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1 Remarks

Your reading for this coming week is about projective spaces, cubic equations, and
the elliptic curve group operation.

1.1 Projective Space

The following is a completely general definition of projective space.

Definition 1.1 (Projective Space). Let k& be a field and n > 0 an integer.
Then n dimensional projective space is, as a set,

Pt ={(a1:a2: - :1apy1) : notalla; =01}/ ~,
where ~ is the equivalence relation in which
(@1 :a2: - :apt1) ~ (cas:cag s -+ : capt1)
for all nonzero ¢ € k. (Think of (a1 : a9 :---: apy1) as a ratio.)

When k has a topology, P? inherits a topology (as a quotient of k"~ — 0)
which we probably won’t worry about much in this course.

1. The projective space of dimension 0 is a single point.

2. The projective line PP} is, as a set,
{(a1:a2) : a1,a2 €k}/~ ={(1:a) :a€k}uU{(0:1)}.

Thus the projective line is the usual line union one extra point (0, 1), which
we often think of as being “at infinity”.

(a) The set P is the real line along with one extra point at infinity; thus
]P’IlR is in bijection with a circle.

(b) The set IP’(% is equal to the complex plane C along with one extra point
at infinity. Alternatively, IP’}C can be thought of as the points on the
sphere with the north pole corresponding to the point at infinity.



3. When n = 2 we obtain the projective plane:

{(ar:a2:1) : aj,a0 €k}U{(1:a:0) : a€k}U{(0:1:0)}.

We can think of IP’% as the usual plane along with a copy of ]P’,lC “at infinity”.

The real projective plane ]P’I%lg looks like a plane union a circle at infinity. The
complex projective plane IP’% has real dimension 4 so it is harder to describe,
but it is where we will primarily work.

4. In general, P} is usual n-dimension space along with a IE"Z_1 “at infinity”.

Definition 1.2 (Homogeneous Polynomial). A homogeneous polynomial is a
polynomial F(Xi,...,X,) such that F(cXy,...,cXy) = ¢F(Xy,...,X,) for all
¢ € k, where d = deg(F'). Equivalently, each of the monomials in F' have the same
degree.

Definition 1.3 (Algebraic Variety). An algebraic variety in P} is the set of
solutions to a system

Fi(Xy,...,Xpp1) = = F(X1,...,Xp41) =0

of homogeneous polynomial equations. The homogeneity condition ensures that
this set is well defined.

Definition 1.4 (Algebraic Plane Curve). An algebraic curve in P is the set
of solutions to a single nonconstant homogenous polynomial equation

{(a:b:¢): Fi(a,b,c) =0}.

1.2 The Group Law

Consider a cubic curve of the form y? = 22 + az + b and assume that 2® + az + b
has distinct roots. Then the set

ER) = {(z,y) ERxR:9? =23 +ax + b}

is the graph of the real points on an elliptic curve. Given two solutions (z1,y)
and (x2,ys2), there is a formula for a third solution (x3,y3). It has the marvelous
properties that

L If21,y1,22,y2 € Q then z3,y3 € Q.
2. The composition law turns the set F(R) into a GROUP.

The composition law is described in the text both algebraically and geometrically,
but a complete proof that it has property 2 above is not given. I'm not sure what
we’ll do about this. My advice is that you would be best served to just believe this
on faith at this point. When you learn “algebraic geometry” later in your career,
you’ll learn a beautiful and conceptually satisfying definition of the group law.



1.3

Skipping Next Monday

We will next meet at 2pm on Tuesday February 18. We will not meet on February
17th, because it is a holiday.

2 Problems from the reading

1.

(Jeff) Prove that the line connecting two distinct rational points in the plane
is defined by an equation az + by + ¢ = 0 with a,b,c € Z, then prove that
the intersection of any two distinct rational lines in the plane is empty or a
single rational point.

(Jennifer) Find all right triangles with integer side lengths and hypotenuse
< 30.

