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1 Galois Extensions

Suppose K ⊂ C is a number field. Then K is Galois if every field homomorphism
K → C has image K, or equivalently, # Aut(K) = [K : Q]. More generally, we
have the following definition.

Definition 1.1 (Galois). An extension K/L of number fields is Galois if # Aut(K/L) =
[K : L], where Aut(K/L) is the group of automorphisms of K that fix L. We write
Gal(K/L) = Aut(K/L).

For example, Q is Galois (over itself), any quadratic extension K/L is Galois,
since it is of the form L(

√
a), for some a ∈ L, and the nontrivial embedding

is induced by
√

a 7→ −√
a, so there is always one nontrivial automorphism. If

f ∈ L[x] is an irreducible cubic polynomial, and a is a root of f , then one proves
in a course in Galois theory that L(a) is Galois over L if and only if the discriminant
of f is a perfect square in L. Random number fields of degree bigger than 2 are
rarely Galois (I will not justify this claim further in this course).

If K/Q is a number field, then the Galois closure Kgc of K is the field generated
by all images of K under all embeddings in C (more generally, if K/L is an
extension, the Galois closure of K over L is the field generated by images of
embeddings K → C that are the identity map on L). If K = Q(a), then Kgc is
generated by each of the conjugates of a, and is hence Galois over Q, since the
image under an embedding of any polynomial in the conjugates of a is again a
polynomial in conjugates of a.

How much bigger can the degree of Kgc be as compared to the degree of
K = Q(a)? There is a natural embedding of Gal(Kgc/Q) into the group of
permutations of the conjugates of a. If there are n conjugates of a, then this is an
embedding Gal(Kgc/Q) ↪→ Sn, where Sn is the symmetric group on n symbols,
which has order n!. Thus the degree of the Kgc over Q is a divisor of n!. Also
the Galois group is a transitive subgroup of Sn, which constrains the possibilities
further. When n = 2, we recover the fact that quadratic extensions are Galois.
When n = 3, we see that the Galois closure of a cubic extension is either the cubic
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extension or a quadratic extension of the cubic extension. It turns out that that
Galois closure of a cubic extension is obtained by adjoining the square root of the
discriminant. For an extension K of degree 5, it is “frequently” the case that the
Galois closure has degree 120, and in fact it is a difficult and interesting problem to
find examples of degree 5 extension in which the Galois closure has degree smaller
than 120 (according to MAGMA: the only possibilities for the order of a transitive
proper subgroup of S5 are 5, 10, 20, and 60; there are five transitive subgroups of
S5 out of the total of 19 subgroups of S5).

Let n be a positive integer. Consider the field K = Q(ζn), where ζn = e2πi/n

is a primitive nth root of unity. If σ : K → C is an embedding, then σ(ζn) is also
an nth root of unity, and the group of nth roots of unity is cyclic, so σ(ζn) = ζm

n

for some m which is invertible modulo n. Thus K is Galois and Gal(K/Q) ↪→
(Z/nZ)∗. However, [K : Q] = n, so this map is an isomorphism. (Side note: Tak-
ing a p-adic limit and using the maps Gal(Q/Q) → Gal(Q(ζpr)/Q), we obtain a
homomorphism Gal(Q/Q) → Z∗

p, which is called the p-adic cyclotomic character.)
Compositums of Galois extensions are Galois. For example, the biquadratic

field K = Q(
√

5,
√
−1) is a Galois extension of Q of degree 4.

Fix a number field K that is Galois over a subfield L. Then the Galois group
G = Gal(K/L) acts on many of the object that we have associated to K, including:

• the integers OK ,

• the units UK ,

• the group of nonzero fractional ideals of OK ,

• the class group Cl(K), and

• the set Sp of prime ideals P lying over a given prime p of OL.

In the next section we will be concerned with the action of Gal(K/L) on Sp, though
actions on each of the other objects, especially Cl(K), will be of further interest.

