Finding a rational point on the elliptic curve $y^2 = x^3 + 7823$

Mordell-Weil theorem

 The group of rational points on an elliptic curve over a number field is finitely generated

So E/Q is finitely generated

How to find the generators?

Mordell curve

• An elliptic curve of the form $y^2 = x^3 + D$

• Generators for $|D| \leq 10,000$:

http://diana.math.uni-sb.de/~simath/MORDELL

• All $|D| \le 10,000$ except for...

The Mordell-Weil generator

...except for D=7823

 Stoll, January 2002: found Mordell-Weil generator via 4-descents

Coordinates of generator:

```
x = \frac{2263582143321421502100209233517777}{11981673410095561^2}y = \frac{186398152584623305624837551485596770028144776655756}{11981673410095561^3}.
```

$y^2 = x^3 + 7823$

Points of finite order on 7823?

Nagell-Lutz: integer coordinates

Calculate discriminant

Check factors

7823: Points of finite order?

Answer: no!

 So Mordell-Weil generator has infinite order

7823: Points of infinite order...

• Kolyvagin, Gross, Zagier: L-series of E has simple zero at s = 1

So E(Q) is isomorphic to Z and E is of rank 1

 One rational point of infinite order generating the Mordell-Weil group

Descent: $... \rightarrow C \rightarrow D \rightarrow E$

Idea: associate other objects ("covering spaces") to E

 Points on these spaces correspond to points on E via polynomial mapping

Goal: find rational points on these spaces

Descents

- Descent via isogeny: "first descent"
- Isogeny?
- "2-isogenies": $E \to \overline{E} \to \overline{E} \cong E$
- The curves: $E: y^2 = x^3 + ax + b$

$$\overline{E}: y^2 = x^3 + \overline{a}x + \overline{b}, \quad \overline{a} = -2a, \quad \overline{b} = a^2 - 4b$$

$$\overline{\overline{E}}: y^2 = x^3 + \overline{a}x + \overline{b}, \quad \overline{a} = -2\overline{a}, \quad \overline{b} = \overline{a}^2 - 4\overline{b}$$

Descent via 2-isogeny (algorithm)

- Given an elliptic curve with point of order 2, transform it to the form $E: y^2 = x^3 + ax^2 + bx$, sending point of order 2 to (0,0)
- For each square-free divisor d_1 of D, look at the homogeneous space C_{d_1} : $N^2 = d_1 M^4 + a M^2 e^2 + \frac{D}{d_1} e^4$ and find integer points (M, N, e) which correspond to points $x = \frac{d_1 M^2}{e^2}$, $y = \frac{d_1 M N}{e^3}$
- \blacksquare Repeat with E
- Result: E(Q)/2E(Q)

2-descent

- If we can't find a rational point on some C_{d_1} , what went wrong?
 - (1) Either it has points, but they're too large to be found in the search
 - (2) Or has no rational points
- Carry out 2-descent to distinguish between two possibilities

Problem!

- But there's a fundamental problem with the descent via 2-isogeny for the 7823 curve
- $y^2 = x^3 + 7823$ is conspicuously lacking a point of order 2
- So what do we do if there's no point of order 2?
- Answer: general 2-descent

- lacksquare Determine the invariants (I, J)
- Find the quartics with the given I, J
- Test equivalence of quartics
- Find roots of quartics
- Local and global solubility
- Recover points on E

General 2-descent

 Basic idea is to associate to E a collection of 2covering homogeneous spaces

$$y^{2} = g(x) = ax^{4} + bx^{3} + cx^{2} + dx + e$$

a, b, c, d, e are in Q and are such that certain invariants I and J satisfy

$$I = 12ae - 3bd + c^2$$
, $J = 72ace + 9bcd - 27ad^2 - 27eb^2 - 2c^3$

 \blacksquare I and J are related to certain invariants of E,

$$I = \lambda^4 c_4, J = 2\lambda^6 c_6 \quad \text{for } \lambda \in \mathbb{Q}^*$$

lacksquare Determine the invariants (I, J)

```
with mwrank:
Enter curve: [0,0,0,0,7823]
Curve [0,0,0,0,7823]
Two (I,J) pairs
I=0, J=-211221
I = 0, J = -13518144
```

• Find the quartics with the given *I*, *J*

$$\frac{1}{3}\phi - \sqrt{\frac{4}{27}(\phi^2 - I)} \le a \le \frac{1}{3}\phi + \sqrt{\frac{4}{27}(\phi^2 - I)}$$
$$-2 \mid a \mid < b \le 2 \mid a \mid$$
$$\frac{9a^2 - 2a\phi + \frac{1}{3}(4I - \phi^2) + 3b^2}{8 \mid a \mid} \le c \cdot sign(a) \le \frac{4a\phi + 3b^2}{8 \mid a \mid}$$

$$e = (I + 3bd - c^2)/(12a)$$

d: substitute into original equation

Find the quartics with the given *I*, *J*

```
disc=-44614310841

Looking for quartics with I = 0, J = -211221

Looking for Type 3 quartics: Trying positive a from 1 up to 17 Trying negative a from -1 down to -11 Finished looking for Type 3 quartics.
```

