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2.4 Points on modular curves parameterize elliptic
curves with extra structure

2.4.1 Elliptic curves over the complex numbers

The classical theory of the Weierstass ℘-function sets up a bijection between
isomorphism classes of elliptic curves over C and isomorphism classes of
one-dimensional complex tori C/Λ. Here Λ is a lattice in C, i.e., a free
abelian group of rank 2 such that RΛ = C.

Any homomorphism ϕ of complex tori C/Λ1 → C/Λ2 is determined by
a C-linear map T : C → C that sends Λ1 into Λ2.

Lemma 2.4.1. Suppose ϕ : C/Λ1 → C/Λ2 is nonzero. Then the kernel of
ϕ is isomorphic to Λ2/T (Λ1).

Proof. Use the snake lemma applied to the morphism from the short exact
sequence 0 → Λ1 → C → E1 → 0 to the short exact sequence 0 → Λ2 →
C → E2 → 0.

Lemma 2.4.2. Two complex tori C/Λ1 and C/Λ2 are isomorphic if and
only if there is a complex number α such that αΛ1 = Λ2.

Proof. Any C-linear map C → C is multiplication by a scalar α ∈ C.

Suppose Λ = Zω1 + Zω2 is a lattice in C, and let τ = ω1/ω2. Then
Λτ = Zτ + Z defines an elliptic curve that is isomorphic to the elliptic
curve determined by Λ. By replacing ω1 by −ω1, if necessary, we may
assume that τ ∈ h. Thus each point τ ∈ h determines an elliptic curve

Eτ = C/Λτ

and every elliptic curve is of this form.

Proposition 2.4.3. Suppose τ, τ ′ ∈ h. Then Eτ
∼= Eτ ′ if and only if there

exists g ∈ SL2(Z) such that τ = g(τ ′).

Proof. Suppose Eτ
∼= Eτ ′ . Then there exists λ ∈ C such that λΛτ = Λτ ′ ,

so λτ = aτ ′+b and λ1 = cτ ′+d, where a, b, c, d ∈ Z. The matrix g =
(

a b
c d

)
has nonzero integer determinant, and this determinant is positive because
g(τ ′) = τ and τ, τ ′ ∈ h. Thus det(g) = 1, so g ∈ SL2(Z).

Conversely, suppose τ, τ ′ ∈ h and g =
(

a b
c d

) ∈ SL2(Z) is such that
τ = g(τ ′). Let λ = cτ ′ + d, so λτ = aτ ′ + b. Since det(g) = 1, the scalar λ
defines an isomorphism from Λ′τ to Λτ , so Eτ

∼= E′
τ , as claimed.

Let E = C/Λ be an elliptic curve over C and N a positive integer. Using
Lemma 2.4.1, we see that

E[N ] := {x ∈ E : Nx = 0} ∼=
(

1
N

Λ
)

/Λ ∼= (Z/NZ)2.
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If Λ = Λτ = Zτ + Z, this means that τ/N and 1/N are a basis for E[N ].
Suppose τ ∈ h and recall that Eτ = C/Λτ = C/(Zτ + Z). To τ , we

associate three “level N structures”. First, let Cτ be the subgroup of Eτ

generated by 1/N . Second, let Pτ be the point of order N in Eτ defined by
1/N ∈ Λτ . Third, let Qτ be the point of order N in Eτ defined by τ/N ,
and consider the basis (Pτ , Qτ ) for E[N ].

Let E be an elliptic curve over C. Theorem 2.4.5 below asserts that the
non-cuspidal points on X0(N) correspond to isomorphism classes of pairs
(E,C) where C is a cyclic subgroup of E of order N , and we consider
two such pairs (E, C), (E′, C ′) isomorphic if there is an isomorphism ϕ :
E → E′ such that ϕ(C) = C ′. Likewise, the non-cuspidal points on X1(N)
will correspond to pairs (E,P ) where P is a point on E of exact order N ,
and we call two such pairs (E, P ) and (E′, P ′) isomorphic if there is an
isomorphism ϕ : E → E′ such that ϕ(P ) = P ′. Finally, the non-cuspidal
points on X(N) will correspond to pairs (E,P, Q) where P, Q are a basis for
E[N ] and two pairs (E, P,Q) and (E,P ′, Q′) are isomorphic precisely when
there is an isomorphism ϕ : E → E′ such that ϕ(P ) = P ′ and ϕ(Q) = Q′.

Proposition 2.4.4. Let E be an elliptic curve over C. If C is a cyclic
subgroup of E of order N , then there exists τ ∈ h such that (E,C) is
isomorphic to (Eτ , Cτ ). If P is a point on E of order N , then there exists
τ ∈ C such that (E, P ) is isomorphic to (Eτ , Pτ ). If P, Q is a basis for E[N ]
then there exists τ ∈ C such that (E,P, Q) is isomorphic to (Eτ , Pτ , Qτ ).