2 Decomposition of Primes

Fix a prime p ⊂ OK and write pOK = Pe1

1 · · ·Peg
g , so Sp = {P1, . . . , Pg}.

Definition 2.1 (Residue class degree). Suppose P is a prime of OK lying over
p. Then the residue class degree of P is

fP/p = [OK/P : OL/p],

i.e., the degree of the extension of residue class fields.
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If M/K/L is a tower of field extensions and q is a prime of M over P, then

fq/p = [OM/q : OL/p] = [OM/q : OK/P] · [OK/P : OL/p] = fq/P · fP/p,

so the residue class degree is multiplicative in towers.
Note that if σ ∈ Gal(K/L) and P ∈ Sp, then σ induces an isomorphism of

finite fields OK/P → OK/σ(P) that fixes the common subfield OL/p. Thus the
residue class degrees of P and σ(P) are the same. In fact, much more is true.

Theorem 2.2. Suppose K/L is a Galois extension of number fields, and let p be

a prime of OL. Write pOK =
∏g

i=1 P
ei

i , and let fi = fPi/p. Then G = Gal(K/L)
acts transitively on the set Sp of primes Pi,

e1 = · · · = eg, f1 = · · · = fg,

and efg = [K : L], where e is the common value of the ei and f is the common

value of the fi.

Proof. For simplicity, we will give the proof only in the case L = Q, but the proof
works in general. Suppose p ∈ Z and pOK = pe1

1 · · · peg
g , and S = {p1, . . . , pg}. We

will first prove that G acts transitively on S. Let p = pi for some i. Recall that we
proved long ago, using the Chinese Remainder Theorem, that there exists a ∈ p

such that (a)/p is an integral ideal that is coprime to pOK . The product

I =
∏

σ∈G

σ((a)/p) =
∏

σ∈G

(σ(a))OK

σ(p)
=

(NormK/Q(a))OK
∏

σ∈G

σ(p)
(2.1)

is a nonzero integral OK ideal since it is a product of nonzero integral OK ideals.
Since a ∈ p we have that NormK/Q(a) ∈ p ∩ Z = pZ. Thus the numerator of the
rightmost expression in (2.1) is divisible by pOK . Also, because (a)/p is coprime
to pOK , each σ((a)/p) is coprime to pOK as well. Thus I is coprime to pOK .
Thus the denominator of the rightmost expression in (2.1) must also be divisibly
by pOK in order to cancel the pOK in the numerator. Thus for any i we have

g
∏

j=1

p
ej

j = pOK

∣

∣

∣

∏

σ∈G

σ(pi),

which in particular implies that G acts transitively on the pi.
Choose some j and suppose that k 6= j is another index. Because G acts tran-

sitively, there exists σ ∈ G such that σ(pk) = pj . Applying σ to the factorization
pOK =

∏g
i=1 p

ei

i , we see that

g
∏

i=1

pei

i =

g
∏

i=1

σ(pi)
ei .
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Taking ordpj
on both sides we get ej = ek. Thus e1 = e2 = · · · = eg.

As was mentioned right before the statement of the theorem, for any σ ∈ G
we have OK/pi

∼= OK/σ(pi), so by transitivity f1 = f2 = · · · = fg. Since OK is a
lattice in K, we have

[K : Q] = dimZ OK = dimFp
OK/pOK

= dimFp

(

g
⊕

i=1

OK/pei

i

)

=

g
∑

i=1

NormK/Q(pei

i ) =

g
∑

i=1

eifi = efg,

which completes the proof.

The rest of this section illustrates the theorem for quadratic fields and a cubic
field and its Galois closure.