Find the quartics with the given *I*, *J*

```
Looking for quartics with I = 0, J = -13518144 Looking for Type 3 quartics: Trying positive a from 1 up to 68 (30,-12,48,116,-18) (41,-16,-6,112,-11) Trying negative a from -1 down to -45 (-11,-20,408,1784,2072) (-18,-28,312,996,838) Finished looking for Type 3 quartics.
```

Test equivalence of quartics

equivalence relation: $g_1 \sim g_2$ if

$$g_2(x) = \mu^2 (\gamma x + \delta)^4 g_1(\frac{\alpha x + \beta}{\gamma x + \delta})$$
 for rational constants

```
(30,-12,48,116,-18) new (B) #1
(41,-16,-6,112,-11) equivalent to (B) #1
(-11,-20,408,1784,2072) equivalent to (B) #1
(-18,-28,312,996,838) equivalent to (B) #1
```

Our 2-covering space:

$$C: y^2 = -18x^4 + 116x^3 + 48x^2 - 12x + 30.$$

Local and global solubility?

```
mwrank: locally soluble
```

- Global solubility? Local doesn't imply global, so we have to search for points...
- Recovering points on E?

Local (-to-global) solubility

Local solubility?

- Given an equation:
 - Check solutions over Q_p for all p
 - Check solutions over R

Global solubility?

 Checking for a solution over Q if local solubility is known

 Local does not imply global ("failure of Hasse principle")

Failure of Hasse principle

The curve $C: 3x^3 + 4y^3 + 5z^3 = 0$ has nonisomorphic companions. This equation possesses nontrivial solutions over \mathbb{Q}_p for all prime numbers p and over \mathbb{R} , but it possesses no nontrivial solutions over \mathbb{Q} .

Examples, continued

Theorem 1. Selmer's curve $C: 3x^3 + 4y^3 + 5z^3 = 0$ has, counting itself, precisely five companions:

$$3x^{3} + 4y^{3} + 5z^{3} = 0,$$

$$12x^{3} + y^{3} + 5z^{3} = 0,$$

$$15x^{3} + 4y^{3} + z^{3} = 0,$$

$$3x^{3} + 20y^{3} + z^{3} = 0,$$

$$60x^{3} + y^{3} + z^{3} = 0.$$

Examples, continued

(2) All five equations on this list have nontrivial rational solutions over \mathbb{Q}_p for all prime numbers p and over \mathbb{R} . The first four equations on the list possess no nontrivial rational solutions. The fifth equation possesses a nontrivial rational solution (0, 1, -1), and this solution is unique up to scalar multiplication (cf. [Ca2, §18]). If we take this point as "origin" of the projective curve E defined by the equation

$$60x^3 + y^3 = z^3 = 0,$$

then E is an elliptic curve over \mathbb{Q} isomorphic to the jacobian of all five curves on the list.

Local-to-global article

 "On the Passage from Local to Global in Number Theory" (B. Mazur)

http://www.ams.org/bull/pre-1996-data/199329-1/mazur.pdf

Checking local solubility

Back to original problem: we have

$$y^{2} = g(x) = ax^{4} + bx^{3} + cx^{2} + dx + e$$

- We want to check solubility over p-adics and reals
- For reals, this is just solving a quartic
- For p-adics, situation is a little more complicated

P-adics?

```
(Subroutine for determining p-adic solubility)

SUBROUTINE Qp_soluble(a,b,c,d,e,p)

INPUT: a, b, c, d, e (integer coefficients of a quartic g(x))

p (a prime)

OUTPUT: TRUE/FALSE (solubility of y²=g(x) in Qp)

1. BEGIN

2. IF Zp_soluble(a,b,c,d,e,0,p,0) THEN RETURN TRUE FI;

3. IF Zp_soluble(e,d,c,b,a,0,p,1) THEN RETURN TRUE FI;

4. RETURN FALSE

5. END
```

P-adics, continued

```
(Recursive \mathbb{Z}_p-solubility subroutine)
SUBROUTINE Zp_soluble(a,b,c,d,e,x_k,p,k)
INPUT:
              a, b, c, d, e (integer coefficients of a quartic g(x))
                             (a prime)
              р
                            (an integer)
              x_k
                        (a non-negative integer)
              TRUE/FALSE (solubility of y^2 = g(x) in \mathbb{Z}_p, with x \equiv x \cdot k \pmod{p^k})
OUTPUT:
1. BEGIN
2. IF p=2
3. THEN code = lemma7(a,b,c,d,e,x_k,k)
4. ELSE code = lemma6(a,b,c,d,e,x,k,p,k)
5. FI;
6. IF code=+1 THEN RETURN TRUE FI;
7. IF code=-1 THEN RETURN FALSE FI;
8. FOR t = 0 TO p-1 DO
9. BEGIN
10.
         IF Zp_soluble(a,b,c,d,e,x_k+t*pk,p,k+1) THEN RETURN TRUE FI
11. END;
RETURN FALSE
13. END
```

