphism Dp

∼= Gal(Fp/Fp). By
Section 1.1, the group Gal(Fp/Fp) is cyclic with canonical generator Frobp.
The Frobenius element corresponding to p is Frobp ∈ Dp. It is the unique
element of G such that for all a ∈ OK we have

Frobp(a) ≡ ap (mod p).

(To see this argue as in the proof of Proposition 1.8.) Just as the primes p

and decomposition groups D are all conjugate, the Frobenius elements over
a given prime are conjugate.

4



Figure 1.1: The Splitting of Behavior of a Prime in a Galois Extension
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Proposition 2.1. For each σ ∈ G, we have

Frobσp = σ Frobp σ−1.

In particular, the Frobenius elements lying over a given prime are all con-
jugate.

Proof. Fix σ ∈ G. For any a ∈ OK we have Frobp(σ
−1(a)) − σ−1(a) ∈ p.

Multiply by σ we see that σ Frobp(σ
−1(a)) − a ∈ σp, which proves the

proposition.

Thus the conjugacy class of Frobp in G is a well defined function of p. For
example, if G is abelian, then Frobp does not depend on the choice of p lying

over p and we obtain a well defined symbol
(

K/Q
p

)

= Frobp ∈ G called the

Artin symbol. It extends to a map from the free abelian group on unramified
primes to the group G (the fractional ideals of Z). Class field theory (for
Q) sets up a natural bijection between abelian Galois extensions of Q and
certain maps from certain subgroups of the group of fractional ideals for Z.
We have just described one direction of this bijection, which associates to
an abelian extension the Artin symbol (which induces a homomorphism).
The Kronecker-Weber theorem asserts that the abelian extensions of Q are
exactly the subfields of the fields Q(ζn), as n varies over all positive integers.
By Galois theory there is a correspondence between the subfields of Q(ζn)
(which has Galois group (Z/nZ)∗) and the subgroups of (Z/nZ)∗. Giving
an abelian extension of Q is exactly the same as giving an integer n and
a subgroup of (Z/nZ)∗. Even more importantly, the reciprocity map p 7→
(

Q(ζn)/Q
p

)

is simply p 7→ p ∈ (Z/nZ)∗. This is a nice generalization of

quadratic reciprocity: for Q(ζn), the efg for a prime p depends in a simple
way on nothing but p mod n.

3 Galois Representations and a Conjecture of Artin

The Galois group Gal(Q/Q) is an object of central importance in number
theory, and I’ve often heard that in some sense number theory is the study
of this group. A good way to study a group is to study how it acts on various
objects, that is, to study its representations.

Endow Gal(Q/Q) with the topology which has as a basis of open neigh-
borhoods of the origin the subgroups Gal(Q/K), where K varies over finite
Galois extensions of Q. (Note: This is not the topology got by taking as a
basis of open neighborhoods the collection of finite-index normal subgroups
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of Gal(Q/Q).) Fix a positive integer n and let GLn(C) be the group of
n × n invertible matrices over C with the discrete topology.

Definition 3.1. A complex n-dimensional representation of Gal(Q/Q) is a
continuous homomorphism

ρ : Gal(Q/Q) → GLn(C).

For ρ to be continuous means that there is a finite Galois extension K/Q
such that ρ factors through Gal(K/Q):

Gal(Q/Q)
ρ

//

''NNNNNNNNNNN
GLn(C)

Gal(K/Q)

ρ′

88qqqqqqqqqqq

For example, one could take K to be the fixed field of ker(ρ). (Note that
continous implies that the image of ρ is finite, but using Zorn’s lemma one
can show that there are homomorphisms Gal(Q/Q) → {±1} with finite
image that are not continuous, since they do not factor through the Galois
group of any finite Galois extension.)

Fix a Galois representation ρ and a finite Galois extension K such that ρ
factors through Gal(K/Q). For each prime p ∈ Z that is not ramified in K,
there is an element Frobp ∈ Gal(K/Q) that is well-defined up to conjugation
by elements of Gal(K/Q). This means that ρ′(Frobp) ∈ GLn(C) is well-
defined up to conjugation. Thus the characteristic polynomial Fp ∈ C[x] is
a well-defined invariant of p and ρ. Let Rp(x) = xdeg(Fp) · Fp(1/x) be the
polynomial obtain by reversing the order of the coefficients of Fp. Following
E. Artin, let n = [K : Q] and set

L(ρ, s) =
∏

p unramified

1

Rp(p−s)
.

We view. L(ρ, s) as a function of a single complex variable s. One can
prove that L(ρ, s) is holomorphic on some right half plane, and extends to
a meromorphic function on all C.

Conjecture 3.2 (Artin). The L-series of any continuous representation
Gal(Q/Q) → GLn(C) is an entire function on all C, except possibly at 1.

This conjecture asserts that there is a way to analytically continue L(ρ, s)
to the whole complex plane, except possibly at 1. The simple pole at s = 1
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corresponds to the trivial representation (the Riemann zeta function), and
if n ≥ 2 and ρ is irreducible, then the conjecture is that ρ extends to a
holomorphic function on all C.

The conjecture follows from class field theory for Q when n = 1. When
n = 2 and the image of ρ in PGL2(C) is a solvable group, the conjecture is
known, and is a deep theorem of Langlands and others (see Base Change for
GL2). When n = 2 and the projective image is not solvable, the only possi-
bility is that the projective image is isomorphic to the alternating group A5.
Because A5 is the symmetric group of the icosahedron, these representations
are called icosahedral. In this case Joe Buhler’s Harvard Ph.D. thesis gave
the first example, there is a whole book (Springer Lecture Notes 1585, by
Frey, Kiming, Merel, et al.), which proves Artin’s conjecture for 7 icosahe-
dral representation (none of which are twists of each other). Kevin Buzzard
and I (Stein) proved the conjecture for 8 more examples. Subsequently,
Richard Taylor, Kevin Buzzard, and Mark Dickinson proved the conjecture
for an infinite class of icosahedral Galois representations (disjoint from the
examples). The general problem for n = 2 is still open, but perhaps Taylor
and others are still making progress toward it.
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