Proof. We prove only the first statement, since the other proofs are similar.
Choose a basis ω1, ω2 for a lattice in C that defines E in such that a way
that E = C/(Zω1 + Zω2) and C is the subgroup generated by ω2/N .
Let τ = ω1/ω2, and if Im(τ) < 0 replaced ω1 by −ω1 so that τ ∈ h. Then
multiplication by 1/ω2 defines an isomorphism from E to Eτ = C/(Zτ +Z)
that carries C onto the subgroup Cτ generated by 1/N .

The following theorem asserts that the noncuspidal points on the curves
X0(N), X1(N), and X(N) parameterize elliptic curve with level N struc-
ture, as claimed above.

Theorem 2.4.5. Suppose τ, τ ′ ∈ h. Then (Eτ , Cτ ) is isomorphic (Eτ ′ , Cτ ′)
if and only if there exists g ∈ Γ0(N) such that g(τ) = τ ′. Also, (Eτ , Pτ )
is isomorphic (Eτ ′ , Pτ ′) if and only if there exists g ∈ Γ1(N) such that
g(τ) = τ ′. Finally, (Eτ , Pτ , Qτ ) is isomorphic (Eτ ′ , Pτ ′ , Qτ ′) if and only if
there exists g ∈ Γ(N) such that g(τ) = τ ′.

Proof. We prove only the first assertion, since the others are proved in
a similar way. Suppose (Eτ , Cτ ) is isomorphic to (E′

τ , C ′τ ). Then there is
λ ∈ C such that λΛτ = Λτ ′ . Thus λτ = aτ ′ + b and λ1 = cτ ′ + d with
g =

(
a b
c d

) ∈ SL2(Z) (as we saw in the proof of Proposition 2.4.3). Dividing
the second equation by N we get λ 1

N = c
N τ ′ + d

N , which lies in Λτ ′ =
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Zτ ′ + 1
N Z, by hypothesis. Thus c ≡ 0 (mod N), so g ∈ Γ0(N), as claimed.

For the converse, note that if N | c, then c
N τ ′ + d

N ∈ Λτ ′ .

2.5 Genus formulas

Let N be a positive integer. The aim of this section is to describe the idea
behind computing the genus of X0(N), X1(N), and X(N), and to give
(without proof) formulas for these genera.

The groups Γ0(1), Γ1(1), and Γ(1) are all equal to SL2(Z), so X0(1) =
X1(1) = X(1) = P1. Since P1 has genus 0, we know the genus for each of
these three cases. For general N we obtain the genus by determining the
ramification of the corresponding cover of P1 and applying the Hurwitz
formula, which we assume the reader is familiar with, but which we now
recall.

Suppose f : X → Y is a surjective morphism of Riemann surfaces of
degree d. For each point x ∈ X, let ex be the ramification exponent at x,
so ex = 1 precisely when f is unramified at x, which is the case for all
but finitely many x. Let g(X) and g(Y ) denote the genera of X and Y ,
respectively.

Theorem 2.5.1 (Hurwitz Formula). Let f : X → Y be as above. Then

2g(X)− 2 = d(2g(Y )− 2) +
∑

x∈X

(ex − 1).

If X → Y is Galois, so the ex in the fiber over each fixed y ∈ Y are all
equal, then this formula becomes

2g(X)− 2 = d


2g(Y )− 2 +

∑

y∈Y

(
1− 1

ey

)
 .

Let X be one of the modular curves X0(N), X1(N), or X(N) corre-
sponding to a congruence subgroup Γ, and let Y = X(1) = P1. There is a
natural map f : X → Y got by sending the equivalence class of τ modulo
the congruence subgroup Γ to the equivalence class of τ modulo SL2(Z).
This is “the” map X → P1 that we mean everywhere below.

Because PSL2(Z) acts faithfully on h, the degree of f is the index in
PSL2(Z) of the image of Γ in PSL2(Z) (see Exercise XXX). Using that the
map SL2(Z) → SL2(Z/NZ) is surjective, we can compute these indexes
(Exercise XXX), and obtain the following lemma:

Proposition 2.5.2. Suppose for simplicity that N > 2. The degree of the
map X0(N) → P1 is N

∏
p|N (1+1/p). The degree of the map X1(N) → P1

is 1
2N2

∏
p|N (1 − 1/p2). The the degree of the map from X(N) → P1 is

1
2N3

∏
p|N (1− p2).
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Proof. This follows from the discussion above, Exercise XXX about indexes
of congruence subgroups in SL2(Z), and the observation that for N > 2 the
groups Γ(N) and Γ1(N) do not contain −1 and the group Γ0(N) does.

