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Lecture III: How Jacobians and Theta Functlons A

: : way that
I would like to begin by introducing Jacobians in the b4

: : m
they actually were discovered historically. Unfortunately, MY

i ' hould
knowledge of 19th-century literature is very scant SO this s

not be taken too literally. You know the story began with Abel

and Jacobi investigating general algebraic integrals
I = Sf(x)d.x

where f was a multi-valued algebraic function of X, i.e., the

solution to

glx, £(x)) = 0, g polynomial in 2 variables.

I = 5 Yy dx

where Y is a path in plane curve g(x,y) = O; or we may reformulate

So we can write I as

this as the study of integrals

w
T —

d
E%F Y)dx P,Q polynomials
1 a = S 2 J
( ) a Q AsY J ajac} € plane curve C: g(X,Y) = ')
O

of rational differentials w on plane curves C,.

The main result

is that such integrals always admit an addition theorem: i.e
. @,

there is an integer g such that if a, 1s a base point, ang

al""’ag+l are any points of C, then one can determine up to
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permutation by, .- bg € C rationally in terms of the a’s” such that
al b
bg
S w + S S W+ oo F S w, mod periods of Sw.
a
4o a a_
For instance, if C = B}, w = dx/x, then g = 1 and:
S0
{ax . g_@z ) i ax
X X X
L } 1
Iterating, this implies that for all al,---,ag,bl,---,bg € C, there are
cl,.--,cg € C depending up to permutation rationally on the a’s and

(mod periods)
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1l
I ™0
) 0

&

O
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Now this looks like a group law. Only a very slight strengthening will
lead us to a reformulation in which this most classical of all theorems
will suddenly sound very modern. We introduce the concept of an
‘algebraic group G: succinctly, this is a "group object in the

category of varieties,'" i.e., it 1is simultaneously a variety and a
group where the group law m: GXG —> G and the inverse 1i: G —> G

are morphisms of varieties. Such a G is, of course, automaéically a
complex analytic Lie group too, hence it has a Lie algebra Lie(G),

and an exponential map exp: Lie(G) —>G. Now I wish to rephrase

%

E.g.,one can find polynomials gi(x: y;a) in x, y and the coordinates of the a's such

2 ' that the b, 's are the set of all becC such that g.(b;a) =

i
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Abel's theorem as asserting that if C 1s a curve, an

differential on C, then the multi-valued function
a
a b— S W
a
e

can be factored into a composition of 3 functions :

£
ex .
C-(poles of W) *———-é—; J & 2 -Syie Jili—= =

where:

i) J is a commutative algebraic group,

3908 i a linear map from Lie J to

iii) @ is a morphism of varieties; and, in fact, if g = dim J,

then if we use addition on J to extend & to

ﬁ(g): [ (C-poles w)x-++x(C-poles w)/permutations] — J

Sg

then 4 g) 1s birational, l.e., is bijective on a

Zariski-open set.

In our example

then J = P -(0,wm)

multiplication, ang ® 1is the identity, The point is that J 1s the

object that reali t ' - Sias
3 Zes the rule by which 2 g tuples (al, ’ag)’(bli"'fb )
are "added" to form a thirg be il
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g

.le(xi) becomes a homomorphism from J to €. A slightly less fancy way
1=

to put it 1s that there is a @g: c-(poles w) —>J and a translation-

invariant differential 7) on J such that

hence

g(a)
S n (mod periods).
6(3,)

|
v/ N
&

Among the w's, the most important are those of lSt kind, 1.e.

3
without poles, and if we integrate all of them at once, we are€ led to
the most important J of all: the Jacobian, which we call Jac. From

property (iii), we find that Jac must be a compact commutative algebraic

group, i.e., a complex torus, and we want that

$: C —>Jac,

should set up a bijection:

translation-
iv) ﬁ*: [invariant l-forms
) on Jac

} [rational differentiaISle
“Lw on C w/o poles

Thus

dim Jac dim R_(C)

1

genus g of C,

To construct Jac explicitly, there are 2 simple ways:
v) Analytically: write Jac = V/L, V complex vector space,

L a lattice. Define:
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V = dual of Rl(c)

set of 4 € V obtained as periods, 1:¢>

-,
I

t(w) = Sw for some l-cycle Y on C.

Y

Fixing a base point a_ € C, define for all a € C

Note that

vr =

vi)

é6(a) =(image in V/L of any £ € V defined by

/ L(w) = S w,

where we fix a path from a_ to a.

=

since Jac is a group,

(translation—invariant) :.(cotangent sp. to Jac at a) —
l-forms on Jac 7 any a € Jac =

Algebraically: following Weil's original idea, introduce

s9c

C X, sieiX C/Sg and construct by the Riemann-Roch

theorem, a "group-chunk" structure on SgCJ l.e., a partial

group law:

m : leU2 —_— U3

U, c s9c Zariski-open,

He then showed that any such algebraic group-chunk

prolonged automatically into an algebraic group J with

g
S Uy & (some Zariski-open U4).

[ — e m—
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an important point is that g is an integrated form of the canonical map

Eg—l |
$R G discussed at length above —

vii) & 1is the Gauss map of g, i.e., for all x € c, dg(T is

x,c)

a l-dimensional subspace of Tﬁ(x) , and by translation

,Jac
this is isomorphi ' Bg-l
phic to Lie(Jac). 1If = [space of
ra ] : -1
1-dim— subsp. of Lie(Jac)], then dg: C ——ﬁﬂ? is just 9.

(Proof: this is really just a rephrasing of (iv).)

The Jacobian has always been the corner-stone in the analysis of
algebraic curves and compact Riemann surfaces. Its power lies in the

y €.9.,

fact that 1t abelianizqg the curve and 1s a‘£gification of H1

viii) via g: C — Jac, every abelian covering T: Cl —> C 1s

the "pull-back" of a unique covering p: Gl > Jac

e, Cl = C EacGl)'

Weil's construction in vi) above was the basis of his epoch-making proof
of the Riemann Hypothesis for curves over finite fields, which really
put characteristic p algebraic geometry on its feet.

There are very close connections between the geometry of the

curve C (e.g., whether or not C 1s hyperelliptic) and Jac. We want
| to describe these next in order to tie in Jac with the special cases

studied in Lecture I, and in order to "see" Jac very concretely in low

genus. The main tool we want to use is:




