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1 The BSD Conjecture

Let E be an elliptic curve over QQ given by an equation
v =2"+ar+b
with a,b € Z. For pt A = —16(4a® + 270%), let a, = p+ 1 — #E(Z/pZ). Let
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Theorem 1.1 (Breuil, Conrad, Diamond, Taylor, Wiles).
L(E, s) extends to an analytic function on all of C.

Conjecture 1.2 (Birch and Swinnerton-Dyer). The Taylor expansion of L(E, s)
at s =1 has the form

L(E,s) = c¢(s — 1)" + higher order terms
with ¢ # 0 and E(Q) ~ Z" X E(Q)or-

A special case of the conjecture is the assertion that L(E,1) = 0 if and only if
E(Q) is infinite. The assertion “L(F,1) = 0 implies that F(Q) is infinite” is the
part of the conjecture that secretely motives much of my own research.

2 What is Known

On page 5 of Wiles’s paper, he discusses the history of the following theorem.
Theorem 2.1 (Gross, Kolyvagin, Zagier, et al.). Suppose that
L(E,s) = c¢(s — 1)" + higher order terms

with r < 1. Then the Birch and Swinnerton-Dyer conjecture is true for F, that is,
EQ) ~Z" & E(Q)tor-



I suspect that most elliptic curves satisfy the hypothesis of the above theorem,
i.e., they have rank 0 or 1. For example, almost 96% of the “first 78198” elliptic
curves have r < 1. I suspect that the curves with r > 1 have “density” 0 amongst
all elliptic curves. This doesn’t mean that we are done. In practice it is often the
curves with » > 1 that are interesting and useful, and experts can still be observed
saying “almost nothing is known about the Birch and Swinnerton-Dyer conjecture”.

3 How to Compute L(FE,s) with a Computer

3.1 Best Models

Let E be an elliptic curve over QQ, defined by a Weierstrass equation
y2 + a1y + azy = z° + a2x2 —+ a4 + ag.

There are many choices of Weierstrass equations that define an elliptic curve that
is “essentially the same” as E. E.g., you found others by completing the square.
Among all of these, there is a best possible model, which is the one with smallest
discriminant. It can be computed in PARI as follows:

?7 E = ellinit([0,0,0,-43,166]) ;

7 E.disc
%61 = -6815744
? E = ellchangecurve(E,ellglobalred(E) [2])

%62 =[1, -1, 1, -3, 3, ...]
? E.disc
%63 = -1664

Thus 4?2 + 2y + vy = 2® — 22 — 32 + 3 is a “better” model than y? = 2® — 43z + 166.

WARNING: Some of the elliptic curves functions in PARI will LIFE if you give as
input an elliptic curve that is defined by a model that isn’t the best possible. These
devious liars include elltors, ellap, ellak, and elllseries.

3.2 Formula for L(E, s)

As mentioned before, the PARI function elllseries can compute L(E, s). I figured
out how this function works, and explain it below.

Because F is modular, one can show that we have the following rapidly-converging
series expression for L(E, s), for s > 0:

L(E,s)=N"2.(2r)* - T(s)™" - an - (Fu(s = 1) — eFp(1 - 3))

n=1

F.(t)=T <t+ 1, 2”\/—%) - (g)m.
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Here o
['(z) = / t*~te~tdt
0
is the T'-function (e.g., I'(n) = (n — 1)!), and

['(z, a):/ t*"letdt

is the incomplete I'-function. The number N is called the conductor of E and is
very similar to the discriminant of E; it is only divisible by primes that divide the
best possible discriminant of E. You can compute N using the PARI command
ellglobalred(E) [1].

As usual, for p{ A, we have

ap =p+1—#E(Z/pZ),

for r > 2,
apr = a,prflap — papr72,

and Gy = GpGp, if ged(n,m) = 1, (I won’t define the a, when p | A, but it’s not
difficult.) Finally, ¢ depends only on E and is either +1 or —1. I won’t define ¢
either, but you can compute it in PARI using ellrootno (E).

At s =1, the formula can be massively simplified, and we have

o0

LB =(1+¢) Y ‘;—”e—m/ﬁ.
n=1

This sum converges rapidly, because e~2™/ VN 50 quickly as n — oo.

4 A Rationality Theorem

In the last lecture, I mentioned that it is incredibly difficult to say anything precise
about L(E, s), even with the above formulas. For example, it is a very deep theorem
(Gross-Zagier) that there is an elliptic curve such that

L(E,s) = c(s —1)> + higher terms,

and nobody has any idea how to prove that there is an elliptic curve with
L(E,s) = c(s — 1)* + higher terms.

Fortunately, it is possible to decide whether or not L(E,1) = 0.

Theorem 4.1. Let y?> = 2® + ax + b be an elliptic curve. Let
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where v is the largest real root of x* + ax +b. Then

L(E,1)
— €
Qg Q
and it is straightforward in any particular case to bound the denominator of that
rational number.

In practice, one computes this integral using the “Arithmetic-Geometric Mean”.
In PARI, Qg is approximated by E.omega[1] (times a small power of 2).

Ezample 4.2. Let E be the elliptic curve y? = 7° —43x+166. We compute L(F, 1) us-
ing the above formula and observe that L(E, 1)/2g appears to be a rational number,
as predicted by the theorem.

? E = ellinit([0,0,0,-43,166]);

? E = ellchangecurve(E, ellglobalred(E)[2]);

? eps = ellrootno(E)

W7 =1

? N = ellglobalred(E) [1]

%78 = 26

7?7 L = (1+eps) * sum(n=1,100, ellak(E,n)/n * exp(-2*%Pi*n/sqrt(N)))

%79 0.6209653495490554663758626727
? Om = E.omegal[1]

%80 = 4.346757446843388264631038710
? L/0m

%81 = 0.1428571428571428571428571427
? contfrac(L/0m)

%84 = [0, 7]

? 1/7.0

%85 = 0.1428571428571428571428571428
? elltors(E)

%86 = [7, [7]1, [[1, 0111

Notice that in this example, L(F,1)/Qr = 1/7 = 1/#E(Q). This is shadow of a
more refined conjecture of Birch and Swinnerton-Dyer.

Monday’s lecture will be filled with numerical examples and numerical evidence
for the Birch and Swinnerton-Dyer conjecture. Wednesday’s lecture will be a review
for the take-home FINAL EXAM.



