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In this lecture we will learn about two applications of continued fractions. The
first is a solution to the computational problem of recognizing a rational number
using a computer. The second application is to the following ancient question: Given
a positive nonsquare integer d, find integers x and y such that 22 — dy? = 1.

1 Recognizing Rational Numbers

Suppose that you can compute approximations to a rational number using a com-
puter, and desparately want to know what the rational number is. As Henri Cohen
explains in his book A Course in Computational Algebraic Number Theory, continued
fraction are very helpful.

Consider the following apparently simple problem. Let x € R be given by
an approximation (for example a decimal or binary one). Decide if x is a
rational number or not. Of course, this question as posed does not really
make sense, since an approximation is usually itself a rational number. In
practice however the question does make a lot of sense in many different
contexts, and we can make it algorithmically more precise. For example,
assume that one has an algorithm which allows us to compute z to as
many decimal places as one likes (this is usually the case). Then, if one
claims that z is (approximately) equal to a rational number p/g, this
means that p/q should still be extremely close to x whatever the number
of decimals asked for, p and ¢ being fixed. This is still not completely
rigorous, but it comes quite close to actual practice, so we will be content
with this notion.

Now how does one find p and ¢ if x is indeed a rational number? The
standard (and algorithmically excellent) answer is to compute the con-
tinued fraction expansion [ag, a1, ...] of . The number z is rational if
and only if its continued fraction expansion is finite, i.e., if and only if
one of the a; is infinite. Since z is only given with the finite precision, z
we be considered rational if x has a very large partial quotient q; in its
continued fraction expansion.



The following example illustrates Cohen’s remarks:

Ezxample 1.1. 7 x
%13 = 9495/3847
? xx1.0
%14 = 2.4681570054587990642058747075643358461138549519105
? contfrac(x)
w5 =12,2,7,2,1,5,1,1,1
7 contfrac(2.468157005458799064)
»e =1[2, 2,7,2,1,5,1, 1, 1, 1, 1, 1, 328210621945, 2, 1, 1, 1, 1, 7]
? contfracpngn([2, 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 11)
W7 =
[9495 58521
[3847 2371]
7 contfrac(2.4681570054587990642058747075643)
we =12, 2,7,2,1, 5,1, 1, 1, 1, 1, 1, 1885009518355562936415046, 1, 4]
? \p300
7 x¥1.0 \\ notice that no repeat is immediately evident in the digits of x
%19 = 2.468157005458799064205874707564335846113854951910579672472056147647517 . .
? \\ in fact, the length of the period of the decimal expansion

\\ of 1/3847 is 3846 (the order of 10 modulo 3847)!!
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2 Pell’s Equation

In February of 1657, Pierre Fermat issued the following challenge:

Given a positive integer d, find a positive integer y such that dy? + 1 is
a perfect square.

In other words, find a solution to z? — dy? = 1 with y € N.
Note Fermat’s emphasis on integer solutions. It is easy to find rational solutions
to the equation z? — dy? = 1. Simply divide the relation

(r? +d)? — d(2r)? = (r* — d)?
by (r? — d)? to arrive at

_r2+d 2
2=’ y_TQ—d'

X

Fermat said: “Solutions in fractions, which can be given at once from the merest
elements of arithmetic, do not satisfy me.”

The equation 2 — dy® = 1 is called Pell’s equation. This is because Euler (in
about 1759) accidently called it “Pell’s equation” and the name stuck, though Pell
(1611-1685) had nothing to do with it.

If d is a perfect square, d = n?, then

(x+ny)(z —ny) =2° —dy* = 1
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which implies that z +ny = — ny =1, so

x_x-l—ny—i—ac—ny_l-l—l_
= 5 ==

1.

We will thus always assume that d is not a perfect square. You can read about Pell’s
equation in Section 0.6 of Kato-Kurokawa-Saito and on pages 107-111 of Davenport.
Pell’s equation is best understood in terms of units in real quadratic fields.

3 Units in Real Quadratic Fields

Let d be a nonsquare positive integer, and set
QWd) ={a+bVd:a,beQ}
ZIVd = {a+b/d:a,beZ}.

Then Q(v/d) is a real quadratic field and Z[v/d] is a ring. There is a homomorphism
called norm:

N :Q(Wd)* — Q, N(a+b\/g)=(a+b\/c_l) (a—b\/c_i>:a2—b2d.
Definition 3.1. An element x € R is a unit if there exists y € R such that zy = 1.
Proposition 3.2. The units of Z[v/d] are ezactly the elements of norm +1 in Z[\/d].
Proof. Suppose u € Z[v/d] is a unit. Then

1=N(1)=N(uu")= N(u)-Nu™").
Since N(u), N(u™!) € Z, we have N(u) = N(u™!) = 1 O

Thus Fermat’s challenge amounts to determing the group U+ of units in Z[/d]
of the form a + bv/d with a,b > 0.

