
18 1. Abelian Varieties: 10/20/03 notes by W. Stein

1.6.1 What are Néron Models?

Suppose E is an elliptic curve over Q. If ∆ is the minimal discriminant of E,
then E has good reduction at p for all p - ∆, in the sense that E extends to an
abelian scheme E over Zp (i.e., a “smooth” and “proper” group scheme). One can
not ask for E to extend to an abelian scheme over Zp for all p | ∆. One can,
however, ask whether there is a notion of “good” model for E at these bad primes.
To quote [BLR, page 1], “It came as a surprise for arithmeticians and algebraic
geometers when A. Néron, relaxing the condition of properness and concentrating
on the group structure and the smoothness, discovered in the years 1961–1963 that
such models exist in a canonical way.”

Before formally defining Néron models, we describe what it means for a mor-
phism f : X → Y of schemes to be smooth. A morphism f : X → Y is finite type
if for every open affine U = Spec(R) ⊂ Y there is a finite covering of f−1(U) by
open affines Spec(S), such that each S is a finitely generated R-algebra.

Definition 1.6.1. A morphism f : X → Y is smooth at x ∈ X if it is of finite
type and there are open affine neighborhoods Spec(A) ⊂ X of x and Spec(R) ⊂ Y
of f(x) such that

A ∼= R[t1, . . . , tn+r]/(f1, . . . , fn)

for elements f1, . . . , fn ∈ R[t1, . . . , tn+r] and all n × n minors of the Jacobian
matrix (∂fi/∂tj) generate the unit ideal of A. The morphism f is étale at x if, in
addition, r = 0. A morphism is smooth of relative dimension d if it is smooth at x
for every x ∈ X and r = d in the isomorphism above.

Smooth morphisms behave well. For example, if f and g are smooth and f ◦ g
is defined, then f ◦ g is automatically smooth. Also, smooth morphisms are closed
under base extension: if f : X → Y is a smooth morphism over S, and S′ is a
scheme over S, then the induced mapX×SS′ → Y ×SS′ is smooth. (If you’ve never
seen products of schemes, it might be helpful to know that Spec(A)× Spec(B) =
Spec(A ⊗ B). Read [4, §II.3] for more information about fiber products, which
provide a geometric way to think about tensor products. Also, we often write XS′

as shorthand for X ×S S′.)
We are now ready for the definition. Suppose R is a Dedekind domain with field

of fractions K (e.g., R = Z and K = Q).

Definition 1.6.2 (Néron model). Let A be an abelian variety over K. The
Néron model A of A is a smooth commutative group scheme over R such that for
any smooth morphism S → R the natural map of abelian groups

HomR(S,A) → HomK(S ×R K,A)

is a bijection. This is called the Néron mapping property: In more compact nota-
tion, it says that there is an isomorphism A(S) ∼= A(SK).

Taking S = A in the definition we see that A is unique, up to a unique isomor-
phism.

It is a deep theorem that Néron models exist. Fortunately, Bosch, Lütkebohmert,
and Raynaud devoted much time to create a carefully written book [1] that ex-
plains the construction in modern language. Also, in the case of elliptic curves,
Silverman’s second book [9] is extremely helpful.
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The basic idea of the construction is to first observe that if we can construct
a Néron model at each localization Rp at a nonzero prime ideal of R, then each
of these local models can be glued to obtain a global Néron model (this uses that
there are only finitely many primes of bad reduction). Thus we may assume that
R is a discrete valuation ring.

The next step is to pass to the “strict henselization” R′ of R. A local ring R with
maximal ideal ℘ is henselian if “every simple root lifts uniquely”; more precisely,
if whenever f(x) ∈ R[x] and α ∈ R is such that f(α) ≡ 0 (mod ℘) and f ′(α) 6≡ 0
(mod ℘), there is a unique element α̃ ∈ R such that α̃ ≡ α (mod ℘) and f(α̃) = 0.
The strict henselization of a discrete valuation ring R is an extension of R that
is henselian and for which the residue field of R′ is the separable closure of the
residue field of R (when the residue field is finite, the separable close is just the
algebraic closure). The strict henselization is not too much bigger than R, though
it is typically not finitely generated over R. It is, however, much smaller than
the completion of R (e.g., Zp is uncountable). The main geometric property of
a strictly henselian ring R with residue field k is that if X is a smooth scheme
over R, then the reduction map X(R) → X(k) is surjective.

