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1 Imitializing Elliptic Curves
We are concerned primarily with elliptic curves E given by an equation of the form
vV =2"+ar+b

with a and b either rational numbers or elements of a finite field Z/pZ. If a and b
are in Q, we initialize £ in PARI using the following command:

7?7 E = ellinit([0,0,0,a,b]);
If you wish to view a and b as element of Z/pZ, initialize F as follows:
? E = ellinit([0,0,0,a,b]*Mod (1,p));

If A = —16(4a® + 27b%) = 0 then ellinit will complain; otherwise, ellinit re-
turns a 19-component vector of information about E. You can access some of this
information using the dot notation, as shown below.

? E = ellinit([0,0,0,1,1]);
? E.a4

%11 =1

? E.ab



n2 =1

? E.disc
%13 = -496
? E.j

%14 = 6912/31
? E5 = el11init([0,0,0,1,1]1*Mod(1,5));

? Eb.disc

%15 = Mod(4, 5)

? E5.

%16 = Mod(2, 5)

Here E. j is the j-invariant of E. It is equal to %, and has some remarkable

properties that I probably won’t tell you about.

Most elliptic curves functions in PARI take as their first argument the output
of ellinit. For example, the function ellisoncurve(E,P) takes the output of
ellinit as its first argument and a point P=[x,y], and returns 1 if P lies on E and
0 otherwise.

? P = [0,1]
? ellisoncurve(E, P)
w7 =1

? P5 = [0,1]*Mod(1,5)
? ellisoncurve(E5, P)
%18 =1

2 Computing in The Group

The following functions implement some basic arithmetic in the group of points on
an elliptic curve: elladd, ellpow, and ellorder. The elladd function simply adds
together two points using the group law. Warning: PARI does not check that the
two points are on the curve.

? P = [0,1]

%2 = [0, 1]

? elladd(g,P,P)

%3 = [1/4, -9/8]

? elladd(E,P,[1,01) \\ nonsense, since [1,0] isn’t even on E!!!
%4 = [0, -1]

? elladd(E5,P5,P5)

12 = [Mod(4, 5), Mod(2, 5)]

? [1/4,-9/8]1*Mod(1,5)

%13 = [Mod(4, 5), Mod(2, 5)]

The ellpow function computes nP = P+ P + ---+ P (n summands).

? ellpow(E,P,2)
w5 = [1/4, -9/8]



? ellpow(E,P,3)
%6 = [72, 611]
? ellpow(E,P,15)

%7 = [26449452347718826171173662182327682047670541792/9466094804586385762312509661837302961354550401,
4660645813671121765025590267647300672252945873586541077711389394563791/920992883734992462745141522111225908861976098219465616585649245395649]

3 The Generating Function L(E,s)

Suppose E is an elliptic curve over Q defined by an equation y? = z® 4+ ax +b. Then
for every prime p that does not divide A = —16(4a® + 27b?), the same equation
defines an elliptic curve over the finite field Z/pZ. As you will discover in problem
3 of homework 9, it can be exciting to consider the package of numbers #FE(Z/pZ)
of points on E over all finite fields. The function ellap computes

ap(E) =p+1—#E(Z/pZ).

? E = ellinit([0,0,0,1,1]);

? ellap(E,5)

%19 = -3 \\ this should be 5+1 - #points

? E6 = ellinit([0,0,0,1,1]*Mod(1,5));

? for(x=0,4, for(y=0,4, if(ellisoncurve(E5, [x,y]),print([x,y]1))))
[o, 1]

[0, 4]

[2, 1]

[2, 4]

[3, 1]

[3, 4]

[4, 2]

[4, 3]

7?7 65+1 -9 \\ 8 points above, plus the point at infinity
%22 = -3

There is a natural way to extend the definition of a, to define integers a,, for
every integer n. For example, if a, and a, are defined as above and p and ¢ are
distinct primes, then a,, = a,a,. Today I won’t tell you how to define the a, when,
e.g., p | A. However, you can compute the numbers a,, quickly in PARI using the
function ellan, which computes the first few a,.

? ellan(E,15)
%24 = [1, 0, 0, O, -8, 0, 3, 0, -3, 0, -2, 0, -4, 0, 0]

This output means that a; =1, ap = a3 = a4 =0, a5 = —3, ag = 0, and so on.
When confronted by a mysterious list of numbers, it is a “reflex action” for a

mathematician to package them together in a generating function, and see if anything

neat happens. It turns out that for the above numbers, a good way to do this is as

follows. Define -

L(E,s) = Z apn °.

n=1

3



This might remind you of Riemann’s (-function, which is the function you get if you
make the simplest generating function -, n~* of this form.

Using elllseries(E,s,1) I drew a graph of L(E,s) for y?> = 2 + z + 1.
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That the value of L(E,s) makes sense at s = 1, where the series above doesn’t
obviously converge, follows from the nontrivial fact that the function

0
f(Z) — Z an62mnz
n=1

is a modular form. Also, keep your eyes on the dot; it plays a central roll in the
Birch and Swinnerton-Dyer conjecture, which asserts that L(F,1) = 0 if and only if
the group E(Q) is infinite.

3.1 A Curve of Rank Two
Let E be the simplest rank 2 curve:
v 4y =2+ 2% - 2r.

The discriminant is 389.
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3.2 A Curve of Rank Three

Let E be the simplest rank 3 curve:
v +y=a®—Tr +6.

The discrimin@nt 1s 5077.
2




3.3 A Curve|of Rank Four
Let E be the|simplést known rank 4 curve:
v 4+ xy = 23 — 2% — 79z + 289
The conduct %is 2-(117223.
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4 Other Functions and Programs

You can see a complete list of elliptic-curves functions by typing 75:

7 75

elladd ellak ellan ellap

ellbil ellchangecurve ellchangepoint elleisnum

elleta ellglobalred ellheight ellheightmatrix

ellinit ellisoncurve ellj elllocalred

elllseries ellorder ellordinate ellpointtoz

ellpow ellrootno ellsigma ellsub

elltaniyama elltors ellwp ellzeta ellztopoint

I have only described a small subset of these. To understand many of them, you
must first learn how to view an elliptic curve as a “donut”, that is, as quotient of
the complex numbers by a lattice, and also as a quotient of the upper half plane.

There is a Maple package called APECS for computing with elliptic curves, which
is more sophisticated than PARI in certain ways, especially in connection with algo-
rithms that involve lots of commutative algebra. MAGMA also offers sophisticated
features for computing with elliptic curves, which are built in to the standard dis-
tribution. I will give a demonstrations of MAGMA in the Basic Notions seminar at
3pm on Monday, December 3 in SC 507. There is also a C++ library called LiDIA
that has libraries with some powerful elliptic curves features.