Theorem 3.3. The group U* is an infinite cyclic group. It is generated by p,, +
gmVd, where 2—: 1s one of the partial convergents of the continued fraction expansion

of Vd. (In fact, if m is the period of the continued fraction of Vd thenn =m —1
when m is even and 2n — 1 when m is odd.)

The theorem implies that Pell’s equation always has a solution! Warning: the
smallest solution is typically shockingly large. For example, the value of z in the
smallest solution to z? — 1000099y% = 1 has 1118 digits.

The following example illustrates how to use Theorem 3.3 to solve Pell’s equation
when d = 61, where the simplest solution is already quite large.

Example 3.4. Suppose d = 61. Then

Vd=1[7,1,4,3,1,2,2,1,3,4,1,14],



which has odd period n = 11. Thus the group U™ is generated by

T = po; = 1766319049
Y = go1 = 226153980.

That is, we have
Ut = (u) = (1766319049 + 226153980\/5),

and z = 1766319049, y = 226153980 gives a solution to 2 — dy? = 1. All the other
solutions arise from u"™ for some n. For example,

u? = 6239765965720528801 + 798920165762330040+/61

leads to another solution.

Remark 3.5. To help with your homework, note that if the equation

22 —dy*=n

has at least one (nonzero) solution (zo,¥yo) € Z X Z, then it must have infinitely
many solutions. This is because if z2 — dy2 = n and v is a generator of the cyclic
group U™, then for any integer 1,

N(u' (2o +yoVd)) = N(u') - N(zo + yoVd) = 1-n =n,

SO
T+ yl\/C_l = U,i(.TQ + yo\/g)

provides another solution to z? + dy? = n.

4 Some Proofs

The rest of this lecture is devoted to proving most of Theorem 3.3. We will prove
that partial convergents to continued fractions contribute infinitely many solutions
to Pell’s equation. We will not prove that every solution to Pell’s equation is a partial
convergent, though this is true.!

Fix a positive nonsquare integer d.

Definition 4.1. A quadratic irrational o = a + bV/d is reduced if o > 1 and if the
conjugate of «, denoted by o/, satisfies —1 < o < 0.

For example, the number o = 1 + /2 is reduced.
Definition 4.2. A continued fraction is purely periodic if it is of the form [ag, ai, - - -, @y

The continued fraction [2] of 1 + v/2 is purely periodic.

!There is a complete proof in Section 13.5 of Burton’s Elementary Number Theory. It just
involves more of the same sort of computations that we’ve been doing with continued fractions.
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Lemma 4.3. If a is a reduced quadratic irrational, then the continued fraction ez-
pansion of « is purely periodic. (The converse is also true, and is easy to prove.)

Proof. The proof can be found on pages 102-103 of Davenport’s book. O

Lemma 4.4. The continued fraction expansion of \/d is of the form

lag, a1, . .., an_1,2a0).

Proof. Let ay be the floor of v/d. Then o = v/d + ay is reduced because o > 1 and
o = —V/d + ag satisfies —1 < o/ < 0. Let [ag, ay, as,...] be the continued fraction
expansion of v/d. Then the continued fraction expansion of v/d+aq is [2a¢, a1, as, . . .].
By Lemma 4.3, the continued fraction expansion of v/d + aq is purely periodic, so

[20,0, a1, a9, . . ] = [20,0, ay, g, ..., an,l],
where n is the period. It follows that a,, = 2a, as claimed. O

The following proposition shows that there are infinitely many solutions to Pell’s
equation that arise from continued fractions.

Proposition 4.5. Let py/q, be the partial convergents of the continued fraction
ezpansion of \V/d, and let n be the period of the expansion of V/d. Then

pinﬂ - dQEnfl = (_1)lm
fork=1,2,3,....
Proof. > By Lemma 4.4, for k > 1, the continued fraction of v/d can be written in
the form
Vd = [ag, a1, g, ..\ Ggn—1, Tkn]

where
Pen = (200, 5 G2y 5 Gn) = ag + Vd.

Because V/d is the last partial convergent, of the continued fraction above, we have

\/a — TknPkn—1 + Pkn—2
TknQkn—1 + Qkn—2

Upon substituting 7, = ag + v/d and simplifying, this reduces to
Vd(ao@kn—1 + Gkn-2 — Pkn-1) = GoPkn—1 + Pkn—2 — dGkn—1.
Because the right-hand side is rational and v/d is irrational,
Akn 1+ Gkn-—2 = Pkn—1, and  QoPrn 1 + Pkn-2 = dQrn1-

Multiplying the first of these equations by pg, 1 and the second by —q, 1, and then
adding them, gives

pin—l - dqgn—l = Pkn—19kn—2 — Qkn—1Pkn—2-
But
Phn—1Qkn—2 — Qkn—1Pkn—2 = (—1)F" 7% = (=1)*",
which proves the proposition. O

2This proof is from Section 13.5 of Burton’s Elementary Number Theory.



