Lecture 10: Attacking RSA

William Stein
Math 124 HARVARD UNIVERSITY Fall 2001

Nikita’s public key is (n,e). If we compute the factorization of n = pg, then we
can compute p(n) and hence deduce her secret decoding number d. Thus attempting
to factor n is a way to try to break an RSA public-key cryptosystem. In this lecture
we consider several approaches to “cracking” RSA, and relate them to the difficulty
of factoring n.

1 Factoring n Given ¢(n)

If you know ¢(n) then it is easy to factor n:
Suppose n = pg. Given ¢(n), it is very easy to compute p and g. We have

pn)=@-1)(¢-1)=pg—(p+q) +1,

so we know both p¢g =n and p+¢=n+1— ¢(n). Thus we know the polynomial

2~ (p+qz+pg=(x—p)(z—q)

whose roots are p and g. These roots can be found using the quadratic formula.

Ezample 1.1.

? n=nextprime (random(107~10))*nextprime(random(10710));
? phin=eulerphi(n);

?7 f = x"2 - (n+tl-phin)*x + n

%6 = x"2 - 12422732288*x + 31615577110997599711
? polroots(f)

W7 = [3572144239, 8850588049]

?7n

%8 = 31615577110997599711

7?7 3572144239%8850588049

%9 = 31615577110997599711

2 When p and ¢ Are Close

Suppose that p and g are “close” to each other. Then it is easy to factor n using a
factorization method of Fermat.

Suppose n = pqg with p > ¢, say. Then

= () - (%)

3 43 77
Since p and q are “close”,
is small,

is only slightly larger than /n, and t> — n = s? is a perfect square. So we just try
t = ceil(v/n), t=ceil(vn)+1, t=-ceil(v/n)+2,...
until 2 — n is a perfect square s2. Then
p=1t+s, qg=1-—s.
Ezxample 2.1. Suppose n = 23360947609. Then
V= 15284288

If ¢ = 152843, then /12 — n = 187.18....

If t = 152844, then /t> — n = 583.71

If t = 152845, then Vt?2 — n = 804 € Z.

Thus s = 804. We find that p =t + s = 153649 and ¢ =t — s = 152041.

Here is a bigger example in PARI:

? g=nextprime(random(10°50))

%20 = 78177096444230804504075122792410749354743712880803

? p=nextprime(q+1) \\ a nearby prime

h21 = 78177096444230804504075122792410749354743712880899

7 n=p*q

%22 = 6111658408450564697085634201845976850509908580949986889525704. . .
...259650342157399279163289651693722481897

? t=floor(sqrt(n))+1

***x precision loss in truncation
7 \p150 \\ set precision of floating-point computations.
realprecision = 154 significant digits (150 digits displayed)

? t=floor(sqrt(n))+1

%29 = 78177096444230804504075122792410749354743712880851

7 sqrt(t~2-n)

%30 = 48.00. . . .

? 8=48

%31 = 48

7t + s \\ p

%33 = 78177096444230804504075122792410749354743712880899
?t-s \\ q

%35 = 78177096444230804504075122792410749354743712880803

3

Factoring n Given d

Suppose that we crack an RSA cryptosystem by finding a d such that

for all a. Then we’ve found an m (= ed — 1) such that ¢™ = 1 (mod n) for all a
not lead to a factorization of n in as direct
a manner as knowing ¢(n) does (see Section 1). However, there is a probabilistic
procedure that, given an m such that ™ = 1 (mod n), will with high probability

with ged(a,n) = 1. Knowing a does

a**=a (mod n)

find a factorization of n.

Probabilistic procedure to factor n:

1.

2. If @™? = 1 (mod n) for all a coprime to n, replace m by m/2. In practice,
it is not possible to determine whether or not this condition holds, because
it would require doing a computation for too many a. Instead, we try a few
random a; if a™? = 1 (mod n) for the a we check, then we divide m by 2.
(If there exists even a single a such that ™2 #Z 1 (mod n), then at least half

m is even since (—1)" =1 (mod n).

the a have this property.)
Keep repeating this step until we find an a such that ¢™/? # 1 (mod n).

. There is a 50% chance that a randomly chosen a will have the property that

a™? =41 (mod p), a™?=—1 (mod q)
or
a™?=-1 (modp), a™?=+1 (mod q).

If the first case occurs, then
pla™?—1, but ¢ {a™? -1,

SO

™2 _1,pq) = p,

and we have factored n. Just keep trying a’s until one of the cases occurs.

ged(a

? \r rsa \\ load the file rsa.gp, available at Lecture 9 web page.
? rsa = make_rsa_key(10)

%34
?7n
?m
%38

[32295194023343, 29468811804857, 11127763319273]
rsal[l]; e = rsa[2]; d = rsal3];

exd-1

327921963064646896263108960

? for(a=2,20, if(Mod(a,n) m'!=1,print(a))) \\ prints nothing. ..

?m
%39

=m/2
= 163960981532323448131554480

? for(a=2,20, if(Mod(a,n) m!=1,print(a)))

3

?m=m/2

%40 = 81980490766161724065777240

? for(a=2,20, if(Mod(a,n) m!=1,print(a)))
?m=m/2

%41 = 40990245383080862032888620

? for(a=2,20, if(Mod(a,n) m!=1,print(a)))
?m=m/2

%42 = 20495122691540431016444310

? for(a=2,20,if (Mod(a,n) "m!=1,print(a)))
2

5
6
. etc.
? gcd(27°m,n)
x power overflow in pow_monome.

? x = 1lift(Mod(2,n) "m)-1
%43 = 4015382800098

? ged(x,n)

%46 = 737531

? p = gcd(x,n)
%53 = 737531

? q=n/p

? P*q

%54 = 32295194023343
?n

%55 = 32295194023343

4 RSA Challenge n

The easiest challenge at
http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html

is the 576-bit number

Name: RSA-576
Prize: $10000
Digits: 174
Digit Sum: 785

188198812920607963838697239461650439807163563379417382700763356422988859
715234665485319060606504743045317388011303396716199692321205734031879550
656996221305168759307650257059

