
Math 129: Algebraic Number Theory

Lecture 10: Dirichlet’s Unit Theorem

William Stein

Tuesday, March 9, 2004

Announcement: Unfortunately, I’ll miss my office hours 2–3pm today, since I’ll
be flying to Baltimore to give a talk at Johns Hopkins University. However, you can
talk to me from 11:30–12:00 today, and 1:00–1:45 (I’ll be in my office then).

In this lecture we will prove the main structure theorem for the group of units of
the ring of integers of a number field. The answer is remarkably simple: if K has r
real and s complex embeddings, then

O∗
K ≈ Zr+s−1 ⊕ W,

where W is the finite cyclic group of roots of unity in K. Examples will follow on
Thursday (application: the solutions to Pell’s equation x2 − dy2 = 1, for d > 1
squarefree, form a free abelian group of rank 1).

1 The Group of Units

Definition 1.1 (Unit Group). The group of units UK associated to a number
field K is the group of elements of OK that have an inverse in OK .

Theorem 1.2 (Dirichlet). The group UK is the product of a finite cyclic group of

roots of unity with a free abelian group of rank r + s − 1, where r is the number of

real embeddings of K and s is the number of complex conjugate pairs of embeddings.

We prove the theorem by defining a map ϕ : UK → Rr+s, and showing that the
kernel of ϕ is finite and the image of ϕ is a lattice in a hyperplane in Rr+s. The
trickiest part of the proof is showing that the image of ϕ spans a hyperplane, and we
do this by a clever application of Blichfeldt’s lemma (that if S is closed, bounded,
symmetric, etc., and has volume at least 2n ·Vol(V/L), then S∩L contains a nonzero
element).

Remark 1.3. Theorem 1.2 is due to Dirichlet who lived 1805–1859. Thomas Hirst
described Dirichlet as follows:
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He is a rather tall, lanky-looking man, with moustache and beard about
to turn grey with a somewhat harsh voice and rather deaf. He was
unwashed, with his cup of coffee and cigar. One of his failings is forgetting
time, he pulls his watch out, finds it past three, and runs out without
even finishing the sentence.

Koch wrote that:

... important parts of mathematics were influenced by Dirichlet. His
proofs characteristically started with surprisingly simple observations,
followed by extremely sharp analysis of the remaining problem.

I think Koch’s observation nicely describes the proof we will give of Theorem 1.2.

The following proposition explains how to think about units in terms of the norm.

Proposition 1.4. An element a ∈ OK is a unit if and only if NormK/Q(a) = ±1.

Proof. Write Norm = NormK/Q. If a is a unit, then a−1 is also a unit, and 1 =
Norm(a) Norm(a−1). Since both Norm(a) and Norm(a−1) are integers, it follows
that Norm(a) = ±1. Conversely, if a ∈ OK and Norm(a) = ±1, then the equation
aa−1 = 1 = ±Norm(a) implies that a−1 = ±Norm(a)/a. But Norm(a) is the
product of the images of a in C by all embeddings of K into C, so Norm(a)/a is
also a product of images of a in C, hence a product of algebraic integers, hence an
algebraic integer. Thus a−1 ∈ OK , which proves that a is a unit.

Let r be the number of real and s the number of complex conjugate embeddings
of K into C, so n = [K : Q] = r + 2s. Define a map

ϕ : UK → Rr+s

by
ϕ(a) = (log |σ1(a)|, . . . , log |σr+s(a)|).

Lemma 1.5. The image of ϕ lies in the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s : x1 + · · · + xr + 2xr+1 + · · · + 2xr+s = 0}. (1.1)

Proof. If a ∈ UK , then by Proposition 1.4,

(

r
∏

i=1

|σi(a)|

)

·

(

s
∏

i=r+1

|σi(a)|2

)

= 1.

Taking logs of both sides proves the lemma.

Lemma 1.6. The kernel of ϕ is finite.
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Proof. We have

Ker(ϕ) ⊂ {a ∈ OK : |σi(a)| = 1 for all i = 1, . . . , r + 2s}

⊂ σ(OK) ∩ X,

where X is the bounded subset of Rr+2s of elements all of whose coordinates have
absolute value at most 1. Since σ(OK) is a lattice [ref?], the intersection σ(OK)∩X
is finite, so Ker(ϕ) is finite.

Lemma 1.7. The kernel of ϕ is a finite cyclic group.

Proof. It is a general fact that any finite subgroup of the multiplicative group of a
field is cyclic. [Homework.]

To prove Theorem 1.2, it suffices to proove that Im(ϕ) is a lattice in the hyper-
plane H from (1.1), which we view as a vector space of dimension r + s − 1.

Define an embedding
σ : K ↪→ Rn (1.2)

given by σ(x) = (σ1(x), . . . , σr+s(x)), where we view C ∼= R×R via a + bi 7→ (a, b).
Note that this is exactly the same as the embedding

x 7→
(

σ1(x), σ2(x), . . . , σr(x),

Re(σr+1(x)), . . . , Re(σr+s(x)), Im(σr+1(x)), . . . , Im(σr+s(x))
)

,

from before, except that we have re-ordered the last s imaginary components to be
next to their corresponding real parts.

Lemma 1.8. The image of ϕ is discrete in Rr+s.

Proof. Suppose X is any bounded subset of Rr+s. Then for any u ∈ Y = ϕ−1(X) the
coordinates of σ(u) are bounded in terms of X (since log is an increasing function).
Thus σ(Y ) is a bounded subset of Rn. Since σ(Y ) ⊂ σ(OK), and σ(OK) is a lattice
in Rn, it follows that σ(Y ) is finite. Since σ is injective, Y is finite, and ϕ has finite
kernel, so ϕ(UK) ∩ X is finite, which implies that ϕ(UK) is discrete.