P-adics, continued

```
SUBROUTINE lemma6(a,b,c,d,e,x,p,n)

1. BEGIN

2. gx = a*x^4+b*x^3+c*x^2+d*x+e;

3. IF p_adic_square(gx,p) THEN RETURN +1 FI;

4. gdx = 4*a*x^3+3*b*x^2+2*c*x+d;

5. l = ord(p,gx); m = ord(p,gdx);

6. IF (1 \ge m+n) AND (n > m) THEN RETURN +1 FI;

7. IF (1 \ge 2*n) AND (m \ge n) THEN RETURN 0 FI;

8. RETURN -1

9. END
```

P-adics, continued

```
(\mathbb{Z}_2 \ lifting \ subroutin \ e)
SUBROUTINE lemma7(a,b,c,d,e,x,n)
    BEGIN
    gx = a*x^4+b*x^3+c*x^2+d*x+e;
    IF p_adic_square(gx,2) THEN RETURN +1 FI;
4. gdx = 4*a*x^3+3*b*x^2+2*c*x+d;
5. l = ord(p,gx); m = ord(p,gdx);
gxodd = gx; WHILE even(gxodd) DO gxodd = gxodd/2;
7. gx odd = gx odd \pmod{4};
8. IF (1>m+n) AND (n>m) THEN RETURN +1 FI;
9. IF (n>m) AND (l=m+n-1) AND even(l) THEN RETURN +1 FI;
10. IF (n>m) AND (l=m+n-2) AND (gxodd=1) AND even(1) THEN RETURN +1 FI;
11. IF (m>n) AND (1>2*n) THEN RETURN 0 FI;
12. IF (m≥n) AND (1=2*n-2) AND (gxodd=1) THEN RETURN 0 FI;
13. RETURN -1
14. END
```

Global solubility?

- If locally soluble, then check global solubility
- Check up to a certain height on a homogeneous space
- If not sure about existence of a rational point, take another descent

Our 2-covering space:

$$C: y^2 = -18x^4 + 116x^3 + 48x^2 - 12x + 30.$$

Local and global solubility?

```
mwrank: locally soluble
```

- Global solubility? Local doesn't imply global, so we have to search for points...
- Recovering points on E?

4-descent

- 4-coverings: intersection of two quadric surfaces
- Represent these by matrices M_1 and M_2

$$M_1 = \begin{pmatrix} -22181252 & -12522843 & 485492211 & 2218020408 \\ -12522843 & 485492211 & 2218020408 & -2954387682 \\ 485492211 & 2218020408 & -2954387682 & -65148580179 \\ 2218020408 & -2954387682 & -65148580179 & -185865980697 \end{pmatrix}$$

$$M_2 = \begin{pmatrix} 383480 & 60588 & -9008739 & -37014651 \\ 60588 & -9008739 & -37014651 & 71170650 \\ -9008739 & -37014651 & 7117650 & 1173510018 \\ -37014651 & 71170650 & 1173510018 & 2915000865 \end{pmatrix}$$

Stoll

- Found matrices with smaller entries with same property
- Do this by making substitutions: elements with sums
- Swap matrices; repeat
- Apply generators of $SL_4(Z)$; if made smaller, repeat

Stoll

- Found matrices with smaller entries with same property
- Do this by making substitutions: elements with sums
- Swap matrices; repeat
- Apply generators of $SL_4(Z)$; if made smaller, repeat

4-covering, descent

Simultaneous equations:

$$x_1^2 + 4x_1x_2 - 2x_1x_3 - 2x_1x_4 - 2x_2^2 - 3x_3^2 + 4x_3x_4 + x_4^2 = 0$$
$$x_1^2 - 6x_1x_4 + 2x_2^2 + 4x_2x_3 + 3x_3^2 + 2x_3x_4 + x_4^2 = 0$$

- This has the point (-681 : 116 : 125 : -142)
- Which gets us $\left(\frac{53463613}{32109353}, \frac{23963346820191122}{32109353^2}\right)$ on the 2-covering
- Resulting in $x = \frac{2263582143321421502100209233517777}{11981673410095561^2}$ $y = \frac{186398152584623305624837551485596770028144776655756}{11981673410095561^3}$

on the elliptic curve

Matrices?

- The M's are 4 x 4, symmetric: so 20 unknowns
- g is a quartic
- Summing, det-ing, equating coefficients...

