
Math 129: Algebraic Number Theory

Lecture 11: Units

William Stein

Thursday, March 11, 2004

Questions:

1. What do you want to do your projects on? Discuss.

2. Is every ideal in an order necessarily generated by at most two elements?

1 Finishing the proof of Dirichlet’s Unit Theorem

We begin by finishing Dirichlet’s proof that the group of units UK of OK is isomorphic
to Zr+s−1 ⊕ Z/mZ, where r is the number of real embeddings, s is half the number
of complex embeddings, and m is the number of roots of unity in K. Recall that we
defined a map ϕ : UK → Rr+s by

ϕ(x) = (log |σ1(x)|, . . . , log |σr+s(x)|).

Without much trouble, we proved that the kernel of ϕ if finite and the image ϕ
is discrete, and near the end of Lecture 10 we were finishing the proof that the
image of ϕ spans the subspace H of elements of Rr+s that are orthogonal to v =
(1, . . . , 1, 2, . . . , 2), where r of the entries are 1’s and s of them are 2’s. The somewhat
indirect route we followed was to suppose

z 6∈ H⊥ = Span(v),

i.e., that z is not a multiple of v, and prove that z is not orthogonal to some element
of ϕ(UK). Writing W = Span(ϕ(UK)), this would show that W⊥ ⊂ H⊥, so H ⊂ W .
We ran into two problems: (1) we ran out of time, and (2) the notes contained
an incomplete argument that a quantity s = s(c1, . . . , cr+s) can be chosen to be
arbitrarily large. Today we will finish going through a complete proof, then compute
many examples of unit groups using MAGMA.

Recall that f : K∗ → R was defined by

f(x) = z1 log |σ1(x)| + · · · + zr+s log |σr+s(x)| = z • ϕ(x) (dot product),
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and our goal is to show that there is a u ∈ UK such that f(u) 6= 0.
Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK

such f(u) 6= 0. Recall that we used Blichfeld’s lemma to find an a ∈ OK such that
1 ≤ |NormK/Q(a)| ≤ A, and

ci

|σi(a)| ≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s. (1.1)

Let b1, . . . , bm be representative generators for the finitely many nonzero principal
ideals of OK of norm at most A = AK =

√

|dK | ·
(

2

π

)s
. Modify the bi to have the

property that |f(bi)| is minimal among generators of (bi) (this is possible because
ideals are discrete). Note that the set {|f(bi)| : i = 1, . . . ,m} depends only on A.
Since |NormK/Q(a)| ≤ A, we have (a) = (bj), for some j, so there is a unit u ∈ OK

such that a = ubj.
Let

s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s) ∈ R.

Lemma 1.1. We have

|f(u) − s| ≤ B = max
i

(|f(bi)|) + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

,

and B depends only on K and our fixed choice of z ∈ H⊥.

Proof. By properties of logarithms, f(u) = f(a/bj) = f(a)− f(bj). We next use the
triangle inequality |a + b| ≤ |a| + |b| in various ways, properties of logarithms, and
the bounds (1.1) in the following computation:

|f(u) − s| = |f(a) − f(bj) − s|
≤ |f(bj)| + |s − f(a)|
= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|

= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · + 1

2
· zr+s log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·
(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|
)

.

The inequality of the lemma now follows. That B only depends on K and our choice
of z follows from the formula for A and how we chose the bi.

The amazing thing about Lemma 1.1 is that the bound B on the right hand side
does not depend on the ci. Suppose we could somehow cleverly choose the positive
real numbers ci in such a way that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A and |s(c1, . . . , cr+s)| > B.
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Then the facts that |f(u)−s| ≤ B and |s| > B would together imply that |f(u)| > 0
(since f(u) is closer to s than s is to 0), which is exactly what we aimed to prove.
We finish the proof by showing that it is possible to choose such ci. Note that if we
change the ci, then a could change, hence the j such that a/bj is a unit could change,
but the bj don’t change, just the subscript j. Also note that if r + s = 1, then we
are trying to prove that ϕ(UK) is a lattice in R0 = Rr+s−1, which is automatically
true, so we may assume that r + s > 1.

Lemma 1.2. Assume r + s > 1. Then there is a choice of c1, . . . , cr+s ∈ R>0 such

that

|z1 log(c1) + · · · + zr+s log(cr+s)| > B.