To finish the proof of Theorem 1.2, we will show that the image of ϕ spans H.
Let W be the R-span of the image ϕ(UK), and note that W is a subspace of H. We
will show that W = H indirectly by showing that if v 6∈ H⊥, where ⊥ is with respect
to the dot product on Rr+s, then v 6∈ W⊥. This will show that W⊥ ⊂ H⊥, hence
that H ⊂ W , as required.

Thus suppose z = (z1, . . . , zr+s) 6∈ H⊥. Define a function f : K∗ → R by

f(x) = z1 log |σ1(x)| + · · · zr+s log |σr+s(x)|. (1.3)

To show that z 6∈ W⊥ we show that there exists some u ∈ UK with f(u) 6= 0.
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Let

A =
√

|dK | ·

(

2

π

)s

∈ R>0.

Choose any positive real numbers c1, . . . , cr+s ∈ R>0 such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Let

S = {(x1, . . . , xn) ∈ Rn :

|xi| ≤ ci for 1 ≤ i ≤ r,

|x2

i + x2

i+s| ≤ c2

i for r < i ≤ r + s} ⊂ Rn.

Then S is closed, bounded, convex, symmetric with respect to the origin, and of
dimension r + 2s, since S is a product of r intervals and s discs, each of which has
these properties. Viewing S as a product of intervals and discs, we see that the
volume of S is

Vol(S) =
r
∏

i=1

(2ci) ·
s
∏

i=1

(πc2

i ) = 2r · πs · A.

Recall Blichfeldt’s lemma that if L is a lattice and S is closed, bounded, etc.,
and has volume at least 2n · Vol(V/L), then S ∩ L contains a nonzero element. To
apply this lemma, we take L = σ(OK) ⊂ Rn, where σ is as in (1.2). We showed,
when proving finiteness of the class group, that Vol(Rn/L) = 2−s

√

|dK |. To check
the hypothesis to Blichfeld’s lemma, note that

Vol(S) = 2r+s
√

|dK | = 2n2−s
√

|dK | = 2n Vol(Rn/L).

Thus there exists a nonzero element a ∈ S ∩ σ(OK), i.e., a nonzero a ∈ OK such
that |σi(a)| ≤ ci for 1 ≤ i ≤ r + s. We then have

|NormK/Q(a)| =

∣

∣

∣

∣

∣

r+2s
∏

i=1

σi(a)

∣

∣

∣

∣

∣

=
r
∏

i=1

|σi(a)| ·
s
∏

i=r+1

|σi(a)|2

≤ c1 · · · cr · (cr+1 · · · cr+s)
2 = A.

Since a ∈ OK is nonzero, we also have

|NormK/Q(a)| ≥ 1.

Moreover, if for any i ≤ r, we have |σi(a)| < ci

A
, then

1 ≤ |NormK/Q(a)| < c1 · · ·
ci

A
· · · cr · (cr+1 · · · cr+s)

2 =
A

A
= 1,
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a contradiction, so |σi(a)| ≥ ci

A
for i = 1, . . . , r. Likewise, |σi(a)|2 ≥

c2
i

A
, for i =

r + 1, . . . , r + s. Rewriting this we have

ci

|σi(a)|
≤ A for i ≤ r and

(

ci

|σi(a)|

)2

≤ A for i = r + 1, . . . , r + s.

Our strategy is to use an appropriately chosen a to construct a unit u ∈ UK such
f(u) 6= 0. First, let b1, . . . , bm be representative generators for the finitely many
nonzero principal ideals of OK of norm at most A. Since |NormK/Q(a)| ≤ A, we
have (a) = (bj), for some j, so there is a unit u ∈ OK such that a = ubj.

Let
s = s(c1, . . . , cr+s) = z1 log(c1) + · · · + zr+s log(cr+s),

and recall f : K∗ → R defined in (1.3) above. We first show that

|f(u) − s| ≤ B = |f(bj)| + log(A) ·

(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|

)

. (1.4)

We have

|f(u) − s| = |f(a) − f(bj) − s|

≤ |f(bj)| + |s − f(a)|

= |f(bj)| + |z1(log(c1) − log(|σ1(a)|)) + · · · + zr+s(log(cr+s) − log(|σr+s(a)|))|

= |f(bj)| + |z1 · log(c1/|σ1(a)|) + · · · +
zr+s

2
· log((cr+s/|σr+s(a)|)2)|

≤ |f(bj)| + log(A) ·

(

r
∑

i=1

|zi| +
1

2
·

s
∑

i=r+1

|zi|

)

.

The amazing thing about (1.4) is that the bound B on the right hand side does
not depend on the ci. Suppose we can choose positive real numbers ci such that

c1 · · · cr · (cr+1 · · · cr+s)
2 = A

and s = s(c1, . . . , cr+s) is such that |s| > B. Then |f(u) − s| ≤ B would imply that
|f(u)| > 0, which is exactly what we aimed to prove. It is possible to choose such ci,
by proceeding as follows. If r + s = 1, then we are trying to prove that ϕ(UK) is a
lattice in R0 = Rr+s−1, which is automatically true, so assume r+s > 1. Then there
are at least two distinct ci. Let j be such that zj 6= 0 (which exists since z 6= 0).
Then |zj log(cj)| → ∞ as cj → ∞, so we choose cj very large and the other ci, for
i 6= j, in any way we want subject to the condition

r
∏

i=1,i6=j

ci ·
s
∏

i=r+1

c2

i =
A

cj

.

Since it is possible to choose the ci as needed, it is possible to find a unit u such that
f(u) > 0. We conclude that z 6∈ W⊥, so W⊥ ⊂ Z⊥, whence Z ⊂ W , which finishes
the proof Theorem 1.2.
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