Working over the strict henselization, we first resolve singularities. Then we use
a generalization of the theorem that Weil used to construct Jacobians to pass from
a birational group law to an actual group law. We thus obtain the Néron model
over the strict henselization of R. Finally, we use Grothendieck’s faithfully flat
descent to obtain a Néron model over R.

When A is the Jacobian of a curve X, there is an alternative approach that
involves the “minimal proper regular model” of X. For example, when A is an
elliptic curve, it is the Jacobian of itself, and the Néron model can be constructed in
terms of the minimal proper regular model X of A as follows. In general, the model
X → R is not also smooth. Let X ′ be the smooth locus of X → R, which is obtained
by removing from each closed fiber XFp =

∑
niCi all irreducible components with

multiplicity ni ≥ 2 and all singular points on each Ci, and all points where at least
two Ci intersect each other. Then the group structure on A extends to a group
structure on X ′, and X ′ equipped with this group structure is the Néron model
of A.

Explicit determination of the possibilities for the minimal proper regular model
of an elliptic curve was carried out by Kodaira, then Néron, and finally in a
very explicit form by Tate. Tate codified a way to find the model in what’s
called “Tate’s Algorithm” (see Antwerp IV, which is available on my web page:
http://modular.fas.harvard.edu/scans/antwerp/, and look at Silverman, chap-
ter IV, which also has important implementation advice).

1.6.2 The Birch and Swinnerton-Dyer Conjecture and Néron Models

Throughout this section, let A be an abelian variety over Q and let A be the
corresponding Néron model over Z. We work over Q for simplicity, but could work
over any number field.

Let L(A, s) be the Hasse-Weil L-function of A (see Section [to be written]). Let
r = ords=1 L(A, s) be the analytic rank of A. The Birch and Swinnerton-Dyer
Conjecture asserts that A(Q) ≈ Zr ⊕A(Q)tor and

L(r)(A, 1)
r!

=
(
∏
cp) · ΩA · RegA·#X(A)

#A(Q)tor ·#A∨(Q)tor
.
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We have not defined most of the quantities appearing in this formula. In this
section, we will define the Tamagawa numbers cp, the real volume ΩA, and the
Shafarevich-Tate group X(A) in terms of the Néron model A of A.

We first define the Tamagawa numbers cp, which are the orders groups of con-
nected components. Let p be a prime and consider the closed fiber AFp , which
is a smooth commutative group scheme over Fp. Then AFp

is a disjoint union of
one or more connected components. The connected component A0

Fp
that contains

the identity element is a subgroup of AFp (Intuition: the group law is continuous
and the continuous image of a connected set is connected, so the group structure
restricts to A0

Fp
).

Definition 1.6.3 (Component Group). The component group of A at p is

ΦA,p = AFp/A0
Fp
.

Fact: The component group ΦA,p is a finite flat group scheme over Fp, and for
all but finitely many primes p, we have ΦA,p = 0.

Definition 1.6.4 (Tamagawa Numbers). The Tamagawa number of A at a
prime p is

cp = #ΦA,p(Fp).

Next we define the real volume ΩA. Choose a basis

ω1, . . . , ωd ∈ H0(A,Ω1
A/Z)

for the global differential 1-forms on A, where d = dimA. The wedge product
w = ω1∧ω2∧· · ·∧ωd is a global d-form on A. Then w induces a differential d-form
on the real Lie group A(R).

Definition 1.6.5 (Real Volume). The real volume of A is

ΩA =

∣∣∣∣∣
∫
A(R)

w

∣∣∣∣∣ ∈ R>0.