Proof. It is easier if we write

z1 log(c1) + · · · + zr+s log(cr+s) =

z1 log(c1) + · · · + zr log(cr) +
1

2
· zr+1 log(c2

r+1) + · · · + 1

2
· zr+s log(c2

r+s)

= w1 log(d1) + · · · + wr log(dr) + wr+1 log(dr+1) + · · · + ·wr+s log(dr+s),

where wi = zi and di = ci for i ≤ r, and wi = 1

2
zi and di = c2

i for r < i ≤ s,
The condition that z 6∈ H⊥ is that the wi are not all the same, and in our new

coordinates the lemma is equivalent to showing that |∑r+s
i=1

wi log(di)| > B, subject
to the condition that

∏r+s
i=1

di = A. Order the wi so that w1 6= 0. By hypothesis there
exists a wj such that wj 6= w1, and again re-ordering we may assume that j = 2. Set
d3 = · · · = dr+s = 1. Then d1d2 = A and log(1) = 0, so

∣

∣

∣

∣

∣

r+s
∑

i=1

wi log(di)

∣

∣

∣

∣

∣

= |w1 log(d1) + w2 log(d2)|

= |w1 log(d1) + w2 log(A/d1)|
= |(w1 − w2) log(d1) + w2 log(A)|

Since w1 6= w2, we have |(w1 − w2) log(d1) + w2 log(A)| → ∞ as d1 → ∞.

2 Some Examples of Units in Number Fields

The classical Pell’s equation is, given square-free d > 0, to find all positive integer
solutions (x, y) to the equation x2 − dy2 = 1. Note that if x + y

√
d ∈ Q(

√
d), then

Norm(x + y
√

d) = (x + y
√

d)(x − y
√

d) = x2 − dy2.

The solutions to Pell’s equation thus form a finite-index subgroup of the group of
units in the ring of integers of Q(

√
d). Dirichlet’s unit theorem implies that for

any d the solutions to Pell’s equation form an infinite cyclic group, a fact that takes
substantial work to prove using only elementary number theory (for example, using
continued fractions).
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We first solve the Pell equation x2 − 5y2 = 1 by finding the units of a field using
MAGMA (we will likely discuss algorithms for computing unit groups later in the
course...).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2-5);

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z

Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.1);

-1

> u := K!phi(G.2); u;

1/2*(a + 1)

> u^2;

1/2*(a + 3)

> u^3;

a + 2

> Norm(u);

-1

> Norm(u^3);

-1

> Norm(u^6);

1

> fund := u^6;

> fund;

4*a + 9

> 9^2 - 5*4^2;

1

> fund^2;

72*a + 161

> fund^3;

1292*a + 2889

> fund^4;

23184*a + 51841

> fund^5;

416020*a + 930249

I think in practice for solving Pell’s equation it’s best to use the ideas in the
following paper: Lenstra, H. W., Jr., Solving the Pell equation. Notices Amer.
Math. Soc. 49 (2002), no. 2, 182–192. A review of this paper says: “This wonderful
article begins with history and some elementary facts and proceeds to greater and
greater depth about the existence of solutions to Pell equations and then later the
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algorithmic issues of finding those solutions. The cattle problem is discussed, as
are modern smooth number methods for solving Pell equations and the algorithmic
issues of representing very large solutions in a reasonable way.” You can get the
paper freely online from the Notices web page or the Math 129 web page.

The simplest solutions to Pell’s equation can be huge, even when d is quite small.
Read Lenstra’s paper for some awesome examples from antiquity.

K<a> := NumberField(x^2-NextPrime(10^7));

> G, phi := UnitGroup(K);

> K!phi(G.2);

1635802598803463282255922381210946254991426776931429155067472530\

003400641003657678728904388162492712664239981750303094365756\

106316392723776016806037958837914778176119741840754457028237\

899759459100428895693238165048098039*a +

517286692885814967470170672368346798303629034373575202975075\

605058714958080893991274427903448098643836512878351227856269\

086856679078304979321047765031073345259902622712059164969008\

6336036036403311756634562204182936222240930

The MAGMA Signature command returns the number of real and complex
conjugate embeddings of K into C. The command UnitGroup, which we used above,
returns the unit group UK as an abstract abelian group and a homomorphism UK →
OK . Note that we have to bang (!) into K to get the units as elements of K.

First we consider K = Q(i).

> R<x> := PolynomialRing(RationalField());

> K<a> := NumberField(x^2+1);

> Signature(K);

0 1 // r=0, s=1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*G.1 = 0

> K!phi(G.1);

-a

Next we consider K = Q( 3
√

2).

> K<a> := NumberField(x^3-2);

> Signature(K);

1 1

> G,phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z
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Defined on 2 generators

Relations:

2*G.1 = 0

> K!phi(G.2);

-a + 1

The Conjugates command returns the sequence (σ1(x), . . . , σr+2s(x)) of all embed-
dings of x ∈ K into C. The Logs command returns the sequence

(log(|σ1(x)|), . . . , log(|σr+s(x)|)).