Proposition 2.5.3. Let X be X0(N), X1(N) or X(N). Then the map
X → P1 is ramified at most over ∞ and the points corresponding to the
two elliptic curves with extra automorphisms (i.e., the two elliptic curves
with j-invariants 0 and 1728).

Proof. Since we have a tower X(N) → X1(N) → X0(N) → P1, it suffices
to prove the assertion for X = X(N). Since we do not claim that there
is no ramification over ∞, we may restrict to Y (N). By Theorem 2.4.5,
the points on Y (N) correspond to isomorphism classes of triples (E, P, Q),
where E is an elliptic curve over C and P,Q are a basis for E[N ]. The
map from Y (N) to P1 sends the isomorphism class of (E, P,Q) to the
isomorphism class of E. The equivalence class of (E, P,Q) also contains
(E,−P,−Q), since −1 : E → E is an isomorphism. The only way the
fiber over E can have cardinality smaller than the degree is if there is an
extra equivalence (E, P,Q) → (E,ϕ(P ), ϕ(Q)) with ϕ an automorphism
of E not equal to ±1. The theory of CM elliptic curves, shows that there
are only two isomorphism classes of elliptic curves E with automorphisms
other than −1, and these are the ones with j-invariant 0 and 1728. This
proves the proposition.

Theorem 2.5.4. For N > 4, the genus of X0(N) is

g(X0(N)) = 1 + N
∏

p|N
(1 + 1/p)− 1

2
σ(N)− 1

4
µ1728(N)− 1

3
µ0(N).

Here σ(N) =
∑

d|n ϕ(d)ϕ(N/d), µ1728(N) = 0 if 4 | N and µ1728(N) =∏
p|N (1+(−4/p)) otherwise (where (−4/p) is the quadratic reciprocity sym-

bol). Also, µ0(N) = 0 if 2 | N or 9 | N , and µ0(N) =
∏

p|N (1 + (−3/p))
otherwise.

For N > 4, the genus of X1(N) is

1 +
1
2
N2

∏

p|N
(1− 1/p2)− 1

2
σ∗(N),

where σ∗(N) = 1
2

∑
d|n ϕ(d)ϕ(N/d). For example, when N ≥ 5 is prime,

the genus of X1(N) is (N − 5)(N − 7)/24.
For N > 1, the genus of X(N) is

g(X(N)) = 1 +
N2(N − 6)

24

∏

p|N
(1− p2).
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Proof. We only prove the theorem for X(N) here (a proof for X0(N) is
Section 1.6 of [3] and a proof for X1(N) is in Section 9.1 of [1]).

Since X(N) is a Galois covering of X(1) = P1, the ramification indexes
ex are all the same for x over a fixed point y ∈ P1; we denote this common
index by ey. The fiber over the curve with j-invariant 0 has size one-third
of the degree, since the automorphism group of the elliptic curve with j-
invariant 0 has order 6, so e0 = 3. Similarly, the fiber over the curve with
j-invariant 1728 has size half the degree, since the automorphism group of
the elliptic curve with j-invariant 1728 is cyclic of order 4, so e1728 = 2.

To compute the ramification degree e∞ we use the orbit stabilizer theo-
rem. The fiber of X(N) → X(1) over ∞ is exactly the set of Γ(N) equiv-
alence classes of cusps, which is Γ(N)∞, x2Γ(N)∞, . . . , xrΓ(N)∞, where
x1 = 1, x2, . . . , xr are left coset representatives for Γ(N) in SL2(Z). By the
orbit-stabilizer theorem, the number of cusps equals #(Γ(1)/Γ(N))/#S,
where S is the stabilizer of Γ(N)∞ in Γ(1)/Γ(N) ∼= SL2(Z/NZ). Thus S
is the subgroup {± ( 1 n

0 1 ) : 0 ≤ n < N − 1}, which has order 2N . Since the
degree of X(N) → X(1) equals #(Γ(1)/Γ(N))/2, the number of cusps is
the degree divided by N . Thus e∞ = N .

The Hurwitz formula for X(N) → X(1) with e0 = 3, e1728 = 2, and
e∞ = N , is

2g(X(N))− 2 = d

(
0− 2 +

(
1− 1

3
+ 1− 1

2
+ 1− 1

N

))
,

where d is the degree of X(N) → X(1). Solving for g(X(N)) we obtain

2g(X)− 2 = d

(
1− 5

6
− 1

N

)
= d

(
N − 6
6N

)
,

so

g(X) = 1 +
d

2

(
N − 6
6N

)
=

d

12N
(N − 6) + 1.

Substituting the formula for d from Proposition 2.5.2 yields the claimed
formula.
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