Finally, we give a definition of the Shafarevich-Tate group in terms of the Néron
model. Let A0 be the scheme obtained from the Néron model A over A by removing
from each closed fiber all nonidentity components. Then A0 is again a smooth
commutative group scheme, but it need not have the Néron mapping property.

Recall that an étale morphism is a morphism that is smooth of relative dimen-
sion 0. A sheaf of abelian groups on the étale site Zét is a functor (satisfying certain
axioms) from the category of étale morphism X → Z to the category of abelian
groups. There are enough sheaves on Zét so that there is a cohomology theory for
such sheaves, which is called étale cohomology. In particular if F is a sheaf on Zét,
then for every integer q there is an abelian group Hq(Zét,F) associated to F that
has the standard properties of a cohomology functor.

The group schemes A0 and A both determine sheaves on the étale site, which
we will also denote by A0 and A.

Definition 1.6.6 (Shafarevich-Tate Group). Suppose A(R) is connected that
that A0 = A. Then the Shafarevich-Tate group of A is H1(Zét,A). More generally,
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suppose only that A(R) is connected. Then the Shafarevich-Tate group is the
image of the natural map

f : H1(Zét,A0) → H1(Zét,A).

Even more generally, if A(R) is not connected, then there is a natural map r :
H1(Zét,A) → H1(Gal(C/R), A(C)) and X(A) = im(f) ∩ ker(r).

Mazur proves in the appendix to [5] that this definition is equivalent to the
usual Galois cohomology definition. To do this, he considers the exact sequence
0 → A0 → A → ΦA → 0, where ΦA is a sheaf version of ⊕pΦA,p. The main
input is Lang’s Theorem, which implies that over a local field, unramified Galois
cohomology is the same as the cohomology of the corresponding component group.

Conjecture 1.6.7 (Shafarevich-Tate). The group H1(Zét,A) is finite.

When A has rank 0, all component groups ΦA,p are trivial, A(R) is connected,
and A(Q)tor and A∨(Q)tor are trivial, the Birch and Swinnerton-Dyer conjecture
takes the simple form

L(A, 1)
ΩA

= # H1(Zét,A).

Later, when A is modular, we will (almost) interpret L(A, 1)/ΩA as the order of
a certain group that involves modular symbols. Thus the BSD conjecture asserts
that two groups have the same order; however, they are not isomorphic, since, e.g.,
when dimA = 1 the modular symbols group is always cyclic, but the Shafarevich-
Tate group is never cyclic (unless it is trivial).

1.6.3 Functorial Properties of Neron Models

The definition of Néron model is functorial, so one might expect the formation of
Néron models to have good functorial properties. Unfortunately, it doesn’t.

Proposition 1.6.8. Let A and B be abelian varieties. If A and B are the Néron
models of A and B, respectively, then the Néron model of A×B is A× B.

Suppose R ⊂ R′ is a finite extension of discrete valuation rings with fields of
fractions K ⊂ K ′. Sometimes, given an abelian variety A over a field K, it is
easier to understand properties of the abelian variety, such as reduction, over K ′.
For example, you might have extra information that implies that AK′ decomposes
as a product of well-understood abelian varieties. It would thus be useful if the
Néron model of AK′ were simply the base extension AR′ of the Néron model of A
over R. This is, however, frequently not the case.

Distinguishing various types of ramification will be useful in explaining how
Néron models behave with respect to base change, so we now recall the notions of
tame and wild ramification. If π generates the maximal ideal of R and v′ is the
valuation on R′, then the extension is unramified if v′(π) = 1. It is tamely ramified
if v′(π) is not divisible by the residue characteristic of R, and it is wildly ramified
if v′(π) is divisible by the residue characteristic of R. For example, the extension
Qp(p1/p) of Qp is wildly ramified.

Example 1.6.9. If R is the ring of integers of a p-adic field, then for every integer n
there is a unique unramified extension of R of degree n. See [2, §I.7], where Fröhlich
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uses Hensel’s lemma to show that the unramified extensions of K = Frac(R) are
in bijection with the finite (separable) extensions of the residue class field.