2.1 Quadratic Extensions

Suppose K/Q is a quadratic field. Then K is Galois, so for each prime p ∈ Z we
have 2 = efg. There are exactly three possibilties:

• Ramified: e = 2, f = g = 1: The prime p ramifies in OK , so pOK =
p2. There are only finitely many such primes, since if f(x) is the minimal
polynomial of a generator for OK , then p ramifies if and only if f(x) has
a multiple root modulo p. However, f(x) has a multiple root modulo p if
and only if p divides the discriminant of f(x), which is nonzero because f(x)
is irreducible over Z. (This argument shows there are only finitely many
ramified primes in any number field. In fact, we will later show that the
ramified primes are exactly the ones that divide the discriminant.)

• Inert: e = 1, f = 2, g = 1: The prime p is inert in OK , so pOK = p

is prime. This happens 50% of the time, which is suggested by quadratic
reciprocity (but not proved this way), as we will see illustrated below for a
particular example.

• Split: e = f = 1, g = 2: The prime p splits in OK , in the sense that
pOK = p1p2 with p1 6= p2. This happens the other 50% of the time.

Suppose, in particular, that K = Q(
√

5), so OK = Z[γ], where γ = (1 +
√

5)/2.
Then p = 5 is ramified, since pOK = (

√
5)2. More generally, the order Z[

√
5] has

index 2 in OK , so for any prime p 6= 2 we can determine the factorization of p in
OK by finding the factorization of the polynomial x2 −5 ∈ Fp[x]. The polynomial
x2 − 5 splits as a product of two distinct factors in Fp[x] if and only if e = f = 1
and g = 2. For p 6= 2, 5 this is the case if and only if 5 is a square in Fp, i.e., if
(

5
p

)

= 1, where
(

5
p

)

is +1 if 5 is a square mod p and −1 if 5 is not. By quadratic
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reciprocity,

(

5

p

)

= (−1)
5−1

2
·
p−1

2 ·
(p

5

)

=
(p

5

)

=

{

+1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5).

Thus whether p splits or is inert in OK is determined by the residue class of p
modulo 5.

2.2 The Cube Roots of Two

Suppose K/Q is not Galois. Then ei, fi, and g are defined for each prime p ∈ Z,
but we need not have e1 = · · · = eg or f1 = · · · = fg. We do still have that
∑g

i=1 eifi = n, by the Chinese Remainder Theorem.
For example, let K = Q( 3

√
2). We know that OK = Z[ 3

√
2]. Thus 2OK =

( 3
√

2)3, so for 2 we have e = 3 and f = g = 1. To factor 3OK , we note that
working modulo 3 we have

x3 − 2 = (x − 2)(x2 + 2x + 1) = (x + 1)(x + 1)2 = (x + 1)3 ∈ F3[x],

so
3OK = (3,

3
√

2 + 1)3.

Thus e1 = 3, f1 = 1, and g = 1. Next, working modulo 5 we have

x3 − 2 = (x + 2)(x2 + 3x + 4) ∈ F5[x],

and the quadratic factor is irreducible. Thus

5OK = (5,
3
√

2 + 2) · (5, 3
√

2
2
+ 3

3
√

2 + 4).

Thus here e1 = e2 = 1, f1 = 1, f2 = 2, and g = 2.

3 The Decomposition and Inertia Groups

Fix a finite Galois extension K/Q with Galois group G = Gal(K/Q). Let p ⊂ OK

be a prime lying over a prime p ∈ Z.

Definition 3.1 (Decomposition Group). The Decomposition group of p is

Dp = {σ ∈ G : σ(p) = p} ⊂ G.

Remark 3.2. Note that Dp is called the “splitting group” in [Swinnerton-Dyer],
but everybody I know now calls it the decomposition group, so that is what we’ll
call it.
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Let Fp = OK/p denote the residue class field of p. In this section we will prove
that there is a natural exact sequence

1 → Ip → Dp → Gal(Fp/Fp) → 1,

where Ip is the inertia subgroup of Dp, and #Ip = e. The most interesting part of
the proof is showing that the natural map Dp → Gal(Fp/Fp) is surjective.

We will also discuss the structure of Dp and introduce Frobenius elements,
which play a crucial roll in understanding Galois representations.
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