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In this lecture we prove that the continued fraction expansion of a number is
periodic if and only if the number is a quadratic irrational.

1 Quadratic Irrationals

Definition 1.1. An element o € R is a quadratic irrational if it is irrational and
satisfies a quadratic polynomial.

Thus, e.g., (1 ++/5)/2 is a quadratic irrational. Recall that

14++/5
2

=[1,1,1,..].

The continued fraction of v/2is [1,2,2,2,2,2, .. ], and the continued fraction of /389
is
[19,1,2,1,1,1,1,2,1,38,1,2,1,1,1,1,2,1,38, .. .

Does the [1,2,1,1,1,1,2,1, 38] pattern repeat over and over again??

2 Periodic Continued Fractions

Definition 2.1. A periodic continued fraction is a continued fraction [ag, a1, . .., Gp, . . .]
such that

Gp = Qp+h

for a fixed positive integer h and all sufficiently large n. We call h the period of the
continued fraction.

Ezample 2.2. Consider the periodic continued fraction [1,2,1,2,...] = [1,2]. What
does it converge to?
1
[1,2]=1+ oy 1
5+ —



so if a = [1,2] then

Thus 2a+a? =2+ a+1, so

=1+ VT

?+a—-3=0 and « 5

Theorem 2.3. An infinite integral continued fraction is periodic if and only if it
represents a quadratic irrational.

Proof. (=) First suppose that

[aOa A1y .-y An, Opyl,-- -y an—l—h]
is a periodic continued fraction. Set o = [ap11, Anao,---]. Then
= [ans1,-- - Unin, Q,

SO
_ OPpih + Pnth—1

 Onih t Gurhe1

(We use that « is the last partial convergent.) Thus « satisfies a quadratic equation.
Since the a; are all integers, the number

[ag, a1, ...] =[ap,ai,...,a,,q]
n 1
= a’O
1
0t o Ta
can be expressed as a polynomial in « with rational coefficients, so [ag, a1, .. .| also

satisfies a quadratic polynomial. Finally, o ¢ Q because periodic continued fractions
have infinitely many terms.

(«<=) This direction was first proved by Lagrange. The proof is much more exciting!
Suppose « € R satisfies a quadratic equation

ac® +ba+c=0
with a, b, c € Z. Let [ag, a1, .. .| be the expansion of . For each n, let

Tn = [Gn, Gni1, - -],

so that
a = [a07a'17 . '7an—larn]-

We have
o= T'nPn + Pn—1

B Tngn + Gn—1 .



Substituting this expression for « into the quadratic equation for o, we see that
Apr® 4+ Bprp + C, = 0,

where

Ap = apy_y + bpn1qn-1 + cgn_y,

By, = 2apn_1Pn—2 + b(Pn—19n—2 + Pn—2Gn—1) + 2¢¢n_1¢n_2,

Con = aply o+ bpn2n2 + Pl o
Note that A,, B,,,C,, € Z, that C,, = A,,_1, and that

B? — 4A,C, = (b — 4ac)(Pn—1Gn—2 — Gn-1Pn—2)* = b* — 4ac.

Recall from the proof of Theorem 2.3 of the previous lecture that

_ 1
o — Pn—1 < .
dn—1 dndn—1
Thus
1 1
|aqn—1 _pn—1| < —< )
qn dn+1
SO
Pn—1 = QQp—1 + with |5| < 1.
n—1
Hence
5\’ P \
An =a\|agp-1+ +b aqp—1 + Qn-1 + Cq,
dn—-1 dn—-1
62
= (ac® +ba +c)g?_, + 2aa6 + a—— +b6
n—1
52
= 2aad + a—— + bo.
qn—l
Thus

52
2a00 + CL2— + bé
q

n—1

|[An| = < 2|ac| + [a] + [b].

Thus there are only finitely many possibilities for the integer A,,. Also,
Cul = [Ana|  and  |B,| = /B2 = 4(ac — A,C,),

so there are only finitely many triples (A,, B,,Cy,), and hence only finitely many
possibilities for r, as n varies. Thus for some h > 0,

T'n = Tpn+h-

This shows that the continued fraction for « is periodic. O

3 What About Higher Degree?

Definition 3.1. An algebraic number is a root of a polynomial f € Q[z].

Open Problem: ! What is the continued fraction expansion of the algebraic num-

1 As far as I know this is still an open problem.



ber /27

? contfrac(2°(1/3))
%5 =11, 3,1, 5,1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3,
2,1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1,
121, 1, 2, 2, 4, 10, 3, 2, 2, 41,
6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4,
1, 1, 1, 89, 1, 22, 186, 5, 2, 4

1,1,1,3,7,2,2,9, 4,1,3,7,
4, 5,12, 1, 1, 5, 15, 1, 4, 1, 1,
3, 3, 1, \ldots]

3 b J

I sure don’t see a pattern, and that 534 strips me of any confidence that I ever
will. One could at least try to analyze the first few terms of the continued fraction
statistically (see Lang and Trotter, 1972).

Khintchine (1963), page 59:

No properties of the representing continued fractions, analogous to those
which have just been proved, are known for algebraic numbers of higher
degree. [...] It is of interest to point out that up till the present time no
continued fraction development of an algebraic number of higher degree
than the second is known. It is not even known if such a development
has bounded elements. Generally speaking the problems associated with
the continued fraction expansion of algebraic numbers of degree higher
than the second are extremely difficult and virtually unstudied.

Richard Guy Unsolved Problems in Number Theory (1994), page 260:

Is there an algebraic number of degree greater than two whose simple
continued fraction has unbounded partial quotients? Does every such
number have unbounded partial quotients?