The Néron model does not behave well with respect to base change, except in
some special cases. For example, suppose A is an abelian variety over the field
of fractions K of a discrete valuation ring R. If K ′ is the field of fractions of a
finite unramified extension R′ of R, then the Néron model of AK′ is AR′ , where
A is the Néron model of A over R. Thus the Néron model over an unramified
extension is obtained by base extending the Néron model over the base. This is
not too surprising because in the construction of Néron model we first passed to
the strict henselization of R, which is a limit of unramified extensions.

Continuing with the above notation, if K ′ is tamely ramified over K, then in
general AR′ need not be the Néron model of AK′ . Assume that K ′ is Galois over K.
In [3], Bas Edixhoven describes the Néron model of AK in terms ofAR′ . To describe
his main theorem, we introduce the restriction of scalars of a scheme.

Definition 1.6.10 (Restriction of Scalars). Let S′ → S be a morphism of
schemes and let X ′ be a scheme over S′. Consider the functor

R(T ) = HomS′(T ×S S′, X ′)

on the category of all schemes T over S. If this functor is representable, the rep-
resenting object X = ResS′/S(X ′) is called the restriction of scalars of X ′ to S.

Edixhoven’s main theorem is that if G is the Galois group of K ′ over K and
X = ResR′/R(AR′) is the restriction of scalars of AR′ down to R, then there is a
natural map A → X whose image is the closed subscheme XG of fixed elements.

We finish this section with some cautious remarks about exactness properties of
Néron models. If 0 → A → B → C → 0 is an exact sequence of abelian varieties,
then the functorial definition of Néron models produces a complex of Néron models

0 → A→ B → C → 0,

where A, B, and C are the Néron models of A, B, and C, respectively. This complex
can fail to be exact at every point. For an in-depth discussion of conditions when we
have exactness, along with examples that violate exactness, see [1, Ch. 7], which
says: “we will see that, except for quite special cases, there will be a defect of
exactness, the defect of right exactness being much more serious than the one of
left exactness.”

To give examples in which right exactness fails, it suffices to give an optimal
quotient B → C such that for some p the induced map ΦB,p → ΦC,p on component
groups is not surjective (recall that optimal means A = ker(B → C) is an abelian
variety). Such quotients, with B and C modular, arise naturally in the context of
Ribet’s level optimization. For example, the elliptic curve E given by y2 + xy =
x3 + x2 − 11x is the optimal new quotient of the Jacobian J0(33) of X0(33). The
component group of E at 3 has order 6, since E has semistable reduction at 3
(since 3 || 33) and ord3(j(E)) = −6. The image of the component group of J0(33)
in the component group of E has order 2:

> OrderOfImageOfComponentGroupOfJ0N(ModularSymbols("33A"),3);
2

Note that the modular form associated to E is congruent modulo 3 to the form
corresponding to J0(11), which illustrates the connection with level optimization.
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[3] B. Edixhoven, Néron models and tame ramification, Compositio Math. 81
(1992), no. 3, 291–306. MR 93a:14041

[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, Grad-
uate Texts in Mathematics, No. 52.

[5] B. Mazur, Rational points of abelian varieties with values in towers of number
fields, Invent. Math. 18 (1972), 183–266.

[6] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984),
Springer, New York, 1986, pp. 103–150.

[7] D. Mumford, Abelian varieties, Published for the Tata Institute of Fundamen-
tal Research, Bombay, 1970, Tata Institute of Fundamental Research Studies
in Mathematics, No. 5.

[8] M. Rosen, Abelian varieties over C, Arithmetic geometry (Storrs, Conn.,
1984), Springer, New York, 1986, pp. 79–101.

[9] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-
Verlag, New York, 1994.

[10] H. P. F. Swinnerton-Dyer, Analytic theory of abelian varieties, Cambridge
University Press, London, 1974, London Mathematical Society Lecture Note
Series, No. 14. MR 51 #3180


