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Key Ideas Today
e Wilson’s theorem
e Chinese Remainder Theorem

e Multiplicativity of ¢

1 Wilson’s Theorem

Theorem 1.1 (John Wilson’s theorem, from the 1770s). An integer p > 1 is
prime if and only if
(p—1!'=-1 (mod p).

Ezample 1.2.
? p=3

% =3

? (p-1)! % 3
%2 = 2

? p=17

%3 = 17

7 (p-1)!

%4 = 20922789888000
? (p-D' % p
%5 = 16

Proof. We first assume that p is prime and prove that (p —1)! = —1 (mod p). If
a €{1,2,...,p— 1} then the equation

ar =1 (mod p)

has a unique solution @’ € {1,2,...,p —1}. If a = d', then ¢®> = 1 (mod p), so
pla*>—1=(a—1)(a+1),s0p|(a—1)orp|(a+1),s0aec{l,—1}. We can thus
pair off the elements of {2,3,...,p — 2}, each with its inverse. Thus

2-3----- (p—2)=1 (mod p).
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Multiplying both sides by p — 1 proves that (p — 1)! = —1 (mod p).

Next we assume that (p — 1)! = —1 (mod p) and prove that p must be prime.
Suppose not, so that p is a composite number > 4. Let £ be a prime divisor of p.
Then £ < p,so £ | (p—1)!. Also,

Clpl((p—1!=1).

This is a contradiction, because a prime can’t divide a number a and also divide
a — 1, since it would then have to divide a — (¢ — 1) = 1. O

Ezample 1.3. When p = 17, we have
2:3.-- 15=1(2-9)-(3-6)-(4-13)-(5-7)-(8-15)-(10-12)-(14-11) =1 (mod 17),
where we have paired up the numbers a, b for which ab =1 (mod 17).

Let’s test Wilson’s Theorem in PARI:

? wilson(n) = Mod((n-1)!,n) == Mod(-1,n)
? wilson(5)

%9 =1

? wilson(10)
%10 = 0

? wilson(389)
%11 =1

? wilson(2001)
%12 =0

Warning: In practice, this is a horribly inefficient way to check whether or not a
number is prime.

2 The Chinese Remainder Theorem

Sun Tsu Suan-Ching (4th century AD):

There are certain things whose number is unknown. Repeatedly divided
by 3, the remainder is 2; by 5 the remainder is 3; and by 7 the remainder
is 2. What will be the number?

In modern notation, Sun is asking us to solve the following system of equations:

z=2 (mod 3)
z=3 (mod 5)
z=2 (mod?7)

The Chinese Remainder Theorem asserts that a solution to Sun’s question exists,
and the proof gives a method to find a solution.



Theorem 2.1 (The Chinese Remainder Theorem). Let a,b € Z and n,m € N
such that gcd(n, m) = 1. Then there exists © € Z such that

z=a (modm)
z=0b (modn)

Proof. The equation
tm=b—a (mod n)

has a solution ¢ since ged(m,n) = 1. Set = a + tm. We next verify that z is a
solution to the two equations. Then

z=a+(b—a)=b (modn),

and
r=a+tm=a (modm).

Now we can solve Sun’s problem:

z=2 (mod 3)
z=3 (mod 5)
z=2 (mod 7).

First, we use the theorem to find a solution to the pair of equations

z=2 (mod 3)
z=3 (mod 5).

Set a =2,b=3, m=3,n=>5. Step 1 is to find a solution to t-3 =3 — 2 (mod 5).
A solution is t = 2. Then x = a+tm =2+ 2-3 = 8. Since any 2’ with 2’ = x
(mod 15) is also a solution to those two equations, we can solve all three equations
by finding a solution to the pair of equations

z=8 (mod 15)
r=2 (mod7).

Again, we find a solution to ¢- 15 =2 — 8 (mod 7). A solution is t = 1, so
T=a+1tm=8+15=23.

Note that there are other solutions. Any 2’ =z (mod 3-5-7) is also a solution; e.g.,
23+3-5-7=128.
We can also solve Sun’s problem in PARI:

? chinese(Mod(2,3),M0d(3,5))
%13 = Mod(8, 15)

? chinese (Mod(8,15) ,Mod(2,7))
%14 = Mod(23, 105)



3 Multiplicative Functions

Definition 3.1. A function f : N — Z is multiplicative if, whenever m,n € N and
ged(m,n) = 1, we have
f(mn) = f(m)- f(n).
Recall that the Fuler ¢-function is
o(n) =#{a:1<a<nand ged(a,n) =1}.
Proposition 3.2. ¢ is a multiplicative function.

Proof. Suppose that m,n € N and ged(m,n) = 1. Consider the map

{c:1 < c¢<mnand ged(e,mn) =1} SN
{a:1<a<mand ged(a,m) =1} x {b:1<b<nand ged(b,n) =1}}

defined by
f(e) = (¢ mod m, ¢ mod n).

The map f is injective: If f(c) = f(¢), then m | ¢ — ¢ and n | ¢ — ¢, so, since
ged(n,m) =1, nm|c—c,soc="¢.
The map f is surjective: Given a,b with ged(a,m) = 1, ged(b,n) = 1, the
Chinese Remainder Theorem implies that there exists ¢ with ¢ = a (mod m) and
¢ = b (mod n). We may assume that 1 < ¢ < nm, ans since ged(a,m) = 1 and
ged(b,n) = 1, we must have ged(c,nm) = 1. Thus f(c) = (a,b).

Because f is a bijection, the set on the left has the same size as the product set
on the right. Thus

p(mn) = p(m) - ¢(n).

Ezample 3.3. The proposition makes it easier to compute ¢(n). For example,

p(12) = p(2%) - p(3) =2-2 = 4.

Also, for n > 1, we have
7

P
o(") =p" — —,
p

since ¢(p™) is the number of numbers less than p™ minus the number of those that
are divisible by p. Thus, e.g.,

©(389-11%) = 388 - (112 — 11) = 388 - 110 = 42680.
The ¢ function is also available in PARI:

7 eulerphi(389%11°2)
%15 = 42680

Question 3.4. Is computing ¢(1000 digit number) really easy or really hard?