(Mauro) For each of the following conics, either find five rational points or
prove that there are no rational points:

(a) 22+ =6
(b) 322 + 5y% =4
(c) 322 + 6y% =4

(Alex) Draw a rough graph of the conic z2 — y2 = 1, then give a formula for
all the rational points on this conic.

(Jenna) Use induction on n to prove that for every n > 1, the congruence
24+1=0 (mod 5")

has a solution z,, € Z/5"Z.

3 New reading and problems

Reading Assignment: Read pages 220—-232 of Appendix A and pages 15—32
of Chapter I, both that in [Silverman-Tate].

3.1

1.

Problems for next time.

(Jeff) Let P? be the set of triples [a, b, c] modulo scalar multiplication, as
usual. Define a line in P? to be the set of solutions of an equation of the

form
aX +bY +¢cZ =0

for some numbers a,b, ¢ not all zero. Prove (from the definition) that any
two distinct points in P? are contained in a unique line. Then prove that
any two distinct lines in P? intersect in a unique point.



. (Jennifer) Let F(X,Y, Z) € C[X,Y, Z] be a homogeneous polynomial of de-
gree n. Prove that the partial derivatives of F' are homogeneous polynomials
of degree n — 1, and use this to show that

oF oF oF

by differentiating F(tX,tY,tZ) = t" with respect to t.
. (Mauro)

(a) Let C be a curve in P? defined by F(X,Y,Z) = 0, where F is a ho-
mogenous polynomial. Prove that if P € P? satifies the equation
oF OF OF
8—X():8_Y():8_Z():O’ (1)
then P “automatically” satisfies F'(P) = 0. Thus to find the singular

points on C, you just have to find the common solutions to (1); it is
not necessary to include F' = 0.

(b) Find all singular points on the curve defined by
F(X,Y,Z)=X"-Y%Z%=0.

. (Alex) For each of the given affine curves Cy, find a projective curve C' whose
affine part is Cy. Then find all of the points at infinity on the projective
curve C.

(a) 3z —Ty+5=0

b) 22+ 2y — 29>+ -5y +7=0

(c) 22 + 2%y —3xy®> =3 + 202 —2+5=0

. (Jenna) For each of the following curves C' and points P, either find the
tangent line to C at P or else verify that C' is singular at P.

C P
y2:$3_$ (1,0)
X24v2=2? 3:4:5)

X34+ Y3+ Z3=XYZ

(
2+ oyt + 22y +20+2y+1=01 (-1,0)
( .

. (Alex) Let C be the cubic curve u® +v® = u+wv+ 1. In the projective plane,
the point (1 : —1 : 0) at infinity lies on this curve. Find rational functoins
z = z(u,v) and y = y(u,v) so that z and y satisfy a cubic equation in
Weierstrass normal form (i.e., 32 = 23 + az? + bz + ¢).



7. (Jeff) Let C be the cubic curve in P? given by
Y?Z = X3+ aX?*Z +bX Z* + cZ°.
Prove that the point (0:1:0) on C is nonsingular.
8. (Jenna) Let C; and C5 be the cubics given by the following equations:
Cr:2®+2y° —2—2y=0, Co: 20 +4y3 -2z —y=0.
Find the nine points of intersection of C; and Cs.

9. (Jennifer) The cubic curve u?® + v3 = «a (with a # 0) has a rational point
(1,—1,0) at infinity. Taking this rational point to be @ (the identity element
of the group), we can make the points on the curve into a group. Derive

a formula for the sum P; + P, of two distinct points P; = (u1,v1) and
PQ = (ug, UQ).
10. (Mauro) Verify that if u and v satisfy the relation u® + v3 = 1, then the
quantities
12 -
T = and Y= 362"
U+ v U+ v

satisfy the relation y?> = z3 — 432. We thus obtain a birational transfor-
mation f from the curve u® + v3 = 1 to the curve 32 = 2® — 432. Each of
these cubic curves can have a group law defined on it. Prove that f is an
isomorphism of groups, where the zero element for y? = 3 — 432 is the point
(0:1:0) and the zero element for u® +v3 = 1is (1: —1:0) (at infinity).