Continuing the above example, we have

> Conjugates(K!phi(G.2));

[ -0.25992104989487316476721060727822835057025146470099999999995,

1.6299605249474365823836053036391141752851257323513843923104 -

1.09112363597172140356007261418980888132587333874018547370560*i,

1.6299605249474365823836053036391141752851257323513843923104 +

1.09112363597172140356007261418980888132587333874018547370560*i ]

> Logs(K!phi(G.2)); // image of infinite order unit -- generates a lattice

[ -1.34737734832938410091818789144565304628306227332099999999989\

, 0.6736886741646920504590939457228265231415311366603288999999 ]

> Logs(K!phi(G.1)); // image of -1

[ 0.E-57, 0.E-57 ]

Let’s try a field such that r + s − 1 = 2. First, one with r = 0 and s = 3:

> K<a> := NumberField(x^6+x+1);

> Signature(K);

0 3

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

a

> u2 := K!phi(G.3); u2;

-2*a^5 - a^3 + a^2 + a

> Logs(u1);

[ 0.11877157353322375762475480482285510811783185904379239999998,

0.048643909752673399635150940533329986148342128393119899999997,

-0.16741548328589715725990574535618509426617398743691229999999 ]

> Logs(u2);

[ 1.6502294567845884711894772749682228152154948421589999999997,
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-2.09638539134527779532491660083370951943382108902299999999997,

0.44615593456068932413543932586548670421832624686433469999994 ]

Notice that the log image of u1 is clearly not a real multiple of the log image of u2

(e.g., the scalar would have to be positive because of the first coefficient, but negative
because of the second). This illustrates the fact that the log images of u1 and u2

span a two-dimensional space.
Next we compute a field with r = 3 and s = 0. (A field with s = 0 is called

“totally real”.)

> K<a> := NumberField(x^3 + x^2 - 5*x - 1);

> Signature(K);

3 0

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/2 + Z + Z

Defined on 3 generators

Relations:

2*G.1 = 0

> u1 := K!phi(G.2); u1;

1/2*(a^2 + 2*a - 1)

> u2 := K!phi(G.3); u2;

a

> Logs(u1);

[ 1.16761574692758757159598251863681302946987760474899999999995,

-0.39284872458139826129179862583435951875841422643044369999996,

-0.7747670223461893103041838928024535107114633783181766999998 ]

> Logs(u2);

[ 0.6435429462288618773851817227686467257757954024463081999999,

-1.6402241503223171469101505551700850575583464226669999999999,

0.9966812040934552695249688324014383317825510202205498999998 ]

A family of fields with r = 0 (totally complex) is the cyclotomic fields Q(ζn).
The degree of Q(ζn) over Q is ϕ(n) and r = 0, so s = ϕ(n)/2 (assuming n > 2).

> K := CyclotomicField(11); K;

Cyclotomic Field of order 11 and degree 10

> G, phi := UnitGroup(K);

> G;

Abelian Group isomorphic to Z/22 + Z + Z + Z + Z

Defined on 5 generators

Relations:

22*G.1 = 0

> u := K!phi(G.2); u;

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +
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zeta_11^3 + zeta_11^2 + zeta_11 + 1

> Logs(u);

[ -1.25656632417872848745322215929976803991663080388899999999969,

0.6517968940331400079717923884685099182823284402303273999999,

-0.18533004655986214094922163920197221556431542171819269999999,

0.5202849820300749393306985734118507551388955065272236999998,

0.26981449467537568109995283662137958205972227885009159999993 ]

> K!phi(G.3);

zeta_11^9 + zeta_11^7 + zeta_11^6 + zeta_11^5 + zeta_11^4 +

zeta_11^3 + zeta_11^2 + zeta_11 + 1

> K!phi(G.4);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^3 + zeta_11^2 + zeta_11

> K!phi(G.5);

zeta_11^9 + zeta_11^8 + zeta_11^7 + zeta_11^6 + zeta_11^5 +

zeta_11^4 + zeta_11^2 + zeta_11 + 1

How far can we go computing unit groups of cyclotomic fields directly with
MAGMA?

> time G,phi := UnitGroup(CyclotomicField(13));

Time: 2.210

> time G,phi := UnitGroup(CyclotomicField(17));

Time: 8.600

> time G,phi := UnitGroup(CyclotomicField(23));

.... I waited over 10 minutes (usage of 300MB RAM) and gave up.

3 Preview

Next week will skip Section I.4 (pages 23–26 of the text) and jump into Section I.5
which is about extra structure in the case when K is Galois over Q; the results
are nicely algebraic, beautiful, and have interesting ramifications. We’ll learn about
Frobenius elements, the Artin symbol, decomposition groups, and how the Galois
group of K is related to Galois groups of residue class fields. These are the basic
structures needed to make any sense of representations of Galois groups, which is at
the heart of much of number theory.
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