4 Motivation: The Congruent Number Problem

Definition 4.1 (Congruent Number). A rational number n is called a con-
gruent number if +n is the area of a right triangle with rational side lengths.
Equivalently, n is congruent if the system of two equations

n=ab/2 and a® + b2 =
has a solution with a,b,c € Q.

For example, 6 is the area of the right triangle with side lengths 3, 4, and 5,
so 6 is a congruent number. Less obvious is that 5 is also a congruent number;
it is the area of the right triangle with side lengths 3/2, 20/3, and 41/6. It is
nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.

Here is a list of the congruent numbers up to 50:

5,6,7,13,14,15, 20,21, 22,23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, . ..



Every congruence class modulo 8 except 3 is represented in this list, which suggests
that if n =3 (mod 8) then n is not a congruent number. This is true for n < 218,
but n = 219 is a congruent number congruent to 3 mod 8. Something very subtle
is going on.

This is another example which hints at the subtlety of congruent numbers.
The number 157 is a congruent number, and Don Zagier showed that the simplest
rational right triangle with area 157 has side lengths

_ 6803298487826435051217540 and b — 411340519227716149383203
 411340519227716149383203 ~ 21666555693714761309610

This solution would take a long time to find without understanding more about
congruent numbers.

Open Problem: Give an algorithm which, given n, outputs whether or not n
is a congruent number.

The following proposition establishes a link between elliptic curves and the
congruent number problem. This link connects the congruent number problem
with the Birch and Swinnerton-Dyer conjecture, which some consider to be the
most important open problem in the theory of elliptic curves.

Proposition 4.2. Let n be a rational number. There is a bijection between
A:{xy, e : ——n,$2+y2222}

and
B = {7‘3 )eEQ? : 2= —nrw1th37é0}

given explicitly by the maps

f(z,y,2) = (—wn—ﬂ 2n x+z>

n2 — r2 2rn  n? + r?
g(T,S) = y T T .

and

S S S
Corollary 4.3. The rational number n is a congruent number if and only if the
elliptic curve E, defined by y*> = 23 — n%z has a solution with y # 0.

Proof. The number n is a congruent number if and only if the set A from Propo-
sition 4.2 is nonempty. By the proposition A is nonempty if and only if B is
nonempty, which proves the corollary. O

Example 4.4. Let n = 5. Then E,, is defined by y? = 23 — 25z, and we find by
a brute force search the solution (—4,—6). Then

(4 (D16 402416y (3 20 4
IR TVENT e T =6 =6 ) 223 %)

Multiplying through by —1 yields the side lengths of a rational right triangle with
area .




Theorem 4.5. Let n be even and squarefree, and let E be the elliptic curve

y? =23 — n’z.

Then L(E,1) = 0 if and only if

#{(a,b,c) c4a? + 02 +8c2 == :cis even}

n
2
= #{(a, b,c) : 4a® +b? + 8¢ = g 1cis odd}.

So far I have told you nothing about the meaning of “L(E,1) = 0”. Suffice for
now to know that (a consequence of) the Birch and Swinnerton-Dyer conjecture
is the assertion that the set of rational solutions to y? = 23 — n’z is infinite if and
only if “L(E,1) = 0”. Also, it is easy to prove that this set of solutions is infinite
if and only if n is a congruent number.

When n = 6, we get

#0 =2 - #0.

When n = 2, we get
#{(0,1,0)} # 2 #{(0,1,0)},

so the BSD conjecture predicts that 4> = z3 — 4z has no interesting solutions
and 2 is not a triangle number.

In fact, this is true. The implication L(E, 1) # 0 implies y? = 23 — n?z has no
interesting solutions was proved by Coates and Wiles (this is the same Wiles who
proved Fermat’s Last Theorem).

The other implication:

L(E,1) = 0 = y* = 2> — n%z has lots of solutions

is a fascinating open problem.



